• Aucun résultat trouvé

Remarks on the convergence properties of the conformal block expansion

N/A
N/A
Protected

Academic year: 2021

Partager "Remarks on the convergence properties of the conformal block expansion"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-01253827

https://hal.archives-ouvertes.fr/hal-01253827v2

Submitted on 27 Jan 2016

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons

Attribution| 4.0 International License

Remarks on the convergence properties of the conformal block expansion

Slava Rychkov, Pierre Yvernay

To cite this version:

Slava Rychkov, Pierre Yvernay. Remarks on the convergence properties of the conformal block ex-

pansion. Physics Letters B, Elsevier, 2016, 753, pp.682-686. �10.1016/j.physletb.2016.01.004�. �hal-

01253827v2�

(2)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Remarks on the convergence properties of the conformal block expansion

Slava Rychkova,b,c,,Pierre Yvernayd,a

aCERN,TheoreticalPhysicsDepartment,Geneva,Switzerland

bLaboratoiredePhysiqueThéoriquedel’ÉcoleNormaleSupérieure(LPTENS),Paris,France cSorbonneUniversités,UPMCUniv. Paris06,FacultédePhysique,Paris,France dENSTAParisTech,Palaiseau,France

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received17November2015 Accepted5January2016 Availableonline8January2016 Editor:N.Lambert

WeshowhowtorefinetheconformalblockexpansionconvergenceestimatesfromarXiv:1208.6449.In doingsowefindanovelexplicitformulaforthe3dconformalblocksontherealaxis.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introductionandformulationoftheproblem

Many interesting new results about conformal field theories (CFTs)ind>2 dimensionshavebeenrecentlyobtainedusingthe bootstrap approach. In thismethod one uses the operator prod- uct expansion(OPE) associativityto constrain theCFT data(local operatordimensionsandtheirOPEcoefficients).Operationally,one expandsthe four point functionsinconformal partial waves and imposes that expansionsin different channels give the same re- sult.

Theresulting“conformalbootstrap equations”haveanicefea- turethatthey are totallymathematicallywell defined,expressing the agreement betweenconvergent power serieswith nonempty andoverlappingregionsofconvergence[1].Inpracticeonewould liketoknowhowfasttheseseriesconverge.Thisquestionwas al- readystudiedin[1],andherewewillgiveitafreshlook,butfirst let usexplain whythis isimportant. Forusthe main interestin thisquestioncomesfromtheneedtoputonsolidgroundGliozzi’s approachtothebootstrap.

Recallthattherearecurrentlytwocompetingapproachestothe numericalbootstrap.Inthefirstone,knownasthelinear/semidef- inite (LSD) programming[2–10],1 one actually does not truncate theexpansion, orrathertruncatesit atsuch highdimension and spinoftheexchangedoperatorsthatthetruncationerrorisabso- lutelynegligible.Theobtainedresultstakeformofrigorousbounds

* Correspondingauthorat:LaboratoiredePhysiqueThéoriquedel’ÉcoleNormale Supérieure(LPTENS),Paris,France.

1 Wejustciteafewpaperswhereimportantdevelopmentstepsofthemethod weremade.

on thespaceofCFTdata.It isusingthisapproachthat mostnu- merical results were obtained. Here we will only highlight the study of the 3d Ising model which yielded world’s most precise estimatesonitsleadingcriticalexponents[6,8–10].

In the second approach,by Gliozzi andcollaborators [11–13], one does truncate the expansion pretty severely, keeping just a handfuloflow-dimensionoperators.Onethencompletelyneglects thetruncationerrorand,expandingaroundtheusualmiddlepoint to a finite order, gets a system of nonlinear equations to solve for the dimensions of the retained operators and their OPE co- efficients. This methodhas severaladvantages over the LSD pro- gramming: it is more intuitive, not so heavy on the numerical side, andis applicablefor bothunitary andnon-unitary theories.

On the other hand it is not as systematic, lacking as of now a built-inmechanismtoestimatethetruncation-inducederror.There aree.g. smallbutnoticeabledifferencesbetweenthe3dIsingcriti- calexponentsdeterminedbyusingGliozzi’sapproach[12]andthe LSD programming [8,10]. The LSD results are rigorous; they also agreewithMonteCarlo(whilebeingmoreprecise),whileGliozzi’s approachdoesnot.

We consideritanimportantopenproblemtofindamodifica- tion ofGliozzi’s approachwhichwouldkeepitsabove-mentioned positive features, while allowing toestimate an error induced by thetruncation.Havingagoodcontrolovertherateofconvergence oftheconformalblockexpansionisaprerequisiteforthistask.

For concreteness and simplicity, in this paper we will study a conformal four point function of identical Hermitean primary scalaroperators:

φ (x1)φ (x2)φ (x3)φ (x4) =g(u,v)/(x212x234)φ. (1.1)

http://dx.doi.org/10.1016/j.physletb.2016.01.004

0370-2693/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

The function g(u,v) depends onthe usual conformally invariant crossratios andcan be expandedin conformal blocksof theex- changedprimaries:

g(u,v)=

O

λ2OgO(u,v) . (1.2)

We are interested in theconvergence rateof thisexpansion. We willwork intheEuclideanspacealthough theMinkowskicaseis also interesting [14–17]. We will consider here the unitary case whenallOPEcoefficientsarerealandhenceλ2O>0.

Theconvergence question was alreadystudied in[1].To state their result we need some CFT kinematics. It is standard to parametrizeanyfourpointfunctionconfigurationintheEuclidean spaceintermsofacomplexnumberz∈C\(1,+∞).Thisisdone by mapping the four points to a plane, and then moving them withinthisplanetopositions 0,z,1,.Therelationbetweenu, v andzis

u= |z|2, v= |1z|2. (1.3)

Itisveryconvenienttofurthermaptherangeofztotheunitdisk byintroducingthevariable

ρ=z/(1+√

1z)2, |ρ|<1. (1.4) Thishasthemeaningofplacingthepointsatthepositions ρ,ρ, 1,1.Theinversetransformationisz=4ρ/(1+ρ)2.Fromnowon weswitch from u, v touse ρ asour mainconformally invariant parameter.Ifneeded,onecangobacktou,v via(1.3),(1.4).

Theconvergenceboundprovedin[1]states2:

O:O>

λ2OgO(ρ)

(2)4φ

(4φ+1)|ρ|, → ∞. (1.5) Thisshouldbe readasfollows.Inthelhswe havethetailofthe conformal block expansion corresponding to the primary opera- torsofdimensionabovesomecutoffdimension(andallspins).

This is the error we will make in the four point function if we dropall suchoperators. We nowhold ρ fixed andtakethe limit 1.3 Sinceany configurationcorresponds to |ρ|<1,we see thatforlarge thetailbecomesexponentiallysmall, becauseof thefactor |ρ|.One configurationparticularly importantforthe bootstrapanalysis isz= 12,which givesρ=32

20.17.We seethattheconvergenceatthispointisquitefast.

SimplenumericalexperimentsingaussianCFTswherethecon- formalblockexpansionisexactlyknowncanbeusedtocheckthat theexponentiallydecreasingfactor |ρ| in(1.5) isbestpossible.

Ontheotherhand,thesameexperimentsindicatethatthepower of intheprefactorisnotoptimal.Improvingtheprefactorwill bethemaingoalofourpaper.

2. Reviewof[1]

Thattheprefactorin(1.5)isnotoptimalhasasimpleoriginin thewaythatestimate wasderived in[1].Let’sreviewthederiva- tion,andthenseehowitcanbeimproved.

Step1.Oneobservesthattheconformalblockshavean expan- sionoftheform[18]

gO(ρ)=

δ,j

fδ,jCj(cosφ)rδ, (2.1)

2 ab andab (xx0)meanlimxx0(a/b)=1 andlim supxx0(a/b)1, respectively.

3 Moreprecisely,thebound(1.5)setsinfor φ/(1− |ρ|)[1].

whereinthelhs ρ=reiφ,intherhsδ, j arethedimensionsand spinsoftheprimaryoperatorO=O,l andofitsdescendants.In particularδ=+n,n∈N0,while j rangesbetweenl±n.The Cj areGegenbauerpolynomialsincosφ.Theonlyimportantthingfor usisthattheytaketheirmaximalvalue,normalizedto1,atφ=0.

Finally fδ,j arerelativecoefficientsofdescendantswithrespectto thatoftheprimary.Let’snormalizetheconformalblockbysetting theprimarycoefficienttoone: f,=1.Therestofthecoefficients arethenfixedbyconformalsymmetry.It’simportantthattheyare allnonnegative:

fδ,j0. (2.2)

Thisconditionissatisfiedaslongastheprimaryfieldisabovethe unitaritybound(whichistruesinceweassumewehaveaunitary theory).

Step2.Twosimpleconsequencesof(2.1)are:

|gO(reiφ)||gO(r)|, gO(r) >0. (2.3) Thismeansthat it’senoughtostudyconvergenceatreal ρ,since fornonzeroφitwillbeonlyfaster.

Step3.Sofromnowonwespecializetotherealaxis.Consider two seriesrepresentationsof thesamefunction g(r): theconfor- malblockexpansion

g(r)=

O

λ2OgO(r) (2.4)

and g(r)=

δ

pδrδ. (2.5)

To obtain the second series we simply plug in the series repre- sentation (2.1)of each conformal block into (2.4) and collect all powers of r withtheir respective coefficients. So pδ=

λ2Ofδ,j wherethesumisover alldescendants havingthescalingdimen- sion δ (no matter what j and the primary are). Clearly pδ 0.

We will call a power series whose all coefficients are positive a coefficient-positiveseries.

Nowthetailofthefirstseriesisstrictlysmallerthanthetailof thesecondseries:

O:O>

λ2OgO(r) <

δ>

pδrδ. (2.6)

This is because the tail on the rhs contains all terms which are present on the lhs, and in addition it contains contributions of descendants of dimension δ > coming from primaries of di- mensionO.

As a matter of fact, Ref. [1]established theconvergence esti- mate onthe tailof thesecond series,andused (2.6) to saythat thefirsttailsatisfiesthesameestimate.Itisherethattheprefac- toroptimalityislost.Herewewilltrytodobetter,butfirstletus completethereview.

Step4.Noticethatthefullfourpointfunctionwithpointsposi- tionedatr,r,1,1 hasinthelimitr1 theasymptotics

φ (r)φ (−r)φ (1)φ (−1) ≈1/(1r)4φ, (2.7) which follows fromapplying the OPE for the two pairs of oper- ators which becomeclose toeach other.Notice that asusual we normalize theoperators withthe unit two point function coeffi- cient.Given(1.1),thisgivestheasymptoticsforg(r):

g(r)24φ/(1r)4φ (r 1) . (2.8)

(4)

Putting together this fact with the power series representa- tion(2.5),wefindourselveswithintheassumptionsoftheHardy–

Littlewood(HL)tauberian theorem,whichestablishes theasymp- toticsfortheintegratedcoefficientspδ:

P(E):=

δE

pδ(2E)4φ

(4φ+1), E→ ∞. (2.9) Aphysicistwouldnormallytrytofitapowerlawassumptionabout pδ totheasymptotics(2.8),obtaining

pE24φE4φ1

(4φ) (naive), (2.10)

andthenby integration(2.9). Noticehoweverthat inaCFT pδ is notasmoothfunctionbutadiscretesequence.It’snotatotallyob- vious matterto showthat the result(2.9)still holds underthese circumstances. The assumption pδ0 is crucial.The naive argu- mentationgives aquickwaytorecover theanswerbutit’s nota substitutetotheproof.Infactit’sknowntofailcompletelyforthe subleadingtermsintheasymptotics.Seethebook[19]forathor- oughreviewoftheHLtheoremanditsramifications.

From(2.9),thetailcanbeestimatedasfollows(denoter=et, t>0):

δ>

pδetδ=t

dE[P(E)P()]et E

t

dE P(E)et E

t

dE (2E)4φ (4φ+1)e

t E

(2)4φ (4φ+1)e

t. (2.11)

Here we integrated by parts in the first line, then dropped the negative termP(), used the HL estimate on P(E), and the asymptotic behavior of the incomplete gamma function to con- clude.Thelaststeprequires φ/t.

Puttingtogetherthisestimateand(2.6)weobtain(1.5)forreal r<1.ByStep2,thesameboundisvalidforallcomplex ρ=reiφ. It’s instructive to compare (2.11) with an estimate we would have obtained if we just approximated the sequence pδ by the naivepowerlaw(2.10):

δ>

pδetδ

dE pEet E

24φ4φ1 t(4φ) e

t (naive). (2.12) Thereasonwhythisnaive estimatehasa betterprefactor canbe tracedbackto havingdroppedP() inthechain ofestimates leadingto(2.11).IfP(E)isanicepowerlaw,thereisanearcance- lationbetween P(E)andP()forE closeto,whichsharp- ens the bound.4 Tojustify thiscancelation in general, we would need some sort of subleading asymptotics for P(E), and unfor- tunately this is not available; see the discussion after Eq. (4.20) in[1].So(2.11)isthebestwecurrentlyhaveinfullgenerality.

4 WethankPetrKravchukandHirosiOogurifordiscussionsconcerningthispoint.

3. 3dconformalblocksontherealaxis

As indicated in the previous section, the lossin the prefactor of the convergence rate estimate of [1] comes fromtreating the primaries and thedescendants in the conformal blocks on equal footing. There are manyterms in the rhs of (2.6) whichare not present in the lhs. To improve the estimate we should think of a conformal block as a whole, instead of separating it into con- stituents. However, conformal blocks in general are complicated specialfunctions,whiletheHLtheoremisforsumsofpowersofr.

While therearegeneralizationsoftheHLtheoremvalidformore general functionsofr,herewe will demonstratea more simple- mindedapproach.

Westumbledonthepossibilityofthisapproachwhilestudying the conformalblocksin3d.We willthereforestart bypresenting theseresults,whichareofindependentinterest.

As shown in [20], conformal blocks on the real axis satisfy an ordinary differential equation. This is not obvious since as a function ofcomplex ρ they satisfy a partialdifferential equation.

HoweverthereareinfacttwoPDEs:thewell-knownsecondorder one coming fromthe quadraticCasimir, andin additiona fourth order one comingfromthe quarticCasimir.Taken together these twoPDEsimplyanODEontherealaxis.

The relevant ODE is obtained by specializing to the case of equalexternaloperatordimensionsbysettingP=S=0 in(4.10a) of[20].Ittakestheform

D4g,l(r)=0 (3.1)

with

D4=(r1)3(r+1)4r4d4 dr4

+2(r1)2(r+1)3r3{(2 +5)r2+21}d3 dr3

2(r1)(r+1)2r2

(c2( +4)(2 +3))r4

2(2 2+c2+35)r22 2+c2+ d2 dr2

2(r+1)r

(2 +3)(c22( +1))r6 +(4(−2 2+ +3)c2(2 +5))r4

+(c2+2(1)) (12 )r2+(1+2 )c2

d

dr

+(1r){(2(2 +1)c2c4)r6+2(c4+2(2 +1)c2)r5 +(c4+2(61)c2)r4+4r3(c4+2c2(21))

+(c4+2c2(61))r2+2(2c2(2 +1)c4)r +2c2(2 +1)c4}.

Here =d/21 while c2 and c4 are the quadratic andquartic Casimireigenvalues expressedintermsoftheprimary dimension andspin:

c2=12[l(l+2 )+(22 )],

c4=l(l+2 )(1)(12 ). (3.2) Itturnsoutthattheaboveequationcanbesolvedind=3 bya judicioussubstitution. Toguessthesubstitution,considerfirstthe conformalblocksofthe“leadingtwist”operatorsforwhich

=l+2 , l=0,1,2. . . (3.3)

Références

Documents relatifs

Critical values of the S = 3 Ising S =' c~ XY, and S = co Heisenberg ferromagnets on the spinel lattice obtained from the exact high temperature series

The relation to the conformal fields method follows immediately from the tran- sition to Euclidean time and leads directly to explicit calculations of a few correlation functions of

Let M be a compact connected manifold of dimension n endowed with a conformal class C of Riemannian metrics of volume one.. Colbois : Universit´e de Neuchˆatel, Laboratoire

In section 4 we show that the problem is equivalent to a certain estimate for integral means of derivatives of conformal maps, and use this connection to prove (1.5) and to

(1.15) Hence, in contrast to the holomorphic case, when the dominating operator is a generator of a holomorphic semigroup (1.4), the Trotter product formula (1.15) with

Pour valider nos résultats numériques, l'augmentation de la température dans le collecteur et la vitesse maximale de l’air dans la cheminée sont comparés avec les

Weil, dans la catégorie de l’action, par delà celle du fini qui suc- cède immédiatement à celle de l’œuvre, s’efforce de faire droit à cette exigence de sens qu’exprime

Abstract Primitives and transformations in discrete geometry, such as lines, cir- cles, hyperspheres, hyperplanes, have been defined with classical linear algebra in dimension 2 and