• Aucun résultat trouvé

Heat Gain Through Transparent Walls

N/A
N/A
Protected

Academic year: 2021

Partager "Heat Gain Through Transparent Walls"

Copied!
22
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1963

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20375165

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Heat Gain Through Transparent Walls

Martorana, S.; National Research Council of Canada. Division of Building

Research

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=e523c34a-144a-4bdd-931a-312820fbde0d https://publications-cnrc.canada.ca/fra/voir/objet/?id=e523c34a-144a-4bdd-931a-312820fbde0d

(2)

PREFACE

The contemporary t r e n d t o l a r g e a r e a s o f g l a s s i n t h e o u t s i d e w a l l s of b u i l d i n g s has r e s u l t e d i n very s u b s t a n t i a l i n c r e a s e s i n t h e a i r c o n d i t i o n i n g requirements of t h e s e b u i l d i n g s . In some cases, t h e c o s t of t h e e x t r a c o o l i n g c a p a c i t y n e c e s s i t a t e d by t h e use of g l a s s w a l l s is twice a s much a s t h e c o s t of t h e g l a s s i t s e l f .

It Is, t h e r e f o r e , very important t o be a b l e t o c a l c u l a t e a c c u r a t e l y t h e c o o l i n g loads of b u i l d i n g s with g l a s s c u r t a i n w a l l s o r l a r g e window a r e a s .

This paper by S a l v a t o r e Martorana c o n t a i n s

a

l u c i d summary of t h e h e a t t r a n s f e r phenomena t h a t occur i n a g l a s s wall t h a t i s

exposed t o s o l a r r a d i a t i o n . It includes, as an example, an a n a l y s i s of t h e r e d u c t i o n i n h e a t g a i n t h a t can be achieved by u s i n g b l i n d s and h e a t absorbing g l a s s . The example i s f o r a b u i l d i n g in Rome, b u t t h e r e s u l t s a r e p e r t i n e n t f o r southern Ontario and t h e n o r t h e r n s t a t e s of t h e United S t a t e s . This paper h a s been t r a n s l a t e d i n t o English I n t h e hope t h a t i t w i l l h e l p t o propagate t o t h e b u i l d i n g d e s i g n e r s i n t h e English-speaking c o u n t r i e s t h e importance of s o l a r h e a t gain i n b u i l d i n g design.

This t r a n s l a t i o n was prepared by M r .

D.A.

S i n c l a i r of t h e T r a n s l a t i o n s S e c t i o n of the National Research Council t o whom t h e D i v i s i o n r e c o r d s i t s thanks.

O t t a w a Robert F. Legget

(3)

NATIONAL RESEARCH COUNCIL OF CANADA

Technical T r a n s l a t i o n 1060

T i t l e : Heat g a i n through t r a n s p a r e n t walls

( ~ l i a p p o r t i d l c a l o r e a t t r a v e r s o l e p a r e t i t r a s p a r e n t i ) Author: S a l v a t o r e Martorana

Reference: Termotecnica,

15

( 2 ) :

89-100,

1961

(4)

HEAT G A I N THROUGH TRANSPARENT

WALLS

Genera 1

The e s t i m a t i o n of h e a t g a i n through t r a n s p a r e n t walls has been t h e sub- J e c t , i n r e c e n t y e a r s , of c o n s i d e r a b l e t h e o r e t i c a l and experimental r e s e a r c h .

The most conlplete i n v e s t i g a t i o n s f o r purposes of c a l c u l a t i o n a r e t h e ones d e s c r i b e d i n t h e ASHRAE Guide and t h e one r e p o r t e d by Desplanches i n t h e sec- ond volume of t h e AICVF Guide. However, t h e data of t h e s e two g u i d e s a r e inadequate when i t i s d e s i r e d t o extend t h e i r use t o c a s e s d i f f e r i n g from t h e ones considered e i t h e r f o r t h e c h a r a c t e r i s t i c s o f t h e wall o r f o r t h e c l i m a t i c c o n d i t i o n s .

T h i s i s n o t unexpected i n o u r r e g i o n s where t h e s u p p l i e s of h e a t can be l a r g e even i n autumn and w i n t e r ( ~ i g . 1 ) .

On t h e o t h e r hand t h e complexity of t h e v a r i o u s formulae proposed and t h e d i f f i c u l t y of l o c a t i n g t h e v a l u e s of t h e c o e f f i c i e n t s i n t h e common manuals make i t impossible t o d e a l w i t h such c a s e s with t h e r e q u i r e d d i s p a t c h .

These c o n s i d e r a t i o n s have l e d t o a rearrangement of t h e more s i g n i f i c a n t t h e o r e t i c a l .and e x p e r i m e n t a l m a t e r i a l and t o t h e d e r i v a t i o n o f t a b l e s and e q u a t i o n s w i t h which most of t h e t e c h n i c a l problems can be e a s i l y s o l v e d .

The most convenient scheme of c a l c u l a t i o n appears t o be t h a t i n d i c a t e d i n F i g . 2, which can be extended t o more complex w a l l s and which

i s

t h e one most commonly used; l e t us i l l u s t r a t e b r i e f l y . On t h e wall,

5

i s t h e i n t e n s i t y of t h e d i r e c t s o l a r r a d i a t i o n and Id t h a t o f t h e d i f f u s e r a d i a t i o n , b o t h known; o f t h e s e , t h e t r a n s m i t t e d component i s IT = 'CDh

+

'CdId, 0 ) t h e absorbed component 'a =

%h

+ 'dld t h e r e f l e c t e d component 1, = rD%

+

rdId

where 7 and

z d ,

ad, rD and rd a r e t h e t r a n s m i s s i o n , a b s o r p t i o n and t o t a l D

r e f l e c t i o n f a c t o r s of t h e w a l l f o r d i r e c t and d i f f u s e r a d i a t i o n .

The t r a n s m i t t e d component i s transformed i n t o h e a t on t h e f u r n i s h i n g s and i n s i d e s u r f a c e s of t h e room, s o t h a t i t always r e p r e s e n t s a p o s i t i v e h e a t s u p p l y .

The absorbed component i s transformed i n t o h e a t w i t h i n t h e w a l l i t s e l f , which g i v e s i t up by convection and r a d i a t i o n e i t h e r t o t h e i n t e r n a l o r e x t e r n a l environment o r b o t h .

(5)

Thus, t h e c a l c u l a t i o n of t h e h e a t g a i n r e q u i r e s a knowledge of t h e

f a c t o r s defined above f o r t h e v a r i o u s walls and a knowledge of t h e h e a t t r a n s - mission r e l a t i o n s h i p s which permit e s t i m a t i o n of t h e q u a n t i t y of h e a t Qi and

Qe exchanged by t h e wall with t h e two environments. Transmission of R a d i a t i o n D i r e c t r a d i a t i o n

The t r a n s m i s s i o n of d i r e c t r a d i a t i o n through any w a l l made up of s e v e r a l absorbing l a y e r s , has been d e a l t w i t h by P r o f e s s o r Bozza i n a monograph of l g j 5 ( ' ) , which has n o t t o t h i s day been superseded.

From t h e normal i n c i d e n c e he determined t h e c o u r s e Of r a d i a t i o n i n t h e i n t e r i o r of t h e wall, assuming t h a t t h i s r a d i a t i o n i s monochromatic, i s

r e f l e c t e d s e v e r a l times on t h e s u r f a c e s of s e p a r a t i o n of t h e d i f f e r e n t l a y e r s and t h a t it i s absorbed i n t h e s e l a y e r s a c c o r d i n g t o an e x p o n e n t i a l l a w .

The formulae o b t a i n e d , extended t o o b l i q u e i n c i d e n c e and s u i t a b l y

modified, lend thenlselves w e l l t o t h e c a l c u l a t i o n of t h e t r a n s m i s s i o n , absorp- t i o n and t o t a l r e f l e c t i o n f a c t o r s of a l a r g e number of t r a n s p a r e n t w a l l s .

For t h e most common of t h e s e , comprising one o r more panes of g l a s s s e p a r a t e d by a t h i n a i r gap, t h e e x p r e s s i o n s f o r t h e above f a c t o r s a r e as

follows: f o r a w a l l c o n s i s t i n g of one pane

2ks r D = p + 2 cs 1

-

p2 exp

-

-

(

r ) f o r a w a l l c o n s i s t i n g of two panes T = =DeZDl D ( 1

-

p 2 ) 4

(6)

where s i s t h e t h i c k n e s s of t h e pane, a i s t h e a b s o r p t i o n c o e f f i c i e n t of t h e g l a s s , p i s t h e a i r - g l a s s r e f l e c t i o n f a c t o r and r Is t h e a n g l e of r e f r a c t i o n ; t h e s u b s c r i p t s "el' and "I" r e f e r r e s p e c t i v e l y t o t h e f i r s t and l a s t pane.

The a b s o r p t i o n c o e f f i c i e n t of g l a s s depends on t h e ambient temperature, t h e chernlcal composition of t h e g l a s s and t h e wavelength of t h e i n c i d e n t r a d i a t i o n .

For o r d l n a r y g l a s s e s i t s v a l u e s a r e low i n t h e v i s i b l e range, of t h e o r d e r of 10

-

15

m-', and i n c r e a s e r a p i d l y in t h e v i o l e t d i r e c t i o n and l e s s r a p i d l y in t h e red end of t h e spectrum; above 4.5

-

5p, f o r which i t i s 800

-

( 2 ) 1500 m-', o r d i n a r y g l a s s of t h e u s u a l t h i c k n e s s i s p r a c t l c a l l y opaque

.

The v a r i a t i o n s o f t h e c o e f f i c i e n t of a b s o r p t i o n with t h e wavelength have been e x p l o i t e d by t h e g l a s s i n d u s t r y t o produce g l a s s e s capable of reducing t h e a c c e s s o f h e a t and l i m i t i n g t h e luminence of windows. Such g l a s s e s ,

c a l l e d athermic, a r e p a r t i c u l a r l y absorbent i n t h e i n f r a r e d r e g i o n and f a i r l y absorbent I n t h e v i s i b l e .

F i g u r e

3

shows c l e a r l y how t h e two types of g l a s s vary t h e s p e c t r a l d i s t r i b u t i o n of s o l a r r a d i a t i o n .

The a b s o r p t i o n c o e f f i c i e n t of t h e more common g l a s s e s on t h e I t a l i a n market, r e l a t i v e t o t h e s o l a r spectrum a t s e a l e v e l and a i r mass e q u a l t o 2

a s proposed by P. ~ o o n ( ~ ) , h a s an average value of 20

-

22 m-' f o r o r d i n a r y g l a s s e s and 108

-

112 m-' f o r atherrnic g l a s s e s , which i s about t h e same as t h e

( 5 ) corresponding g l a s s e s produced i n ~ r a n c e ( ~ ) and i n America

For t e c h n o l o g i c a l reasons t h e s e values can vary by 4 t o

5$

f o r o r d i n a r y g l a s s e s and 8 t o 12% f o r athermlc g l a s s e s . Less e a s i l y e s t i m a t e d , however, a r e t h e v a r i a t i o n s a s s o c i a t e d with t h e s o l a r spectrum. J u s t t h e reddening of Moon's spectrum, caused by t h e i n c r e a s e of t h e a i r mass from 2 t o

5 ,

reduces t h e t r a n s p a r e n c y f o r normal incidence o v e r a t h i c k n e s s of

6

mrn by 1

-

276 f o r t h e o r d i n a r y g l a s s e s and 7

-

85 f o r t h e athermic ones.

The r e f l e c t i o n f a c t o r depends on t h e a n g l e of incidence, t h e wavelength of t h e i n c i d e n t r a d i a t i o n , i t s s t a t e o f p o l a r i z a t i o n and t h e a b s o r p t i o n c o e f f i c i e n t .

A t ambient temperature, foru o r d i n a r y and athermic g l a s s e s , t h e v a r i a t i o n s with t h e c o e f f i c i e n t of a b s o r p t i o n a r e n e g l i g i b l e ; thus, where n is t h e index of r e f r a c t i o n and I t h e a n g l e of incidence, t h e r e f l e c t i o n f a c t o r can be

(7)

expressed by t h e s i m p l i f i e d r e l a t i o n s h i p f o r normal incidence, P =

3

( P '

+

P'l) f o r o b l i q u e incidence; where p f =

- rl

i s t h e r e f l e c t i o n f a c t o r f o r t h e r a d i a t i o n component s i n 2 ( i

+

r ) p o l a r i z e d i n t h e plane of incidence, p"

-

-

r, 18 t h e r e f l e c t i o n f a c t o r t a n 2 ( i

+

r ) f o r t h e r a d i a t i o n component p o l a r i z e d I n t h e p l a n e p e r p e n d i c u l a r t o t h e p l a n e - 1 s i n i of incidence, and r i s e q u a l t o s i n 7 . Table I g i v e s t h e a n g l e s of r e f r a c t i o n and t h e r e f l e c t i o n f a c t o r s a t

v a r i o u s a n g l e s of i n c i d e n c e c a l c u l a t e d with a mean index of r e f r a c t i o n of

( 6 )

1.52 f o r t h e s o l a r spectrum

.

From t h e v a l u e s of p 1 and p " i t i s c l e a r t h a t t h e r e f l e c t i o n f a c t o r s p

can vary widely depending on whether one o r t h e o t h e r component predominates. This happens e i t h e r when t h e i n c i d e n t r a d i a t i o n i s p a r t i a l l y p o l a r i z e d , a s i s o f t e n t h e case f o r s o l a r r a d i a t i o n , o r a f t e r t h e f i r s t r e f l e c t i o n In t h e c a s e of o b l i q u e incidence, because t h e i n c i d e n t r a d i a t i o n i s p o l a r i z e d and t h e t r a n s m i t t e d r a d i a t i o n i s f u r t h e r p o l a r l z e d a t each r e f l e c t i o n of t h e p o l a r i z e d component i n t h e p l a n e p e r p e n d i c u l a r t o t h e p l a n e o f i n c i d e n c e .

A c t u a l l y knowing t h e s t a t e of p o l a r i z a t i o n of t h e s o l a r r a d i a t i o n does n o t permit an e s t i m a t i o n of t h e t r u e v a r i a t i o n s of t h e r e f l e c t i o n f a c t o r s , and

hence of t h e t r a n s m i s s i o n f a c t o r s . Comparison of t h e v a l u e s of t h e l a t t e r f o r n a t u r a l r a d i a t i o n and f o r t h e two l i n e a r l y p o l a r i z e d components as given i n Table 11, s u g g e s t s t h a t l n p r a c t i c e we can eqpect t o f i n d c o n s i d e r a b l e

o s c l l l a t l o n s around t h e mean value.

P o l a r i z a t i o n by r e f l e c t i o n , however, has t h e e f f e c t of p r o g r e s s i v e l y d i m i n i s h l n g t h e r e f l e c t i o n f a c t o r s f o r any given Incidence. I n o r d e r t o t a k e t h i s f a c t i n t o account t h e t r a n s m i s s i o n f a c t o r s a r e c a l c u l a t e d a s t h e mean values of t h o s e assumed f o r t h e two l i n e a r l y p o l a r i z e d components.

Considerable v a r i a t i o n s i n t h e r . e f l e c t i o n f a c t o r s must a l s o be a t t r i b u t e d t o t h e h e t e r o g e n e i t y of t h e s u r f a c e s t a t e of t h e g l a s s e s .

The above e x p r e s s i o n s can a l s o be used In t h e common c a s e where t h e w a l l

is f u r n i s h e d with c u r t a i n s f o r t h e c o n t r o l of t h e s o l a r r a d i a t i o n . However, i t i s p r e f e r a b l e i n p r a c t i c e t o d e r i v e t h i s from t h e o t h e r more g e n e r a l formulae

.

For t h i s puprose n o t e t h a t c u r t a i n s a r e d e v i c e s f o r i n t e r c e p t i n g d i r e c t r a d i a t i o n , t o which, t h e r e f o r e , t h e y a r e opaque, and t o c o n t r o l t h e transmls- s i o n of t h e luminous f l u x , and hence a l s o t h e d i f f u s e r a d i a t i o n , t o which t h e y

(8)

may be considered p a r t i a l l y t r a n s p a r e n t . T h e i r s u r f a c e s a r e i n g e n e r a l ( 7

p a r t i a l l y . d i f f u s i n g

.

Of t h e i n t e r c e p t e d r a d i a t i o n a p o r t i o n i s r e f l e c t e d and a p o r t i o n i s

absorbed and transformed i n t o h e a t e i t h e r o u t s i d e o r i n s i d e o r w i t h i n t h e w a l l , depending on whether t h e c u r t a i n s a r e l o c a t e d o u t s i d e o r i n s i d e , o r a r e i n c o r p o r a t e d i n t h e w a l l i t s e l f . In t h e l a t t e r arrangement t h e r e f l e c t e d energy, b e f o r e r e t r a v e r s i n g t h e g l a s s , i s r e f l e c t e d and absorbed a number of times by t h e g l a s s panes and by t h e c u r t a i n s .

We a r e n o t f a r wrong, t h e r e f o r e , i n assunling t h a t t h e c u r t a i n s a r e opaque t o t h e d i r e c t and d i f f u s e r a d i a t i o n s and t h a t t h e t r a n s m i s s i o n occur8 a c c o r d i n g t o t h e mechanism r e p r e s e n t e d i n Fig. 4, where f o r convenience t h e i n t e n s i t y of t h e i n c i d e n t r a d i a t i o n i s assumed e q u a l t o u n i t y and t h e w a l l i s

assumed t o c o n s i s t of two panes with an i n s i d e c u r t a i n .

On t h i s b a s i s , s i n c e t h e c u r t a i n r e c e i v e s t h e r a d i a t i o n T~ i n a d d i t i o n

t o t h e group o f r a d i a t i o n s R r d r e f l e c t e d by t h e g l a s s panes and r e t u r n s t h e r a d i a t i o n R t o t h e g l a s s while a b s o r b i n g and transforming t h e f r a c t i o n T~~

i n t o h e a t , which f o r t h i s s i t u a t i o n c o i n c i d e s with t h e t r a n s m i s s i o n f a c t o r , we may w r i t e

T D 1 = ( T ~ + R r d ) a

R = ( T

+

~ F t r d ) ( l

-

a ) ,

where a i s t h e a b s o r p t i o n f a c t o r of t h e c u r t a i n .

Now, s o I v i n g t h e system and o b s e r v i n g t h a t t h e o u t s i d e g l a s s and t h e i n s i d e g l a s s r e s p e c t i v e l y absgrb t h e f r a c t i o n a,,e and aDi of t h e i n c i d e n t r a d i a t i o n a s w e l l a s t h e f r a c t i o n s R a d l and Rade of R, and t h a t tvro g l a s s e s r e f l e c t t h e f r a c t i o n rD o f t h e foriiler and t r a n s m i t t h e f r a c t i o n R T ~ o f t h e l a t t e r , we d e r i v e t h e d e s i r e d r e l a t i o n s h i p s

where aDi and rD1 a r e r e s p e c t i v e l y t h e a b s o r p t i o n f a c t o r s f o r t h e o u t - s i d e g l a s s , t h e i n s i d e g l a s s and t h e t o t a l r e f l e c t i o n f a c t o r .

(9)

Equation ( 7 ) holds a l s o f o r w a l l s c o n s i s t i n g of a s i n g l e pane where t h e magnitudes which appear t h e r e a r e replaced by t h o s e corresponding t o t h e s i n g l e pane and t h e a b s o r p t i o n f a c t o r s a r e p u t e q u a l t o 0 and t o a D 1 , r e s p e c t i v e l y .

For w a l l s with c u r t a i n s i n c o r p o r a t e d between t h e two panes aDel = aD1, aDif = 0, =

8 ~ ~ ' ;

i n t h i s case t h e energy absorbed by t h e c u r t a i n i s

transformed I n t o h e a t w i t h i n t h e w a l l s and n o t w i t h i n t h e w a l l s and n o t w i t h i n t h e room.

I f t h e c u r t a i n s a r e e x t e r n a l i t i s obvious t h a t t h e y absorb t h e f r a c t i o n a of t h e energy of i n c i d e n t u n i t i n t e n s i t y and do n o t r e f l e c t t h e f r a c t i o n

1-a.

F i n a l l y , we n o t e t h a t t h e r e l a t i o n s obtained hold s t r i c t l y f o r p a r a l l e l c u r t a i n s very c l o s e t o t h e g l a s s panes, 1 . e . f o r c o n d i t i o n s o f maximum

e f f i c i e n c y .

D i f f u s e r a d i a t i o n

The t r a n s m i s s i o n of t h e d i f f u s e r a d i a t i o n czn be d e a l t w i t h v e r y slmply by imagining t h a t t h e r a d i a t i o n impinges on t h e w a l l from a l l d i r e c t i o n s con- t a i n e d w i t h i n t h e s o l i d a n g l e 27c w i t h i n t e n s i t y d i s t r i b u t e d e i t h e r uniformly o r a c c o r d i n g t o Lambertls l a w .

In t h e f i r s t case t h e t r a n s m i s s i o n , a b s o r p t i o n and r e f l e c t i o n f a c t o r s a r e given by t h e a r i t h m e t i c mean of t h e v a l u e s which each of t h e s e have

between 0 and

d2

f o r d i r e c t r a d i a t i o n ; i n t h e second c a s e , however, t h e y a r e given by t h e weighted means of t h e s e v a l u e s i n which t h e weights a r e t h e r a d i a t i o n i n t e n s i t i e s a t each a n g l e of i n c i d e n c e .

We have based o u r c a l c u l a t i o n s , the r e s u l t s of which we shall p r e s e n t below, on t h e l a t t e r hypothesis, which appeared p h y s i c a l l y more r e l i a b l e .

In p r a c t i c e , t h e overhangs of t h e favade reduce t h e above-mentioned s o l i d a n g l e . However, even w i t h a cone a n g l e r e s t r i c t e d t o 150

-

160°, t h i s make8

l e s s t h a n 1% d i f f e r e n c e i n t h e r e s u l t and Is t h e r e f o r e n e g l i g i b l e .

The d i s t r i b u t i o n of i n c i d e n t energy i n t h e s o l i d a n g l e s under c o n s l d e r a - t i o n , assumed u n i t a r y , was found t o be a s f o l l o w s :

(10)

Thus 76.6% of t h i s energy i s found w i t h i n t h e s o l i d a n g l e between 20 and 70°

.

Hcnce t h e d i f f i c u l t y of p r o t e c t i n g t h e w a l l from d i f f u s e r a d i a t i o n and of e s t i m a t i n g t h e f r a c t i o n i n t e r c e p t e d by v a r i o u s p r o t e c t i v e d e v i c e s w i t h a s i n g l e v a l u e .

Venetian b l i n d s , c l o s e t o t h e g l a s s and with t h e vanes t u r n e d s o as t o produce i n t e g r a l r e f l e c t i o n of t h e d i r e c t r a d i a t i o n * , i n g e n e r a l i n t e r c e p t

v2

-

of t h e d i f f u s e r a d i a t i o n , i. e . a l l o r p a r t of t h a t coming from above.

The t r a n s m i s s i o n of t h e i n t e r c e p t e d f r a c t i o n through walls w i t h c u r t a i n s can a g a i n be i n v e s t i g a t e d w i t h t h e a i d of e q u a t i o n ( 7 ) where t h e t r a n s m i s s i o n , a b s o r p t i o n and t o t a l r e f l e c t i o n f a c t o r s a r e now t h o s e r e l a t i v e t o t h e d i f f u s e rad l a ti o n .

Experimental r e s u l t s and p r a c t i c a l v a l u e s f o r t h e t r a n s m i s s i o n , a b s o r p t i o n and r e f l e c t i o n f a c t o r s

The mentioned i n v e s t i g a t i o n c a r r i e d o u t i n t h e ASHRAE l a b o r a t o r y in

Cleveland, Ohio, secms t o be among t h e n o s t s u i t a b l e f o r t e s t i n g t h e r e l i a b i l - i t y of t h e c a l c u l a t i o n s t h a t can be c a r r i e d o u t w i t h t h e e q u a t i o n s and methods t h a t have been d e s c r i b e d .

In

Table 111 a r e shown, f o r a g l a s s w i t h ks

-

0.05 and n = 1.52, t h e v a l u e s c a l c u l a t e d by u s and t h o s e p u b l i s h e d on page 312 of t h e ASHRAE Guide, 1957.

The agreement, as i s a p p a r e n t , i s extremely good. I f we had n e g l e c t e d t h e p o l a r i z a t i o n due t o r e f l e c t i o n t h e t h e o r e t i c a l v a l u e s f o r t h e t r a n s m i s s i o n f a c t o r s would have been s m a l l e r from 110

-

50° o r by

3

-

5:; f o r t h e wall made of s i n g l e g l a s s and 8

-

lo$

f o r t h t c o n s i s t i n g of two panes.

Encouraged by t h i s r e s u l t we have c a l c u l a t e d and p r e s e n t i n Table

N

t h e t r a n s n ~ i s s i o n and a b s o r p t i o n f a c t o r s and t h e t o t a l r e f l e c t i o n f a c t o r s f o r d i r e c t and d i f f u s e r a d i a t i o n f o r t h e main combinations t h a t can be r e a l i z e d w i t h t h e more colnmon o r d i n a r y and athermic g l a s s e s o b t a i n a b l e i n t h e I t a l i a n market, and with c u r t a i n s havlng a n a b s o r p t i o n f a c t o r e q u a l t o 0.5.

The l a t t e r depends, as i s known(7), on t h e c o l o u r of t h e c u r t a i n s o t h a t when c o n s i d e r a b l e v a r i a t i o n s a r e f o r e s e e n w i t h r e s p e c t t o t h e assumed value

i t w i l l be n e c e s s a r y t o t a k e t h e s e i n t o account w i t h c o r r e c t i o n f a c t o r s t h a t can be derived from e q u a t i o n , ( 7 ) .

For t h e w a l l s w i t h c u r t a i n s t h e d a t a of t h e t a b l e a r e a p p l i e d t o t h e d i r e c t and d i f f u s e r a d i a t i o n f r a c t i o n s which a r e presumed i n t e r c e p t e d .

T r a n s l a t o r ' s Note:

*

T h i s probably means t h a t t h e b l i n d i s a d j u s t c d t o i n t e r c e p t a l l of t h e d i r e c t s o l a r beam.

(11)

Heat Transmi3sion B a s i c r e l a t i o n s

The t r a n s m i s s i o n o f h e a t by convection, conduction and r a d i a t i o n between two environments a t d i f f e r e n t t e m p e r a t u r e s , s e p a r a t e d by a w a l l i n t h e i n t e r i - o r of which h e a t i s generated a c c o r d i n g t o some law, h a s been t r e a t e d s e v e r a l times by r i g o r o u s methods.

These methods, however, have n o t been widely used i n o u r c a s e because t h e u n c e r t a i n t i e s I n h e r e n t i n t h e very n a t u r e o f t h e problem w i t h which we a r e concerned a r e s o g r e a t t h a t r e c o u r s e t o very r e f i n e d c a l c u l a t i o n s i s n o t j u s t i f i e d , and because t h e frequency with which t h e problem comes up i n e n g i n e e r i n g o f f i c e s r e n d e r s i t p r e f e r a b l e t o employ approximate and r a p i d s o l u t i o n s

.

I n an a t t e m p t t o r e c o n c i l e s c i e n t i f i c p r e c i s i o n w l t h r a p i d i t y of c a l c u - l a t i o n Desplanches h a s r e c e n t l y proposed ( 4 ) a s t u d y of h e a t t r a n s m i s s i o n under t h e above c o n d i t i o n s , ansunling i n f i n t e t h e r m a l c o n d u c t i v i t y o f t h e g l a s s and uniform d i s t r i b u t i o n o f t h e h e a t generated i n t h e i n t e r i o r o f t h e w a l l .

The two hypotheses, which f o r p r a c t i c a l purposes do n o t change t h e f i n a l r e s u l t s in view o f t h e small t h i c k n e s s o f t h e g l a s s panes, are b o t h u s e f u l . The second however i s t o o r e s t r i c t i v e , because when t h e w a l l c o n s i s t s o f s e v e r a l panes o f d i f f e r e n t a b s o r p t i o n c h a r a c t e r i s t i c s we cannot assume u n i - form d i s t r i b u t i o n of h e a t and i n f a c t Desplanches a p p l i e s t h e method t o a wall

comprising o n l y one pane o r two non-absorbing panes.

When we wish t o s t u d y t h e behavlour o f w a l l s made w i t h panes o f d i f f e r - e n t a b s o r p t i o n , It w i l l be n e c e s s a r y t o r e s t r i c t t h e hypotheses t o each pane;

In t h i s way, t h e method r e t a i n s a l l i t s good q u a l i t i e s .

On t h i s b a s i s l e t u s c o n s i d e r a w a l l ( ~ i g .

5 )

comprising t h r e e panes o f I n f i n i t e t h e r m a l c o n d u c t i v i t y , i n which i s generated t h e q u a n t i t y o f h e a t qe, qc and ql; l e t te and ti be t h e t e m p e r a t u r e s of t h e two environments, Se, 5,

and t h e t e m p e r a t u r e s of t h e panes and ae, ai, ace, aci t h e c o e f f i c i e n t s o f h e a t t r a n s f e r .

Now, choosing any c o n d i t i o n o f regime, f o r example t c c 3, c 3, > >

ti, we may w r i t e

(12)

whence we d e r i v e

where 1

i s t h e t o t a l c o e f f i c i e n t of t r a n s m i s s i o n and

i s t h e temperature d i f f e r e n c e between t h e o u t s i d e and i n s i d e environments.

The h e a t exchanged with t h e two environments i s c a l c u l a t e d a s u a u a l w i t h

which, t a k i n g i n t o account e q u a t i o n ( g ) , become

The exchange of h e a t w i t h t h e i n s i d e can be t a b u l a t e d , i f r e q u i r e d ; f o r t h i s purpose t h e e x p r e s s i o n

Q,

= K ( t , *

-

t i ) i s convenient, where

i s t h e "imaginary s o l a r temperature".

For w a l l s comprising two panes we p u t qc = 0 and aci = a c e = 2aC, and f o r t h a t c o n p r i s l n g one pane q = qi = 0 , qe = q and aci = a = m .

(13)

None of t h e hypotheses p r e s e n t e d was based on t h e r c ~ i m e which becomes s t a b i l i z e d i n t h e w a l l ; f o r t h e one comprlslnp, a s i n g l e pane i t i s t r e a t e d a s

a s p e c i a l regime which some h e a t e n g i n e e r s have d e f i n e d a s "permanent

i n s t a n t a n e o u s rcgirne". Since t h e therillal c o n d u c t i v i t y and hence t h e c a p a c i t y f o r d i f f u s i o n i s i n f i n i t e , t h e wall i n s t a n t a n e o u s l y asswnes t h e regime

temperature.

I n p r a c t i c e o r d i n a r y g l a s s e s e s t a b l i s h t h e regime i n

5

-

10 minutes and athermic g l a s s e s i n 15

-

20 minutes.

A p p l i c a t i o n t o a s p e c i f i c c a s e and s u g ~ c s t i o n s f o r c a l c u l a t i ? n and f o r p l a n n i n g of w a l l s

I n Table V we have c o r r e c t e d t h e d a t a and e s s e n t i a l c a l c u l a t i o n r e s u l t s on t h e s u p p l i e s of h e a t which w i l l presumably be found i n Rome on t h e 23rd of J u l y a t 4:00 p.m. through a number of t r a n s p a r e n t w a l l s with western exposure, made o f o r d i n a r y g l a s s and of a t h e r m l c g l a s s and f u r n i s h e d with v e n e t i a n

b l i n d s of p a i n t e d a l u n i n i u n ~ .

The i n t e n s i t y of t h e d i r e c t s o l a r r a d i a t i o n was d e r i v e d from t h e s u n s h i n e t a b l e s e d i t e d by Termotecnica. The i n t e n s i t y o f t h e d i f f u s e r a d i a t i o n was o b t a i n e d from Elvegard and bloloerlcoferfa c u r v e s ( l i ) . The f l n a l value o b t a i n e d , which Is t h e annual rnaximun f o r Rome, may a p p e a r h i & , b u t i t has t o be

accepted I n t h e absence of tnore r e l i a b l e d a t a f o r t h e n a t i o n a l t e r r i t o r y t h a n t h o s e c o r r e l a t e d by Moon, a s t h e e x t e n s o r s of t h i s t a b l e , moreover, show.

I n c a r r y i n g o u t t h e c a l c u l a t i o n we t r i e d t o s a t i s f y t h e c o n d i t i o r ~ a t t h e boundaries of t h e v a r i o u s s t r a t a w i t h a view t o b e t t e r e s t i m a t i n e t h e i n t e r d e - pendence of t h e d i f f e r c n t v a r i a b l e s and t h e p r a c t i c a l v a l u e s of t h e h e a t

t r a n s f e r c o e f f i c i e n t t h a t can be used under s i m i l a r c o n d i t i o n s .

F o r n a t u r a l convection we employed t h e c o r r e l a t i o n s o f Wcise and

~ a u n d e r s ' ~ ) , and f o r f o r c e d convection t h e c o r ~ e l a t i o n s of ~ o l b u r n ' ~ ) , a l s o adopted i n t h e ASHRAE Guide, and f o r convection i n t h e a i r gaps, t h o s e o f Mull and

elh her'^)

a s v e r i f i e d and modified by Llnke ( 1 0 )

The f i r s t two c o r r e l a t i o n s a r e taken w i t h c a u t i o n because t h e y have been e x t r a p o l a t e d up t o s u r f a c e s of 2 m high, considered by u s ; more r e l i a b l e , however, a r e t h e c o r r e l a t i o n s of Linke who r e c e n t l y experimented on a i r gaps between g l a s s with height/width r a t i o s up t o 112.

The o u t s i d e h e a t t r a n s f e r c o e f f i c i e n t w i t h a wind o f 2.5 d s e c i s alnlost always found t o be e q u a l t o

15

kcal/m2 hr°C; i n c a s e s no. 1 4 and

15

t h i s reaches r e s p e c t i v e l y 43 and 20 kcal/m2 hr°C because t o t h e c o n v e c t i o n i s added I n t h e f i r s t c a s t t h e i r r a d i a t i o n of t h e o u t s i d e g l a s s , 1 . e . of a

v i r t a u l l y b l a c k body and i n t h e second c a s e t h e i r r a d l a t i o n of t h e p a i n t e d aluminium, 1 . e . a body of low enlission c a p a c i t y .

(14)

The i n s i d e h e a t t r a n s f e r c o e f f i c i e n t i s g e n e r a l l y 7

-

9 kcal/m2 hr°C, except when t h e c u r t a i n i s i n s i d e . I n t h i s c a s e i t may drop t o 2

-

5.5

k c a l / m2 hr°C, because t h e g l a s s g i v e s up h e a t t o t h e a i r by convection and r e c e i v e s h e a t from t h e c u r t a i n s by i r r a d i a t i o n .

I n u n v e n t i l a t e d a i r gaps t h e thermal conductance Is 15

-

18 kcal/m2 hr°C. However, when t h e c u r t a i n i s i n s i d e t h e gap t h i s i s reduced t o 9

-

1 0 kcal/m2 hr°C f o r t h e low enlission c a p a c i t y of t h e p a i n t e d aluminium.

U n f o r t u n a t e l y t h e temperatures a r e always h i g h . Cold a i r a g a i n s t t h e g l a s s i s advantageous, because i t reduces t h e temperature

3

-

5OC w i t h o u t a p p r e c i a b l y i n c r e a s i n g t h e h e a t g a i n .

I n s o l u t i o n s concerned e x c l u s i v e l y w i t h g l a s s t h e s e g a i n s can be reduced by more than 50

-

GO$.

For g r e a t e r r e d u c t i o n s , i n l i n e w i t h t h e g e n e r a l c r i t e r i o n t h a t t h e s o l a r r a d i a t i o n must be i n t e r c e p t e d b e f o r e r e a c h i n g t h e s u r f a c e of s e p a r a t i o n between t h e two environments, r e c o u r s e must be had t o i n s i d e c u r t a i n s , c u r t a i n s i n c o r p o r a t e d w i t h i n t h e w a l l and o u t s i d e c u r t a i n s o r c u r t a i n s i n c o r p o r a t e d i n v e n t i l a t e d a i r gaps.

I n t h i s r e g a r d t h e l a s t column of t h e t a b l e , where t h e r a t i o C between t h e t o t a l h e a t t r a n s m i t t e d by each wall and t h a t t r a n s m i t t e d under t h e same c o n d i t i o n s by walls c o n s i s t i n g of a s i n g l e g l a s s a r e recorded, i s s u f f i c i e n t l y i n d i c a t i v e .

The c u r t a i n s r~lust be c l o s e t o t h e g l a s s , p o s s i b l y f l a t , and must have a

1ow.absorption f a c t o r and h i g h d i f f u s e r e f l e c t i o n f a c t o r , s i n c e g l a s s i s t o o t r a n s p a r e n t t o t h i s type of r a d i a t i o n . The r e g u l a r r e f l e c t i o n may r e f l e c t energy a t a n g l e s f o r which g l a s s i s v e r y r e f l e c t i v e .

The e n l i s s i v i t y of t h e c u r t a i n s should, f i n a l l y , be h i g h . When t h e c u r t a i n s a r e placed i n s i d e , however, low e r n i s s i v i t y on t h e room s i d e may be s u i t a b l e .

The w i n t e r behaviour of t h e w a l l s i n q u e s t i o n should be s u b j e c t e d t o a

s i m i l a r i n v e s t i g a t i o n because t h e y p r e s e n t some i n t e r e s t i n g a s p e c t s . F o r t h e p r e s e n t , however, t h e f i g u r e s given a r e s u f f i c i e n t .

I wish t o thank P r o f e s s o r Gino Bozza f o r h i s v a l u a b l e s u g g e s t i o n s made

(15)

References

Bozza, G. Trasniissione d e l c a l o r e e assorbimento d l r a d l a z l o n e I n p a r e t i t r a s p a r e n t l . 1st. Lomb. S c l e n . e L e t t . 68 (16-18 and 19-20), 1935. The I n s t i t u t e of S i l i c a t e Research. Thermal t r a n s m i s s i v ~ t y by r a d i a t i o n ,

t h e g l a s s i n d u s t r y , 36 (11): 575, 1955.

Moon, P. Proposed standard s o l a r - r a d i a t i o n curves f o r e n g i n e e r i n g u s e . J. F r a n k l i n I n s t . 230:

583,

1940.

Desplanches, A . Guide de chauffage, v e n t i l a t i o n , condltlonnement d l a i r .

E d . A . I . C . V . F . 1959. p.123.

Watkins, George B. F l a t and laminated

8:"""

.

Engineering M a t e r i a l s

Handbook. E d . Mantell, 27-44, 195

Morey, G.W. The p r o p e r t i e s o f g l a s s . Ed. Reinhold, 1954. p.386. Del Monaco, A . Un metodo p e r l a misura d e l c o e f f l c i e n t i d l r l n v i o d l

s u p e r f i c i p a r z i a l n e n t e d l f f o n d e n t l . Termotecnlca, ( 1 0 ) : 494, 1957. McAdams. Heat t r a n s m i s s i o n . McGraw-Hill, 1954. p.172 and 249

Jacob. Heat t r a n s f e r . Wiley and Sons, 1: 534, 1950.

Llnke W . ~ g l t e t e c h n i k , 8: 378-384, 1956; Krings and Olink i n "Transmis- ? i o n de c h a l e u r t r a v e r s des p a n n e a u 6 t a n c h e s doubles ou m u l t i p l e s a remplissage gazeux", S i l i c a t e s I n d u s t r i e l s , 11: 595, 1957, do n o t g i v e a f u l l r e p o r t . Table I Angles of r e f r a c t i o n and a i r - g l a s s r e f l e c t i o n f a c t o r s c a l c u l a t e d f o r n = 1.52

(16)

Table I1 Transmission f a c t o r s of g l a s s e s having k s 0.05 f o r n a t u r a l r a d i a t i o n (1) and f o r t h e l i n e a r l y p o l a r i z e d components i n t h e plane of i n c i d e n c e ( 2 ) and i n t h e p l a n e p e r p e n d i c u l a r t o t h e p l a n e of Incidence

( 3 )

AngLcs One glass

of incidence 1 2 3 W 1 .875 375 875 20" 373 360 885 40" 8 6 1 302 .918 so" a41 ,745 .938 60" .794 .619 .939 70" .678 A91 36.4 8(P .419 261 .576 Table I11

Values given i n ASHRAE ( 1 ) and v a l u e s c a l c u l a t e d by u s ( 2 )

of t h e t r a n s m i s s i o n and a b s o r p t i o n f a c t o r s f o r w a l l s comprising one o r two g l a s s e s having

ks

-

0.05 and n = 1.52 Angles

o f

in cidcnec

-

Onc glass Two qlesscs

T~ a~ -- a,i 1 2 1 2 1 2 1 2 1 2 (r 2U 40' Lhrect radiation -- - - - - -- --. - . . - - At A75 .05 .048 -76 .767 .06 .052 .04 .043

Xi7 A73 .OS .049 .76 .765 .06 .053 .04 0.44

8 6 A61 .06 .053 .74 .752 .06 .056 .04 .046 5U 6 4 70- BV 84 A 4 1 .06 .055 .72 .729 .07 .059 .05 .047 -79 .794 .06 .057 .66 .671 .07 .063 .05 .048 d l .6?8 .06 .059 .52 527 .07 .070 .05 .044 A2 A19 .06 .059 2 5 255 .07 -077 .05 .034

(17)

T a b l e 'IV -15-

-

T r a n s m i s s i o n , r e f l e c t i o n a n d a b s o r p t i o n f a c t o r s of w a l l s c o m p r i s i n g o r d i n a r y g l a s s e s 5 . 5 0 rmn t h i c k , a t h e r m i c g l a s s c s 6 . 3 5 mrn t h i c k a n d opaque c u r t a i n s h a v i n g a n a b s o r p t i o n f a c t o r e q u a l t o 0 . 5 , c a l c u l a t e d f o r s o l a r r a d i a t i o n a t s e a l e v e l w i t h a i r mass e q u a l t o 2 Make-up o f t h e w a l l O r d i n a r y g l a s s A t h e r m i c g l a s s Two o r d i n a r y g l a s s e s s e p a r - a t e d by a t h i n l a y e r o f a i r O r d i n a r y g l a s s o u t s i d e a n d athermi' g l a s s inside* separ- a t e d by a t h i n l a y e r o f a i r A t h e r m i c g l a s s o u t s i d e a n d g l a s s inside* "par- a t e d by a t h i n l a y e r o f a i r O r d i n a r y g l a s s and i n s i d c c u r t a l l 1 ' A t h e r m i c g l a s s and i n s i d e c u r t a i n Two o r d i n o r g l a s s e s s e p a r - a t e d by a t g l n a i r g a p , and i n s l d e c u r t a l n O r d i n a r y o u t s i d e a t h e r m i c i n s i d e gf:::b'sep- a r a t e d by a t h i n a i r g l a s s

-

i n s i d e c u r t a i n A t h e r m i c g l a s s o u t s i d e , o r d i n n r g l a s s i n s i d e , s e p - a r a r e d

By

a ~ h i n a i r g a p

-

i n s r d e c u r t a l n Two o r d i n a r y g l a s s e s

-

c u r t a i n i n c o r p o r a t e d O r d i n a r y g l a s s o u t s i d e

-

a t h e r m i c i n s i d e a n d c u r t a i n i n c o r p o r a t e d A t h e r m i c g l a s s o u t s i d e , o r d i n a r y g l a s s i n s i d e a n d c u r t a i n i n c o r p o r a t e d D i r e c t r a d i a t i o n , a n g l e s o f i n c i d e n c e (P 10" 2w 30° .to3 so7 s ~ r 70' '08 90" T O .818 .818 .815 .810 .800 .778 .i31 5 2 0 .375 0.

an .109 .109 .111 . l l 4 .119 .I?$ .I20 .132 .I28 0 r, .073 .073 .074 .0:6 .081 .098 .1 10 2 1 8 .407 1 -rD .460 .459 .451 ..I10 .123 .399 .360 .292 .163 0 aD ..I88 .489 .I96 5 0 6 .519 .531 .536 .517 .425 0 r D .052 .052 .053 .05.1 .058 .070 ,101 .191 -412 1 T O .673 .673 .668 .660 .618 .623 .567 .438 2 0 0 0 an. .115 .115 .I18 .122 .126 .133 .14l .151 .157 0 O D , .090 .090 .o91 . 0 9 3 .096 .098 .098 .OR9 . 0 6 0 r n .122 .122 .123 .125 .130 .146 ,194 .322 .579 1 T~ .377 .377 .369 .358 .312 3 1 8 2 7 8 2 0 5 .084 0 a& .113 .113 .116 .119 .121 .130 .I38 .1,16 .150 0

an, .402 .A02 .'I06 .dl2 .418 .120 ..I05 3 4 7 2 0 7 0 r D .lo8 .lo8 .lo9 .111 .116 .132 .179 .302 .559 1

T D ..377 .377 .369 .358 .342 .318 2 7 8 2 0 5 ,084 0 ok .506 .506 .513 .523 .536 .5t9 .558 .548 .463 0 a .050 .050 .050 .051 .051 ,050 .048 .041 .026 0 r. .067 .067 ,068 .068 .071 .083 .116 2 0 6 .427 1 7.' .439 .439 .437 :I34 ..129 .418 .392 -333 2 0 1 0 an' .165 .166 .168 .171 .174 -178 .180 .175 .I54 0 rD' .396 .395 .395 .395 .397 .40.1 .i28 .492 .6.15 1 -cD9 .240 2 4 0 2 3 6 2 3 0 2 2 1 2 0 8 .188 .I53 .085 0 aD' .616 .617 .622, .629 .637 .6,12 .636 .598 .470 0

fi' .144 .143 .I42 .141 .142 .I50 .176 .2.19 .4,15 1

to' .370 .371 .368 .364 .357 .343 .312 2 4 1 .110 0 a .151 .I52 .154 .157 .161 .I66 .I72 .I75 -168 0 aDi' .I42 .I42 .I42 .14-I .I46 .I46 .I41 .123 .079 0 rD' .337 .335 .336 .335 .336 .345 3 7 5 .461 .643 1

T ~ ' .I98 .I98 .19-1 .188 .180 .I67 .I46 .I08 .0.ll 0

0,' .123 -123 .I26 .129 .I33 .138 .I45 .151 .I52 o

aDl' .511 .512 .513 .516 .517 .512 .485 .,I07 2 3 1 0 rD' .168 .167 .167 .I67 .170 .I83 2 2 4 .334 .573 1 T ~ ' .203 2 0 4 2 0 0 .194 .185 .172 .I50 .I11 .015 o an.' .077 .077 .077 -076 .075 .073 .068 .056 .032 o o ~ , ' ,590 .591 .595 -603 .613 .62o .62o .593 .482 o rD' .129 .128 .I28 .127 .127 .135 .162 2 1 0 .411 1 ~ o ' 0 0 0 0 0 0 0 0 0 0 a< .165 .166,.168 -171 .I74 .178 .180 .175 .154 0 aa. .439. .439 .437 -434 .429 .418 .392 ,333 2 0 1 0 a o i * ~ ~ ~ ~ ~ ~ n o o o rD' .396 .395 .395 .395 .397 .404 .'I28 .492 .645 1 T ~ ; O O O ~ O O ~ O O O

am .165 .166 .168 .171 .I74 .I78 .180 .I75 .158 0

a,' .A39 .439 .437 .434 .429 -418 .392 -333 ,201 0

a o l ' O O O O O O O O O O

rD' .396 .395 .395 .395 .397 .401 .428 .492 .615 1

~ ~ ' 0 0 0 0 0 0 0 0 0 0

am' .616 .617 .622 .629 .607 .612 .636 .598 .470 0 na.' 2 1 0 2 1 0 2 3 6 2 3 0 2 2 1 2 0 8 .I88 .I53 .(I85 0

a D I ' O O O O O O O O O O rD' .I41 .I43 .1B2 .141 .142 .150 .176 .2.49 .455 1 D i f f u s e r a d i a t i o n 0' + 90" TA .734 a d .129 rd .137 TJ 3 8 1 O J .SO3 rd .086 ~d 5 7 8 OJ, .I39 .098 rd .185 ~d .302 a h .133 .414 r~ .I51 ~d .302 ad. ,553 ad, .0,19 rd .096 ~ d '-394 ad' .180 rd9 .426 ~ d ' .199 ad9 .639 rd' .162 zd' .319 o,,,' .170 ad,' .142 rd' .369 -cd' .I58 ad.' .141 nr,' .SO2 r,' .I99 T ~ ' .163 a s ' .621 adlW .o71 r,' .I45 ~ d ' 0 ad.' .180 ad,' .394 ad! * .426 o sd' o ad,' .180 nd.' .39.1 a ' 0 r/ A26 7 6 ' 0 a&' .639 a&' .199 ' , a ' 0 r,' .162

(18)
(19)

h

-

( ' I

::

-

I = I a, 5 C .4 u 0 0 I

"

QJ 4 P a f? 4 4 * a : < 'U 0 a

-?

0) 24

'g

-a a 0 'j U a,

-

- a U u c to a d u u (il a I a I VI Y r l 1 u a J p . r r3 u I C c J h~ C r j ) a I , , , U 9 U . d (.c.uJI(u M -4 C O M $4 C O M ' (P,u-4 1 4 9 U 3 4 c f JJ a E.4 C cd -4 S L O M : 4 c O M & C a r, m & $4 V I C O W 0 a, v) U G > -An.> aL4i-I I 0 9 0 C h u a & & U O 4 C O O n j . 4 ~ ~ mm.4 w u aoo-4 am M Y C aJ W U Q J W U a J C -4 - c C -4 r - u h - C L U u - C L U

.f;z'z

-0.4 m m c m k ffl.4 3 c j -4 m . 4 3 m h U

-

U L I

-

. a ? 3 U 4 c14 - c 4 0 - C a o m r 3 . d c , i m 4 . A -4 rr! a ~ aii Y . ~ ~ C U L C U U .4 .- '2, a,u a m W O ) U 0

-5 a;z5:a

$4 (U a 4 u ' C 1 " . g - 3 C z u a ~ C I o u c m - o ~ l b. C Q W ~ L ~ I

s.52

.

2';Zz.G

L 00 0- Q

-

-.

2

2

(20)

\d C I

-

0

-

m *

-

-

B

.s O-

2

a

O- C V) r( m -9 0 N C El In

-

m d

-

rr) h h h h h h \O

2

2

2

31 V!

2

2

"l

2

V) Y \O 3 In 3 V) 3 -'* m Y w *. 01 N Y m m VI

-

3 m ** -r C?

-

r(

2

m

-

m m

2

rr) 0 m h* El 0 a 01 a h 01

-

01 U J h m vI UJ \O 2 m m m 01 El 0 ) 3 3 1 0 V) N n U J 0 rr) 0 V) El 01 El 01 -.

-

01 r( 01

-

-t rr) 01 N El N El m El m 00 w X h 3 h 1 0 h o El V)

-

3 rr) rr) CO 0 El m 0 m N El h " 1rr) 0 m

-

m C h + m FI rr) 7 V) \O N \O N El \O El \O El \O El .,

-

0

-

-

-

C )

-

w

-

d d

d

a d .- - Id 6.

s

I , , d I 6

t

I 0; C

- -

b, 9 0

3

3 Y f 0 \ a w 1 C: r( U c o L) I 3 a d I, rp tr r M ---- 6 -- ). w +r

-

Y 4 A a 3 "r 0 a 7 I al 3 (d

z

mal m a

-

u a l - ~n

-

V) -4 -0

:-5

--"PC -&a c 8 V) Y)I,C~ V) .,-I (0 -4 .4 V) -d -4 R I L ) a J . d r P C ) U V ) a u m r r r a u m a a 1 r o r p d o 3 C rg m u d 3 cued 3 c u c r l 01, M m vl c a m 0 - A M 05-100 0.Al-r M U S A I,M -4 \ W - \ 4 7 7 3 - c d C E + - I C E v l m c V) m .A OoU.5 V) v l m L ) C r, .A 0 V ) m L ) C V) .4 In " , - w 4 Q) M.4 al a r3 Ax' 1 a 3 dd U k C ) u 4 d a m - 3 u d . A U C W C 3 x u 3 I , L U C c 3 M C CdUC M b 3 u d M M U C 09rgU.A d 7 w 4 0) c r b c i m a Rl CI 0 X h 4 L L i XL)&4L o A L L

3

o n U rp I , ' P O L L ) L 4 O h V . A I , O I , O k 7 U k ' P a l U ) , 7 w r J E ( z 3 a . l a a c s 3 o ( U V C Y h x ' C 3 0.4 \ U \ 4 0 3 \ 0 4 0 \ - A ~ L I,cuV) O L U V ) I n I , C W L ) O . A a , L ) L'l LI L -4 u C . A U L C . 4

+

h

2

2

b h A 00 A

-

(21)
(22)

Figure

Table  I1  Transmission  f a c t o r s   of  g l a s s e s   having  k s   0.05  f o r  n a t u r a l   r a d i a t i o n   (1)  and  f o r   t h e   l i n e a r l y   p o l a r i z e d   components  i n   t h e   plane  of  i n c i d e n c e   ( 2 )   and

Références

Documents relatifs

Les résultats obtenus concernant l’activité antifongique des extraits aqueux sont représentés dans (Tableau 06). Avec les extraits des feuilles, l’activité antifongique est

Ce travail est focalisé à l’évaluation de toxicité aigue du mélange binaire d’un insecticide (Dursban) et fongicide (Mancozebe)et d’un insecticide seul (Décis) sur des

Au total, 31 parcelles agricoles ( Fig. 1 ), situées chez 10 agriculteurs représentatifs de la typologie (en termes de pratique et de gestion) et dans une station expérimentale, ont

Et dans notre travail, on a élaboré également une base de données avec cartes numérisées pour faciliter la gestion de fonctionnement du réseau d’alimentation

On étudie numériquement la convection naturelle laminaire de l’air (Pr=0.71) dans une enceinte rectangulaire, pour deux cas : Le premier cas c’est pour la paroi inferieur soumis

In particular, they know that adjectives name properties of entities named by nouns; they know that adjectives imply a contrast (i.e. values on a dimension are

The transcriptional activation of SREBP targets encoding the key enzymes of fatty acid biosynthesis (FASN) and the pentose phosphate pathway (G6PD) leads to a rapamycin-

words, it is critical to resolve between signaling intermediates in their free active and inactive forms (A * and A) from when they are bound to other intermediates, including