• Aucun résultat trouvé

Corrosion investigation of fire-gilded bronze involving high surface resolution spectroscopic imaging

N/A
N/A
Protected

Academic year: 2021

Partager "Corrosion investigation of fire-gilded bronze involving high surface resolution spectroscopic imaging"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-01494641

https://hal.archives-ouvertes.fr/hal-01494641

Submitted on 23 Mar 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Corrosion investigation of fire-gilded bronze involving

high surface resolution spectroscopic imaging

Giulia Masi, Cristina Chiavari, José Avila, Jérôme Esvan, Simona Raffo,

Maria Chiara Bignozzi, Maria C. Asensio, Luc Robbiola, Clara Martini

To cite this version:

Giulia Masi, Cristina Chiavari, José Avila, Jérôme Esvan, Simona Raffo, et al.. Corrosion investigation

of fire-gilded bronze involving high surface resolution spectroscopic imaging. Applied Surface Science,

Elsevier, 2016, 366, pp.317-327. �10.1016/j.apsusc.2016.01.101�. �hal-01494641�

(2)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 16707

To link to this article : DOI:10.1016/j.apsusc.2016.01.101

URL :

http://dx.doi.org/10.1016/j.apsusc.2016.01.101

To cite this version : Masi, Giulia and Chiavari, Cristina and Avila,

José and Esvan, Jérôme and Raffo, Simona and Bignozzi, Maria

Chiara and Asensio, Maria C. and Robbiola, Luc and Martini, Clara

Corrosion investigation of fire-gilded bronze involving high surface

resolution spectroscopic imaging. (2016) Applied Surface Science,

vol. 366. pp. 317-327. ISSN 0169-4332

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(3)

Corrosion

investigation

of

fire-gilded

bronze

involving

high

surface

resolution

spectroscopic

imaging

G.

Masi

a,∗

,

C.

Chiavari

a,b

,

J.

Avila

c

,

J.

Esvan

d

,

S.

Raffo

e

,

M.C.

Bignozzi

a

,

M.C.

Asensio

c

,

L.

Robbiola

f

,

C.

Martini

g

aDipartimentodiIngegneriaCivile,Chimica,AmbientaleedeiMateriali,UniversitàdiBologna,viaTerracini28,40131Bologna,Italy

bC.I.R.I.(CentroInterdipartimentaleRicercaIndustriale)MeccanicaAvanzataeMateriali,UniversitàdiBologna,Bologna,viaTerracini28,40131Bologna,

Italy

cSynchrotronSOLEIL,L’OrmedesMerisiers,91190Saint-Aubin,France

dCentreInteruniversitairedeRechercheetd’IngénieriedesMatériaux,UniversitédeToulouse,4alléeEmileMonso,31030Toulouse,France eDipartimentodiChimicaIndustriale“TosoMontanari”,UniversitàdiBologna,vialeRisorgimento4,40136Bologna,Italy

fTRACESLab(CNRSUMR5608),UniversitéToulouseJean-Jaurès,5,alléesAntonio-Machado,31058Toulouse,France gDipartimentodiIngegneriaIndustriale,UniversitàdiBologna,vialeRisorgimento4,40136Bologna,Italy

Keywords: Firegildedbronze Corrosion Chemicalimaging Synchrotronradiation Photoemission Artworks XPS Decuprification

a

b

s

t

r

a

c

t

Gildedbronzesareoftenaffectedbyseverecorrosion,duetodefectsintheAulayerandAu/Cualloy galvaniccoupling,stimulatedbylargecathodicareaofthegildedlayer.Galvaniccorrosion,triggeredby gildingdefects,leadstoproductsgrowthattheAu/bronzeinterface,inducingblisteringorbreak-upof theAulayer.Inthiscontext,fire-gildedbronzereplicaspreparedbyancientmethods(useofspreadable Au–Hgpaste)wasspecificallycharacterisedbycompilingcomplementaryspectroscopicandimaging informationbefore/afteracceleratedageingwithsyntheticrain.Fire-gildedbronzesampleswere chem-icallyimagedincross-sectionatnano-metricscale(<200nm)usinghighenergyandlateralresolution synchrotronradiationphotoemission(HR-SRPES)ofcorelevelsandvalencebandafterconventional characterisationofthesamplesbyGlowDischargeopticalEmissionSpectroscopy(GD-OES)and conven-tionalX-rayphotoelectronspectroscopy(XPS).WehavefoundanetsurfaceenrichmentinZnandSn afterfire-gildingandpresenceofmetallicHg,PbandCuwithintheAulayer.Moreover,thecomposition distributionoftheelementstogetherwiththeiroxidationhasbeendetermined.Itwasalsorevealedthat metallicphasesincludingHgandPbremaininthegildingaftercorrosion.Moreover,selective dissolu-tionofZnandCuoccursinthecraterduetogalvaniccoupling,whichlocallyinducesrelativeSnspecies enrichment(decuprification).Thefeasibilityadvantagesanddisadvantagesofchemicalimagingusing HR-SRPEStostudyartworkshavebeeninvestigatedonrepresentativereplicas.

1. Introduction

1.1. Systemunderinvestigation

Inoutdoorconditions,gildedbronzes(widelyusedin histori-calmonumentsandinarchitecturalelements)areoftenaffected byseverecorrosionofthebronzesubstrate,duetothepresence ofporesanddefectsinthegildinglayer.Inparticular, degrada-tion of gildedbronzeis induced by galvanic coupling between

∗ Correspondingauthor.Tel.:+390512090361;fax:+390512090322. E-mailaddresses:giulia.masi5@unibo.it(G.Masi),cristina.chiavari@unibo.it (C.Chiavari),jose.avila@synchrotron-soleil.fr(J.Avila),jerome.esvan@ensiacet.fr (J.Esvan),simona.raffo2@unibo.it(S.Raffo),maria.bignozzi@unibo.it

(M.C.Bignozzi),maria-carmen.asensio@synchrotron-soleil.fr(M.C.Asensio), robbiola@univ-tlse2.fr(L.Robbiola),carla.martini@unibo.it(C.Martini).

bronzeandgold.Defectssuchasthicknessvariationandporesin thegildinglayeraremostlyduetothegildingprocedure.Themain gildingmethodsusedinantiquitywerebased(i)onthe applica-tionofgoldfoilorleaf,(ii)onselectiveleachingofelementsnot asnobleasgold(theso-called“depletiongilding”method)or(iii) ontheuseofspreadablegold-mercuryamalgampaste,followed bymercuryevaporation,asdescribedinseveralpapers[1–3].In thepresentpaper,theinvestigationisfocusedonamalgam-gilded (or“fire-gilded”)bronzeforwhich,aftermercuryevaporation,the mattegold-richlayermustbe“burnished”(i.e.plasticallydeformed and compacted)by a smooth and hard tool (e.g. agate stone), soastoobtaina shinysurface [4].Thistechnologicalsequence producesagildinglayerwithpeculiarfeatures.Themostrelevant characteristicisthepresenceofresidualmercury(usuallyHg con-centration ranges fromabout 7 to10wt.% in the gildinglayer, although valuesup to17wt.%were alsoreported[4]), but also

(4)

Cu–Auinterdiffusionduetoheatingformercuryevaporation[1]

andthedetrimentalinfluenceofalloyingelementssuchasPbon thegildingprocess[4]shouldbementioned.

Inapreviouspaper[5],wecharacterisedquiteextensively a fire-gildedquinarybronze(Cu–Sn–Zn–Pb–Sb)intheas-gilded con-dition,obtainedaccordingtoancientrecipes.Specifically,Focused Ion Beam (FIB) milling followed by cross-section observations, both by field emission SEM and by ion channelling contrast withGa+,clearly showed themorphology ofthe Au-richlayer, partlycompactedbyburnishingbutstillretainingsub-micrometric porosity. It wasalso possible to reveal annealing twins in the recrystallisedmicrostructureoftheAu-richlayer,aswellasthe strain-hardened(henceveryreactive)layerinthebronze imme-diatelybeneath thegilding.Thislayerconsistedof smallgrains elongatedin the direction of material flow due to mechanical polishingofthebronzebeforegilding.However,itwasnot pos-sibletomakedetailedinvestigations,mainlyduetothelimitsof theconventional X-rayspectrometry technique usingMg or Al anodes.

Asregardsthecorrosion of fire-gildedbronzes, theParadise Door(i.e.theEasterndooroftheBaptisteryofFlorence,created byLorenzoGhiberti, 1425–1452)is a famousexample [6].This masterpiecewasexposedtooutdooratmosphereinFlorence,Italy, sinceitsproductionuntiltheArnofloodin1966.Asformany oth-ersgildedmonuments,suchasthehorsesofSaintMark’sbasilica inVenice[7],thegrowthofcorrosionproductsatthegold/bronze interface(withtheformationofcharacteristiccorrosioncraters) ledtoblisteringorbreak-upandlossofthegoldlayer[6,8].The corrosionproductsdetectedbeneaththegoldlayerinthecaseof Ghiberti’sParadiseDoormainlyconsistedofcopperoxide,basic sulphatesandcoppercarbonates[9],withlesseramountsof chlo-rides and nitrates [10]. Furthermore,due tothe action of acid rains,coppersaltsalsodissolvedanddiffusedabovethefire-gilded surface, where brochantite, antlerite, paratacamite and copper hydroxylnitrate[11]wereidentifiedbyX-RayDiffractionandIR spectroscopy.Thepresenceofsolublenitrate-basedcompoundsis oftenattributedtointeractionwiththepollutedurbanatmosphere, buttheywerealsohypothesisedtoderivefromresiduesofbronze picklingreagentsusedin theancient pastbygoldsmithsbefore applicationofthegold-mercurypaste,forimprovingtheadhesion ofthegildinglayeronbronze[11].

Thepresenceofseveralcorrosionproducts, including hygro-scopiccompoundsatthegold/bronzeinterface,makesfire-gilded bronzesquiteunstableandcomplexsystems[9,12,13],requiring specificrestorationandconservationprocedures[8].Inparticular, cleaningproceduresbasedbothonchemicalandonlaser meth-odswereapplied[11,14,15].Aftercleaning,conservationactions mustbeimplementedongildedbronzeartworkstoensuretheir long-termcorrosionprotection.Bothpreventivetechniques,such asmicroclimatecontrol[9,16]anduseofcoatingsandinhibitors

[12,17,18],wereinvestigated.Inordertohelpmicroclimatecontrol, specificsensorsbasedonthemeasurementofgalvaniccurrentsin gold/bronzecouplesprovedtobeusefulinfindingthemost suit-ableclimaticparameterswhichensurenegligiblecorrosionrates

[16].

Evenifthemain phenomenologicalaspectsof gildedbronze corrosionareknown,animprovedcharacterisationofthis multi-layersystemandtheinvolvedphenomenaof decayisrequired, in order to pursue a deeper understanding of the corrosion mechanism,whichisalwaysabasicrequirementfordeveloping effectiveconservationstrategies. Therefore,inthepresentwork thesamefire-gildedbronzeasinthepreviouspaper[5],was pre-paredaccordingtoancient methods,soastomimicthetypical microstructureandmorphologyofamalgam-gildedbronzes. Age-ingin conditionsclosely simulatingoutdoorexposurein runoff conditions(droppingtests[19])wasappliedandthesefire-gilded

bronzesampleswerepreliminarycharacterisedbymicroscopyand micro-spectroscopytechniques(FIB-FEG/SEM,EDS,micro-Raman)

[5].

1.2. GeneralXPSbackground

X-rayphotoelectronspectroscopy(XPS)hasbeenappliedsince morethanthirty yearstoancientbronzes andpatinas,inorder toanalysethechemicalstateofelementsontheoutermost sur-facesand (by Ar+ sputtering)to explore depthprofile[20–22]. However,itsuseinculturalheritagematerialssciencehasbeen ini-tiallyrestricted,duetoexperimentalconstraintslinkedtosample size,analysedarea(typicallylargerthan300␮mindiameter)but alsotochargeeffectslinkedtoweaklyconductingsurfaces[21,22]. ThistechniquewasoftencoupledtoscanningAugermicroscopy (Augerelectronspectroscopy—AES)asanassociatemethod high-lightingthedifferencesinthemicrochemicalcompositionthanks toasmallerspatialresolutioncomparedtoXPStechniques[20–24]. Sincethelastfifteenyears,theimprovementindetection sen-sibility of XPS analyser and to the needs to accurately relate chemical binding toelemental or structural information ledto moreinvestigationsonsyntheticmaterialstobecarriedout.These investigationsweremainlyfocusedonchemicaltransformationof polishedorartificiallycorrodedCu–Sn(Zn,Pb)bronzesindifferent conditions—asforexample,inatmosphereunderSO2 orH2Sgas pollution[25–28],inNaClaqueoussolution[29,30],insoil[31,32], fromparticularchemicalsolutions[33,34],butalsorelatedtothe identificationofspecificcopperororganicproducts[24,35,36]or ontheefficiency of conservationprotective treatments [37,38]. On ancient artefacts, XPS investigationwas oftenassociated to otheranalyticaltechniques(EDS–SEM,XRD,PIXE,SIMS, LA-MS)

[31,39–44].XPSanalysisusuallywereperformedonsurface frag-ments,sometimescoupledtodepthprofilemeasurementfromAr+ sputtering[21,22,39,40]orlaserablation[44].Itshouldbenoticed thatseveralstudiesinvestigatedtheeffectofX-raybeamor(Ar+) ionsputteringonthesurfaceevolution[21,24,26,28,39,41].They revealedthatleadcarbonatespeciesaswellascoppersulphateor copperoxidecanbereduced,whichcancausetheinterpretationof XPSandAEStobeproblematicforcopperspecies.XPSwasalso sel-domconductedonthickcorrosionlayersfromcross-sections[31]. Asregardsmercury-amalgamplatingonancientbronzes,onlyvery fewstudiesapplyingXPShavebeenperformed.In [45],surface analysisofseveralfragmentsofgildedcopperbasealloysclearly demonstratedtheimportancetocombinesurfaceanalytical tech-niqueshelpingtorefinedataonboththemanufacturingprocess andthedegradationstate.

Recently, a multi-analyticalapproachincluding conventional XPSandsynchrotronradiation—(SR)basedtechniqueswasapplied totwoleadedbronzes,revealingalltheinterestforgetting map-pingofthesurfacechemistryofthebronzeatasub-micrometric spatialresolution[41,42].Thisglobalapproachhasbeenrecently extended tosynchrotron X-rayphotoelectronspectroscopy and X-rayabsorptionspectroscopyonmercurygildedsilverplates, dif-ferentlycolouredaccordingtodifferentappliedtreatmentsbased onmediaevalwritings[46].Thisstudypointedouttheinterestto useSRasahighlypowerfulX-raysourceforperformingXPSsurface measurements.

1.3. Aimofthework

Inthepresentpaper,themainaimistoevaluatetheapplication ofhighlyenergyandlateralresolutionsynchrotronradiation pho-toemission(HR-SRPES)forobtainingspatiallyresolvedinformation oncorrodedbronzesamplesatasub-micrometriclevel(<500nm). Inparticular,specialattentionwaspaidtothemappingof chemi-calspeciesandtheirstateofoxidation.Tothisaim,stateoftheart

(5)

chemicalmappingusingHR-SRPEShasbeentestedhereforthefirst timeoncross-sectionsoftypicalcorrosioncraters,attheinterface betweenthegoldlayerandthebronzesubstrate.

Here,alsobasedonamulti-analyticalapproachinvolvingthe useofotheranalyticalmethods(EDS-SEM,GD-OESand conven-tional XPS), from surface as wellas cross-section analysis,the objectiveswere:(i)toclarifythedistributionofelementsinthe as-gildedbronze,inordertounderstandtheroleofbronze allo-yingelements(Cu,Sn,Zn,Pb)aswellastheroleofresidualHgin thestructureofthegildinglayerand(ii)toinvestigatethe interac-tionsbetweenelementsinthealloy/gildinglayersystemandthe environmentalelements,mainlyO,andalsoSandClelements.

2. Materialsandmethods

2.1. Preparationoffire-gildedbronzesamples

Thecompositionofthebronze,castinstonemouldsandthen fire-gilded,issimilartothoseofRenaissanceartefacts:Sn:3.3,Zn: 1.5,Pb:1.0,Sb:0.2wt.%,Cutobalance(Sn:1.81,Zn:1.49,Pb:0.31, Sb:0.11at.%).Thealloyexhibitsadendriticmicrostructureofcored ␣-Cusolidsolution,typicalofas-castbronze(withSn-andSb-local enrichmentintheinterdendriticspaces),alsoincludingglobules ofPbasdescribedin[47].Residualporosityandshrinkagecavities wereuniformlydistributedinthealloy.

Fire-gildingwascarriedoutaftermechanicalpolishing(SiC180 grit)of thecastbronzesurface followed bynitricacidpickling (10wt.%ofHNO3indeionisedwater)andrinsinginwater.The pol-ishedandpickledsurfacewasthencoveredwithAu–Hg(1:8wt.%) amalgampaste(accordingtotherecipebyBenvenutoCelliniin histreatisesongoldsmithingandsculpture(1568)[48])andthen heatedbyanopenflame,soastovaporiseHg.Subsequently,the gildedsurfacewasburnishedbyanagatetool(usingoliveoilas alubricant),in ordertodensifytheporouslayerandproducea smoothandshinysurfacewithagoldenappearance.Noother gold-colouringprocedure,asthosedescribedin[46],wasappliedonthe as-gildedsurface.Thethicknessofthemercurygildinglayerwas estimatedbySEMobservationofcrosssections.

2.2. Acceleratedageinginrunoffconditions(droppingtests) Fire-gildedbronzespecimens(2.5×5.0cm2)wereexposedto syntheticrain (pH=4.3)by droppingtests witha total Timeof Wetness(TOW)of30days.Thedroppingtestssimulate unshel-teredexposuretorainwater(runoffconditions).Inthistesttherain solutionwasperiodicallydroppedonto 45◦ inclinedspecimens, withalternatedcyclesof2-daysdropping/1-daydryingand3-days dropping/1-daydrying,selectedonthebasisofenvironmentaldata fromthemonitoringstationsinBologna,Italy[19].

Asreportedin[5],theartificiallyaged samplesproducedby droppingwithTOWof30dayscanbeusedforadeeper inves-tigationof corrosion process. This methodproduces crater-like corrosionfeaturesattheinterfacebetweenthegildinglayerand bronze,comparabletohistoricalreferenceartefacts.

2.3. Characterisationoffire-gildedsamples

The free surface of fire-gilded bronzewas observed by 3D-Digitalmicroscopy.Onthefreesurfaceofgildedbronze,alsoGlow Discharge-OpticalEmissionSpectroscopy(GD-OES)concentration profilesweremeasured,aftergentlerinsingwithethanol,soasto removesurfacecontamination.GD-OESanalysiswascarriedout withaGrimm-styleglowdischargelampinDCmode.The inter-naldiameterofthetubularanode(hencetheanalysedareaineach measurement)was2.5mmandthein-depthspatialresolution dur-ingdepthconcentrationprofiles(perpendiculartothesurface)is

about50nm.TheGrimm-typeatomisation/excitationsourcewas evacuatedbyarotarypumptoafinalpressureof0.05hPa.After evacuation,flowingargonasaworkinggas(99.995%purity)was introducedtoaconstantpressureof3hPa.Constantdischarge con-ditions(voltage 900V andcurrent 9mA) wereusedinorder to maintainaconstantsputteringrate.Thecraterdepthswere mea-suredbystylusprofilometryaftertheGD-OESmeasurements,in ordertocheckthesputteringrates.

Conventionalmetallographictechniques(i.e.coldmountingin conductiveresin)wereused,forthepreparationofcrosssections. The gildinglayerandthecorrosion features atthegold/bronze interface were characterised by a coupled system SEM/EDS-RamanSCA(ScanningElectronMicroscopywithEnergyDispersive Spectroscopy and Ramanmicroprobes, Structuraland Chemical Analyser,=514.5nm,power:5mW).

Thecharacterisationoftheinterphasesinthecross-sectionswas performedbyHR-SRPESwithanexcitationenergyof850eV (there-foreitwasnotpossible,byHR-SRPES,toexplorebindingenergy contributionssuchasthosefromCu2p3/2andZn2p3/2atabout 932–934and1022eV,respectively).HR-SRPESexperimentswere conductedintheANTARESbeamlineattheSOLEILsynchrotron.

ConsideringathicknessoftheAulayerlowerthan10␮m, cross-sectionofthesampleswereanalysedtakingadvantageofANTARES beamresolution.Imagingofpolishedcross-sectionswascarried outwiththehighresolutionR4000Scientahemisphericalanalyser andasetofFresnelZonePlates(FZP),abletofocalisethebeamspot uptoafewtenthsofnanometersinspatialresolution.Themain differenceoftheANTARESmicroscope fromotherconventional ARPESinstrumentsisthatthespecimenscanbemountedona high-precisionplatethatensurestheirnanoscalepositioninginthex,y andzdirections[49,50].Thepassenergywasfixedat100eVwitha stepat0.05eVforcorelevels.Investigatedcorelevelswerelimited toafewlocalisedspots,duetotheavailablesynchrotronbeamtime, whichwasmostlyusedfortime-consuminghigh-resolution photo-electronspectroscopy(HR-SRPES)maps.Asurfacecleaningusing HeionbombardmentwasappliedpriorXPSmeasurements.

Complementaryconventional XPSanalyseswerealsocarried out on the top of the fire-gilded surfaces. The photoelectron emissionspectrawererecordedusingamonochromatisedAlK␣ (h=1486.6eV)sourceonaThermoScientificK-Alphasystem.The X-rayspotsizewasabout400␮m.Thepassenergywasfixedat 30eVwithastepof0.1eVforcorelevels.Ionicsputteringofthe surfaceswasmadebyAr+ionbeamacceleratedunder2keVlow current.XPSspectrawererecordedindirectN(Ec).

ForbothXPSsystems(HR-SRPESandThermoScientificK-Alpha XPS), thein-depthresolution isof a fewnm.The spectrometer energycalibrationwasmadeusingtheAu4f7/2(BE=84.0±0.1eV) photoelectron line and the C 1s value of adventitious carbon (BE=284.8±0.2eV)whennoAuwaspresent.Thedifferentcore levelsinvestigatedwereC1s,O1s,S2p,Cl2p,CuandZn:3p(2p onlyforK-AlphaXPSsystem),Sn3d,Sb3d,Au4fandPb4f.The backgroundsignalwasremovedusingShirleymethod.The photo-electronpeakswereanalysedbyGaussian/Lorentzian(G/L=30%) peakfitting.Theatomicconcentrationsweredeterminedwithan accuracyof10%fromphotoelectronpeakarea,usingtheatomic sensitivity factorsreported byScofield, takinginto account the transmissionfunction oftheanalyser accordingtotheenergies applied(850eVforHR-SRPESand1486.6eVforK-AlphaXPS).

3. Results

3.1. As-gildedbronze

Thetopographicimageoftheas-gildedsurface(Fig.1a)shows residualgrooves(fromabout5to10␮mdeep)duetomechanical

(6)

Fig.1.Fire-gildedbronze:3-Ddigitalmicroscopytopographicimageofthefreesurface,withindicationofaporousarea,correspondingtogroovesinthebronzesubstrate, wheregoldwasnotcompactedbyburnishing(a).SEM/EDScross-sectionimages(backscatteredelectrons,BSE))intheregionscorrespondingtosmooth(bandc)andporous areas(d).Thefire-gildedlayeristhewhitelayerinthecentralareaofeachBSEimage.

polishingbeforegilding.Thispeculiarfeatureleadstotwotypical surfacemorphologies:smoothandflatareas(wheretheburnishing proceduresuccessfullycompactedthegildedlayerafterHg evapo-ration)andporousareas(duetoinsufficientburnishing).Infact,in theporousareas,somegroovesweretoodeeptoallowfull densifi-cationofthegildedlayer.Cross-sectionimagesinFig.1b–dshows thatthethicknessofthegildedlayerisremarkablyhigher(around 10␮mthick)inporousareasbycomparisontothesmoothones (about2␮m).

Itmustbetakenintoaccountthatthegoldlayerthicknessmay beoverestimatedduetosmearingofsoftgoldonhardbronze dur-ingmetallographicpolishing[1]),whereas,forthesamereason, thegoldporositymaybeunderestimated.Asdetailedin[5],FIB millingandFEG-SEMobservationsalloweddetailedmorphological characterisationintermsofcompactnessandporosity,confirming thatsmoothareas(i.e.areaswheretheburnishingprocedurewas fullyeffective)displaylowerthicknessandhigherdensityby com-parisontoporousareasonthegrooves.

The typical elemental distribution of the fire-gilded bronze beforecorrosionisshowninFig.2.Mercury(Hg)wasdetectedin thegildedlayer,butalsoalloyingelementsfromthebronze sub-strate,suchasSnandZn.ThepresenceofNinthegildedlayeris moreprobablyduetothepreviouslydescribednitricacidpickling procedure.

However,itisdifficulttodetermineaccuratelytheelemental distributionofAu,Hg,Pb,SnandSbinthegildedlayerby SEM-EDS,duetothelimitedspatialresolutionoftheX-raysourcebut alsototheoverlappingoftheprincipalemissionpeaks(Mpeaksof Au,HgandPbandLpeaksofSnandSb).Therefore,amoredetailed characterisationwascarriedoutbyGD-OESconcentrationprofiles aswellasbyconventionalXPSandbyHR-SRPESimaging.

TheGD-OESconcentrationprofiles aregiveninFig.3.Inthe outermostpartof thegilding(<0.25␮m),an enrichmentof Hg wasrevealed:Hgconcentrationincreaseswithdecreasingdistance fromthesurface,mostlikelyduetodiffusionofHgtowardsthe outersurfaceduringthefireheatingprocedure.ThissuperficialHg

enrichmentisaccompaniedbyamarkedenrichmentinSnandZn bycomparisontoCuandPbalsopresentinthegildedlayer(Fig.3, inlay).ThisphenomenonvanishedafterthemaximumofAu con-centration(thickness:0.4–0.5␮m)anditwasmostlikelylinkedto theeffectofthemercuryevaporationduringtheheatingstep.The gradualvariationofthealloyingelements,coupledwiththegradual decreaseofAuacrosstheinterfacebetweenthegildinglayerand thebronzesubstrate,issurelyalsorelatedtothelargesize(2.5mm) oftheanalysedsurfacearea,averagingthevariablethicknessofthe gilding.

ConsideringCuandAuGD-OESprofilesacrossthegildinglayer, showingagradualincreaseofCuconcentrationstartingfromthe surface,coupledwiththegradualdecreaseofAu,Cu–Au interdif-fusioncanbehypothesised,becausetheseelementsareknownto intermixreadilywhensolid-state diffusiontakesplace[51].On goingfromtheoutermostsurfacetowardsthebulk,theGD-OES profilesshowthepresenceofCualsointhemostexternalregions ofthegilding(farfromtheinterface,henceinregionswherethe variablethicknessofthegildingdidnotaffecttheGD-OESdata),so confirmingthehypothesisofinterdiffusion.Theabilityofthe heat-ingstep(carriedoutheresoastoremoveHgfromthefire-gilded layer)toinduceinterdiffusionof CuandAu,wasalsoobserved byotherauthorsinthegeneralcaseofgildedartefactsinvolving heating[1,4,6,52–54].

TheresultsofXPSmeasurementsperformedontheas-gilded bronzesurface,beforeandafterAr+etching,aregiveninTable1, whichhighlightsahighcontentofenvironmental-relatedelements includingC,N,O,SandSi,whichdecreasedinintensityafterAr+ etching.C1sislinkedtocarbonylpollutantsalsoincludingC N species.Itisinterestingtonoticetherelativelyhighproportionof nitrogen(2.4at.%),whichcannotbeascribedtonitratebutcouldbe relatedtoCandH(BEcorelevelat∼399.5eV[55]).Alsoregarding sulphur,thepeakofS2pisintwostates,correspondingtosulphate andsulphide.Nochloridesweredetected.

Onthegildedsurface,ahighamountofHgwasalsorevealed, decreasingafter theion bombardment (Table 1), in agreement

(7)

Fig.2. Fire-gildedbronze:SEM-BSEimage(topleftcorner)andEDSX-Raymapsshowingelementaldistributionincrosssection.Possibleresidualoverlappinginterference forEDSX-rayMpeaksofAu,HgandPb,aswellasforLpeaksofSnandSb.

Fig.3.Fire-gildedbronze:GD-OESconcentrationprofilesofAu,Hgandbronzealloyingelements(Cu,Sn,Zn,Pb)measuredfromthefreesurface.Theinlayshowsadetailof theconcentrationvariationfortheouterzoneofthegilding(<1.5␮m).

withGD-OES data (Fig. 3).Alsotheenrichment in Znby com-parisonto theCu initialcontent of the bronzewasconfirmed, (Zn/Cu atomic ratio increases from 0.015 (alloy) to 0.17 (top surface)).

XPScorelevelmeasurementsshowedthattheseelementsare inthemetallic(Au,Hg)orintheoxidisedstate(Sn,Zn)orunder bothstates(Cu,Pb).ThemetallicCu(0)componentinthe outer-mostlayerofthegildedsurfaceisconfirmedfromthecalculation

(8)

Table1

XPSatomicquantificationofas-gildedbronze(monochromatisedAlK␣(hv=1486.6eV)).Analysisofthetopsurfaceofthegilding,beforeandafterAr+ionetching.Each

valuewasnormalisedtoAuatomiccontent(Au=1).

Au4f7/2 Hg4f7/2 C1s N1s O1s S2p Cu2p3/2 Sn3d5/2 Zn2p3/2 Pb4f7/2

Metal Metal N C Sulfide/sulfate Cu◦ Cu(I)/Cu(II)oxide/Cu(II)hydroxide Sn(IV) Oxide Metal/oxide

Beforeetching PeakBE(eV) 84.0 100.0 284.6 399.7 531.9 162.4/169.0 932.5*/933.5/934.9 486.7 1022.1 136.9/138.6 at.% 4.9 0.5 74.0 2.4 15.4 0.7/0.4 0.5/0.3/0.1 <0.2 0.3 0.1/0.2 Afteretching(10sAr±) PeakBE(eV) 84.0 100.0 284.7 399.2 532.0 162.9/168.9 932.5*/933.4/934.9 486.8 1022.3 136.8/138.7 at.% 12.7 0.8 69.2 2.9 9.6 1.1/0.3 1.1/1.1/0.2 <0.2 0.4 0.1/0.3

Normalised(/Auat.%)

Beforeetching 1.00 0.10 15.10 0.49 3.14 0.14/0.08 0.1/0.06/0.02 <0.04 0.06 0.02/0.04 Afteretching 1.00 0.06 5.45 0.22 0.75 0.09/0.02 0.09/0.09/0.01 <0.01 0.03 0.01/0.02

* KE(CuLMM)=918.1eV˛=1850.6eV.

oftheAugerparameter(˛,Table1)andissignificantlyhigh.ForPb, oxidisedstateismainlyfoundbutaminorcomponentismetallic evenbeforeionetching,clearlyindicatingthepresenceofametallic phase,probablyalloyedwithHg,withinthegoldlayer.ForSn,the signalintensitywasatthelimitofdetection(around0.2at.%after ionetching),thereforetheexactoxidationstateandthepossible relativeenrichmentofSninthesurfacebycomparisontoCucould notbedetermined.

Theseresultspointoutthatthefire-gildingprocessinducedthe Hgenrichmentintheouterlayerofthegilding,butalsofavoured thediffusionofSnandZnbycomparisontoCu(inlay,Fig.3).The XPSdataalsohighlightthepresenceofmetallicphasesinvolvingPb butalsoCu.ThemetallicCu(0)componentonthetopgildedsurface remainsthemainoxidationstate,asconfirmedbytheevaluationof itsAugerparameter(˛Table1):˛=1850.6eV(bothbeforeand afteretching),ingoodagreementwithCu(0)state(1851±0.5eV)

[56].

Thesealloyingelements(Sn,Zn),presentintheoutermostpart ofthegildinglayer,arepotentiallyandpreferentiallyreactiveto preferentialcorrosion[19].ThepresenceofmetallicSnandZnin theouterlayerofthegildingmayberelatedtostrongerinteractions oftheseelementswithbothAuandHg.Inparticular,bothSnandZn formmercuryamalgamsandintermetalliccompoundswithAuand Hg[57].Specifically,Au–Sndiffusionandcompoundsformationis well-documentedinthefieldofelectronicdevices[51].ForPb,only verylowamountsofmetallicPb(0.07at.%)weredetectedbyXPS afteretchingonthetopsurface(Table1).Pbwasdetectedonlyin verylowconcentrationbyGD-OESintheouterpartofthegilding layer(Fig.3,inlay),notshowingthesamesuperficialenrichment trendasSnandZn,notwithstandingtheabilityofthiselementto formHgamalgamandAu-basedintermetallics[57].Thelow con-centrationofPbintheouterpartofthegildingcouldbeduetothe lowamountandtotheinhomogeneousdistributionofPbinthe bronzealloy.

3.2. Artificiallycorrodedgildedbronze

Afterartificialageing,XPSmeasurementsonthetopofthegilded surface,beforeandafterAr+ionbombardment(Table2),revealeda highcontentoflightelementsbycomparisonwiththeuncorroded surface.ThemaindifferenceisrelatedtoanincreaseofC,OandS elements,duetocorrosioninducedbytheartificialrainsolution. Forcarbonandoxygen,amarkedincreasecorrespondingtoC O bindingisfound,whichcanbemainlyascribedtocarbonatespecies (Cat∼289.3eVandOat∼532eV)[36].Afteracceleratedageing,it wasalsofoundthatHgremainsinthemetallicstateinthetopgilded layer.

As regards the alloying elements of the bronze, Cu and Pb arealwaysfoundwithinthesurface.ForCu,themetallic compo-nentremainspresentaccordingtotheAugerparameterestimation

(Table2,˛=1850.6eVafteretching[56]).ForPb,several contrib-utionsarepresentandcanberelatedtooxidisedspecies(hydroxi-, sulphates and probably oxide) but also to metallic Pb, which remainsonthegildinglayerinaverylowamount(0.08at.%after etching).ForZnandSn,alwaysbycomparisontotheuncorroded sample,adecreaseoftheiramountswasobserved,asrevealedby theirnormalisedatomicvalues(/Au)ofTable1comparedtoTable2. Snisoxidised,butthesignalwasbarelydetectableandnoprecise informationcouldbegiven.However,theseresultsshowedthat acceleratedageinginducedadecreaseofZncontentonthetop surface,e.g.theoxidisedZnconcentrationbeforeageingwas0.03 (/Au),(Table1afteretching)anddecreased downto0.01(/Au),

Table2).NoremarkablevariationwasobservedforHg.Similarly, alsoCuwasnotsignificantlyaffectedafterageing:thenormalised Cuatomicratio(/Au)was0.19fortheas-gildedsample(Table1) and0.22whencorroded(Table2).Therefore,bothHgandCu, prob-ablyinsolidsolutionwithAu,remainedinthetoplayerandwere notcompletelydissolvedafterartificialageing.

Thecross-sectionsoftheartificiallycorrodedfire-gildedbronze revealed large craters under the fire-gilded layer as usually observedforthistypeofmaterials[9,10].Elementaldistributionis illustratedbyEDSX-raymapsinFig.4.Concerningthefire-gilded layer,thecontributionsofAu,HgandPbwerenoteasytoseparate onthebasisofEDSdata.Withinthecrater,corrosionwasmarked byadepletionofCuandZn,withconsequentrelativeenrichment ofSnandincorporationofoxygenspecies(Fig.4).

HR-SRPESinvestigationswereperformedonarepresentative corrosioncraterinthecorrodedgildedbronzesample.

Inparticular,tworepresentativepointswereidentified:pointA inthegildinglayerandpointBinthecorrosioncrater(seeFig.5for thelocalisationofpointsintheHR-SRPESmaps).

TheHR-SRPESanalysisofthegildedlayerconfirmedthe pres-enceofPbandCu,butalsoSnandZn(nearthedetectionlimit) withinthegoldlayer.Fig.6showscorelevelspectraforHginthe gildedlayeraftercorrosion,indicatingthatHgisstillpresentalso inthemetallicstate(BEHg4f7/2:99.8eV).Thesameinterpretation ofcorelevelwasappliedtoPb(BEPb4f7/2:136.5eV),notshownin

Fig.6.

Asregardsenvironmentalelementsinsidethegildedlayer,the overviewXPSspectradidnotshowthepresenceofSandCl;only CandOweredetected.ThepresenceofCandOinthegildedlayer couldberelatedtothecorrosionprocessbutalsotomountingresin contamination.

Asregards alloying elementsin the gildinglayer,HR-SRPES showedthepresenceofmetallicphaseswhichcanbestillpresent aftercorrosion,asalreadyobservedalsobyconventionalXPS sur-faceanalysisonlyonthetopsurface(Table2).Infact,intheupper partofthegildinglayer(atafewhundredsofnmfromthesurface, pointAinFig.5),anAu/Hgatomicratioofabout15wasdetermined byatomicquantificationfromcorelevelspectra(Table3),ingood

(9)

Table2

XPSatomicquantification(monochromatisedAlK␣(hv=1486.6eV)oncorrodedfire-gildedbronze(artificialcorrosion:TOW=30d).Analysisofthetopsurfaceofthegilding, beforeandafterAr+ionetching.EachvaluehasbeennormalisedtoAuatomiccontent(Au=1).

Au4f7/2 Hg4f7/2 C1s N1s O1s S2p Cu2p3/2 Sn3d5/2 Zn2p3/2 Pb4f7/2

Metal Metal Sulfide/sulfate Cu◦ Cu(I)/Cu(II)oxide/Cu(II)hydroxide Sn(IV) Oxide Metal/oxide

withoutetching PeakBE(eV) 83.8 99.9 285.1 399.6 532.5 161.8/168.9 932.3*/933.6/935.1 486.2 1023.1 136.8/138.0 at.% 4.7 0.2 66.1 2.3 22.7 1.3/1.0 0.5/0.5/0.3 <0.2(LD) 0.1 0/0.1 Afteretching(10sAr±) PeakBE(eV) 83.8 99.8 284.9 399.5 532.5 162.0/168.8 932.3**/933.5/935.1 486.7 1022.3 136.8/138.4 at.% 29.8 1.0 42.8 3.9 13.4 1.9/0.1 4.5/1.7/0.2 <0.2(LD) 0.2 0.1/0.2

Normalised(/Auat.%)

Beforeetching 1.00 0.04 14.06 0.49 4.83 0.28/0.21 0.1/0.1/0.06 <0.04 0.02 0.00/0.02 Afteretching 1.00 0.03 1.43 0.13 0.45 0.06/0.03 0.15/0.06/0.01 <0.01 0.01 0.00/0.01 LD:limitofdetection.

*KE(CuLMM)=918.1eV˛=1850.4eVCu/Cu+component. **KE(CuLMM)=918.3eV˛=1850.6eVCu.

Fig.4.Corrodedgildedbronze(runoffconditions,TOW=30days):SEM-BSEimage(topleftcorner)andEDSX-raymapsshowingelementaldistributioninthecrosssection ofacorrosioncrateratthegold/bronzeinterface.

agreementwiththeGD-OESconcentrationprofilesat300–500nm fromthetopsurface(Fig.3).

Insidethecorrosioncrater,theelementsdetectedapplying HR-SRPESwereC,O,Cu,Zn,Sn,SbandPb,whileSandClwereonly foundattracelevelsandwillnotbeconsideredinthefollowing discussion.

HR-SRPESmapsinFig.5showtheAu,Cu,SnandPb elemen-taldistribution ata submicrometric scale.It is clearly revealed thattheformationofthecorrosioncraterisrelatedtoa discon-tinuitywithinthegoldlayer,asshownbytheAumap.Another

importantpointis thatSnandCuHR-SRPESmapsclearly high-lightaSnrelativeenrichmentinducedbydecuprification(internal oxidationofthebronzeandCuselectivedissolution[58]). Decupri-ficationisdemonstratedalsobymeasurementsofCureleaseinthe ageingsolutions,reportedin[5,59].

Moreover,thePbmapinFig.5confirmsthatPbisstillpresent intheAu-richlayeraftercorrosion.

Moredetailed chemicalinformation ontheelementsspecies involvedinthecorrosionlayersinsidethecraterwasobtainedfrom corelevelanalysis.Inparticular,quantificationfromcorelevelswas

(10)

Fig.5. Cross-sectionofcorrodedgildedbronze(samecraterasinFig.4);SEM-BSEimage(topright)andHR-SRPESmapswiththedifferentkineticenergyranges:Cu 764–785eV;Au754–764eV;Pb696–715eVSn345–366eV;combinedimageCu,AuandSn.TheHR-SRPESmapsweremeasuredintheareaoutlinedinredintheSEMimage. Thedottedlinemarksthemountingresin/gildinglayerinterface.

Table3

XPSatomicquantificationoncorrodedfire-gildedbronze(artificialcorrosionTOW=30d),dataobtainedbyHR-SRPESat850eV.Cross-sectionanalysisofatypicalcorrosion crater,afterAr+ionbombardment.PointAcorrespondstothegildinglayer(at300–500nmfromthetopsurface)andpointBcorrespondstothecorrosioncrater(seeFig.5

forthelocalisationofpointsinthemaps).EachvaluehasbeennormalisedtoAuatomiccontent(Au=1).

PointA(gildinglayer)

Au4f7/2metal Hg4f7/2metal C1s O1s Pb4f7/2metal Sb3d3/2metal

PeakBE(eV) 84.0 99.8 284.5 530.5 136.5 527.3

at.% 12.2 0.8 75.0 11.8 0.2 0.1

Normalised(/Auat.%) 1.0 0.06 6.1 0.96 0.01 0.0 PointB(corrosioncrater)

Au4f7/2metal C1s O1s Cu3p

metal Sn3d5/2oxide Sn3d5/2metal Pb4f7/2 metal Pb4f7/2oxide Sb3d3/2metal PeakBE(eV) 84.0 284.8 530.8 75.3 486.5 484.8 136.9 138.7 527.8 at.% 0.3 37.4 14.1 46.5 0.9 0.5 0.2 0.1 0.2 Normalised(/Auat.%) 1.0 149.4 56.4 185.9 3.7 1.9 0.6 0.5 0.6

performedonpointBlocatedinsidethecrater(Fig.5)andatomic quantificationresultsare reportedin Table3.Aprecise attribu-tionanddeconvolutionofthecurveswascomplex,notonlydue tothepresenceofnumerousspecies,butalsobecauseprolonged Ar+cleaning,carriedoutinordertoreducecarboncontamination fromthemountingresin,inducedanimportanteffectofreduction, accordingtotheatomicbalanceobtainedfromcorelevelsanalysis forpointB(Table3).ItwasalsorevealedthatAuwasdetectedin averylowamount,probablylinkedtothemetallographical prepa-ration.

ArepresentativeexampleoftheinfluenceofAr+cleaningcanbe observedinHR-SRPESmapsforSnspeciesinthecorrosioncrater, reportedinFig.7(a–c).Analysisofcorelevelspectrashowedthat themaincontributionwasduetooxidisedSnspecies(Sn(ox);BEat 486.5eV),likelytobeascribedtothehighestoxidationstate(+4).It alsorevealedthepresenceofSninitsmetallicstate(BE484.8eV). AsalsometallicSn(0)wasidentifiedinsidethecorrosioncrater,this

chemicalstateshouldbeconsideredasanartefactduetoapartial reductionofoxidisedSn,linkedtotheAr+cleaningstep.Thiskind ofartefactwasalreadyobservedbyotherauthors:thereduction phenomenonwasalsoobservedforPb[21,40,42,60],butpossibly alsoforCu(3p)[22,26].

Inthesamearea,ObondedwithCwasdetectedwithinthe cor-rosioncrater,asshowninFig.8.Also,aremarkableeffectofcarbon pollutionwithahighintensitycorrespondingtoseveralC Cand C O(284.8eVand286.2eV)compoundswasobserved,likelydue tomountingresincontamination.Thus,unfortunately,inthiscase, apreciseattributionofpeaksfromspecificbindingenergieswas notachievable.ForpointB(Fig.5,Table3),basedonthecorelevel spectrum(Fig.8d),theO1sregionwasfittedwiththreepeaksat aboutBE=529.8eV(O2−),BE=531.7–531.8eV(OH,O C O)and BE=533.1eV(C OandH2O)[61].Thespatialdistributionofeach oxygenspecieswasreportedinHR-SRPESmapsofFig.8a–c.In thiscase,themapsshowedthatonincreasingdepth,thelow-BE

(11)

Fig.6.Hg4f7/2curve-fittedregionswithinthegoldlayer(ataround300–500nm

fromthetopsurface(pointAinFig.5)–corrodedgildedbronze–cross-section).

componentgainsintensityattheexpenseofhigh-BEcomponents. Inparticular,H2O(533.1eV)ismainlylocatedintheupperlayersof thecrater(nearertothemetal/environmentinterface),whilstOH− (531.7eV)andO2−(529.8eV)concentrateinthemostinternal lay-ers.ThepresenceofawidespreaddistributionofOH−canbealso relatedtothecontaminationofthemountingresin(becauseofthe overlappingofsignalsfromO C ObondsintheresinwithOH−

[61]).Bycomparisontotheexpectedmetallicoxidisedspecies,the amountofoxygenisveryhigh,probablyduetotheabove men-tionedcontaminationeffects(differentO ClinkedtoO Hbonds weredetected).

However,evenifspecialcarehastobetakenwhenpreparing sampleinordertoavoidsuchcontaminationeffects,thecombined imageinFig.8eallowstohighlightthespatialdistributionof differ-entoxygenspeciesthroughoutthecorrosioncrater.Interestingly, itshowsthatthemainspecieswithinthecrater,involvedinthe corrosionprocess,couldberelatedtotheformationhydroxi-oxide compoundsratherthantopureoxide.Forbronze(Cu–Snalloys), thishastoberelatedtotheoxidationofthealloy,linkedwiththe selectivedissolutionofthemainalloyingelements.Aspointedout incaseofatmosphericcorrosion[62],butalsoincaseofanodic corrosion[30]whichistypicallythecaseofgalvaniccouplingwith gold,Snspeciesarenotdissolvedintheenvironmentbutremain intheinnerlayerasaninsolubleproductwhichissuspectedtobe (hydrated)hydroxi-oxides[62].Thesespeciesaresupposedtoform anetworkasforSnoxidexerogel,throughwhichcopperionsand anionsmigratetowardsthesurface[30].

Fig.8HR-SRPESmapsofacorrosioncraterofafire-gildedbronze (sameasforFig.4).Oxygenspatialdistribution(O1s)measuredat differentkineticenergy ranges:(d)corelevelofOxygen 1s cor-respondingtoa typicalpointin thecratercorrosion(pointBin

Fig.5),revealing differentbindingenergiesin relationwith dif-ferentchemical statesand(a)O2−313.8–315.0eV;(b)OHand O C O313.0–313.8eV;(c)C OandH2O310.8–312eV,soasto

Fig.7.HR-SRPESmaps(measuredinthesamecorrosioncraterofFig.4)withdifferentkineticenergyranges:(a)Sn0359–360eV;(b)Sn4+356.8–358eV,(c)combinedimage

ofthetwodifferenttinspeciesshowninaandb,soastohighlightthedistributionofdifferenttin-basedspecies;corelevelofSn3dcorrespondingtoatypicalpoint(point BinFig.5)inthecorrosioncrater,revealingdifferentbindingenergiesinrelationwithdifferentchemicalstates.

(12)

Fig.8.HR-SRPESmapsofacorrosioncraterofafire-gildedbronze(sameasforFig.4).Oxygenspatialdistribution(O1s)measuredatdifferentkineticenergyranges:(d)core levelofOxygen1scorrespondingtoatypicalpointinthecratercorrosion(pointBinFig.5),revealingdifferentbindingenergiesinrelationwithdifferentchemicalstates and(a)O2−313.8–315.0eV;(b)OH−andO C O313.0–313.8eV;(c)C OandH2O310.8–312eV,soastohighlightthedistributionofdifferentoxygen-basedspecies;(e)

combinedimageofthethreedifferentoxygenspeciesshownin(a–b–c).

highlightthedistributionofdifferentoxygen-basedspecies;(e) combinedimageofthethreedifferentoxygenspeciesshownin a–b–c.

4. Conclusions

Thespatiallyresolvedapplicationofsynchrotronradiation high-resolutionphotoelectronspectroscopy(HR-SRPES)wasfoundto beverypromisingforunderstandingcomplexstructureasthose foundonculturalheritagemetallicmaterials.Contaminationdue tomountingresinandconsequentelementreductionduetosputter cleaningherewereidentifiedasamaincriticalissues.

From this investigation of artificially corroded fire-gilded bronze,severalmainconslusionscanbedrawn:

• Heating during the fire-gilding procedure hasbeen found to inducearemarkableenrichmentinSnandZninthetoppartofthe gildedlayer.Thisnewresulthastobecarefullytakenintoaccount forconservationpurposesofthesebronzes,asthesechemical ele-mentsusuallyexhibitdifferentcorrosionbehaviourinoutdoor conditions.

• HR-SRPES,appliedforthefirsttimeoncorrodedgildedbronze, alloweddetailedmappingofthespatialdistributionand oxida-tionstateofelementssuchasSnandO.

• MetallicphasesincludingHgandPbstillremaininthegilding aftercorrosion.

• SelectivedissolutionofCu andalsoZnoccurredin the corro-sioncratersduetogalvaniccoupling,whichinducesrelativeSn speciesenrichment(decuprification).

• Thedistributionmappingofthechemicalstatesrevealedthe for-mationofhydroxi-oxidecompoundsofSnandO.

Acknowledgements

This research has been financially supported by PRIN 2009 MIUR Funds (Italy), grant number is 2009L55TFF003. The

financial support of Emilia-Romagna Region, Italy (POR-FESR funds)aswellasoftheFP7-CALIPSO(CoordinatedAccessto Light-sourcestoPromoteStandardsandOptimisation),grantnumberis 20140530TransnationalAccessProgrammeisgratefully acknowl-edged.Theauthorswish tothank:Mr.AlessandroPacini (Mon-tepulciano,Italy) forproducing fire-gildedbronzesaccordingto ancientrecipes(https://sites.google.com/site/archeometallurgia/). Dr. Iuri Boromei, at Dept. Industrial Engineering,University of Bologna, for his valuable help in sample preparation and for SEM/EDSinvestigations.AllthepersonnelfromtheSOLEIL syn-chrotron facility and the IPANEMA laboratory (Gif Sur Yvette, France)isgratefullyacknowledgedfortheirveryeffectivetechnical support.

References

[1]E.Darque-Ceretti,M.Aucouturier,Gildingformatterdecorationand sublimation.Abriefhisotryoftheartisanaltechnicalknow-how,Int.J. Conserv.Sci.4(2013)647–660.

[2]M.Grimwade,Thesurfaceenrichmentofcaratgoldalloys—depletiongilding, GoldTechnol.26(1999)16–23.

[3]W.A.Oddy,Gildingofmetalsintheoldworld,in:S.LaNiece,P.Craddock (Eds.),Met.Plat.Patination,Butterworth-Heinemann,Oxford,UK,1993,pp. 171–181.

[4]K.Anheuser,Thepracticeandcharacterizationofhistoricfiregilding techniques,JOM49(1997)58–62, http://dx.doi.org/10.1007/s11837-997-0015-6.

[5]C.Chiavari,E.Bernardi,A.Balbo,C.Monticelli,S.Raffo,M.C.Bignozzi,etal., Atmosphericcorrosionoffire-gildedbronze:corrosionandcorrosion protectionduringacceleratedageingtests,Corros.Sci.100(2015)435–447. [6]E.Mello,ThegildingofLorenzoGhiberti’s“DoorsofParadise¨,GoldBull.19

(1986)123–126.

[7]V.AlunnoRossetti,M.Marabelli,AnalysesofthepatinasofagildedhorseofSt Mark’sBasilicainVenice:corrosionmechanismsandconservationproblems, Stud.Conserv.21(1976)161–170.

[8]P.Fiorentino,M.Marabelli,M.Matteini,A.Moles,Theconditionofthe“Door ofParadise”byL.Ghiberti.Testsandproposalsforcleaning,Stud.Conserv.27 (1982)145–153.

[9]G.Alessandrini,G.Dassù,P.Pedeferri,G.Re,Ontheconservationofthe BaptisterydoorsinFlorence,Stud.Conserv.24(1979)108–124.

[10]S.Siano,R.Salimbeni,TheGateofParadise:Physicaloptimizationofthelaser cleaningapproach,Stud.Conserv.46(2001)269–281.

(13)

[11]A.Giusti,M.Matteini,ThegildedbronzeParadiseDoorsbyGhibertiinthe florencebaptistery:scientificinvestigationandproblemsofrestoration,in: Int.Conf.Met.Restor.,1997.

[12]B.Mazza,P.Pedeferri,G.Re,D.Sinigaglia,Effectivenessofsomeinhibitorson theatmosphericcorrosionofgoldplatedbronzes,in:FourthEur.Symp. Corros.Inhib.,Annal.Univ.Ferrara,Ferrara,Italy,1975,pp.552–563. [13]B.Mazza,P.Pedeferri,G.Re,D.Sinigaglia,Behaviourofagalvaniccell

simulatingtheatmosphericcorrosionconditionsofgoldplatedbronzes, Corros.Sci.17(1977)535–541.

[14]S.Siano,R.Salimbeni,R.Pini,A.Giusti,M.Matteini,Lasercleaning methodologyforthepreservationofthePortadelParadisobyLorenzo Ghiberti,J.Cult.Herit.4(2003)140–146.

[15]M.Matteini,C.Lalli,I.Tosini,A.Giusti,S.Siano,Laserandchemicalcleaning testsfortheconservationofthePortadelParadisobyLorenzoGhiberti,J.Cult. Herit.4(2003)147–151.

[16]S.Goidanich,D.Gulotta,L.Brambilla,R.Beltrami,P.Fermo,L.Toniolo,Setup ofgalvanicsensorsforthemonitoringofgildedbronzes,Sensors(Basel).14 (2014)7066–7083.

[17]M.Marabelli,ThemonumentofMarcusAurelius:researchandconservation, in:D.A.Scott,J.Podany,B.Considine(Eds.),Anc.Hist.Met.Conserv.Sci.Res., TheGettyConservationInstitute,1994.

[18]C.Giavarini,M.L.Santarelli,GlistudiperlaprotezionedelMarcoAurelio, Mater.EStrutt.6(1996)137–146.

[19]E.Bernardi,C.Chiavari,B.Lenza,C.Martini,L.Morselli,F.Ospitali,etal.,The atmosphericcorrosionofquaternarybronzes:theleachingactionofacidrain, Corros.Sci.51(2009)159–170.

[20]F.Garbassi,E.Mello,Surfacespectroscopicstudiesonpatinasofancientmetal objects,Stud.Conserv.29(1984)172–180.

[21]E.Paparazzo,L.Moretto,Surfaceandinterfacemicrochemistryof archaeologicalobjectsstudiedwithx-rayphotoemissionspectroscopyand scanningAugermicroscopy,J.ElectronSpectrosc.Relat.Phenom.76(1995) 653–658.

[22]E.Paparazzo,L.Moretto,X-rayphotoelectronspectroscopyandscanning AugermicroscopystudiesofbronzesfromthecollectionsoftheVatican Museums,Vacuum55(1999)59–70.

[23]W.Liu,X.Cao,Y.Zhu,L.Cao,Effectofdopantsontheelectronicstructureof SnO2thinfilm,Sens.Actuators,B:Chem.66(2000)219–221.

[24]E.Paparazzo,Organicsubstancesatmetalsurfaces:archaeologicalevidence andtheelderPliny’saccount,Sci.Technol.4(2003)615–624.

[25]R.Schlesinger,H.Klewe-Nebenius,M.Bruns,Characterizationofartificially producedcopperandbronzepatinabyXPS,Surf.InterfaceAnal.30(2000) 135–139.

[26]M.C.Squarcialupi,G.P.Bernardini,V.Faso,A.Atrei,G.Rovida,Characterisation byXPSofthecorrosionpatinaformedonbronzesurfaces,J.Cult.Herit.3 (2002)199–204.

[27]M.Wadsak,T.Aastrup,I.OdnevallWallinder,C.Leygraf,M.Schreiner, Multianalyticalinsituinvestigationoftheinitialatmosphericcorrosionof bronze,Corros.Sci.44(2002)791–802.

[28]M.Chan,A.Capek,D.A.Brill,S.J.Garrett,Characterizationofthepatinaformed onalowtinbronzeexposedtoaqueoushydrogensulfide,Surf.InterfaceAnal. 46(2014)433–441.

[29]C.Debiemme-Chouvy,F.Ammeloot,E.M.M.Sutter,X-rayphotoemission investigationofthecorrosionfilmformedonapolishedCu–13Snalloyin aeratedNaClsolution,Appl.Surf.Sci.174(2001)55–61.

[30]L.Robbiola,T.T.M.Tran,P.Dubot,O.Majerus,K.Rahmouni,Characterisation ofanodiclayersonCu–10Snbronze(RDE)inaeratedNaClsolution,Corros. Sci.50(2008)2205–2215,http://dx.doi.org/10.1016/j.corsci.2008.06.003. [31]M.Yokota,F.Sugaya,H.Mifune,Y.Kobori,K.Shimizu,K.Nakai,etal.,

Possibilityofbacteria-inducedcorrosionofancientbronzemirrorsfoundin ground,Mater.Trans.44(2003)268–276.

[32]M.P.Casaletto,T.DeCaro,G.M.Ingo,C.Riccucci,Productionofreference “ancient”Cu-basedalloysandtheiraccelerateddegradationmethods,Appl. Phys.A:Mater.Sci.Process.83(2006)617–622.

[33]M.P.Casaletto,G.M.Ingo,C.Riccucci,F.Faraldi,Productionofreferencealloys fortheconservationofarchaeologicalsilver-basedartifacts,Appl.Phys.A: Mater.Sci.Process.100(2010)937–944.

[34]I.Z.Balta,S.Pederzoli,E.Iacob,M.Bersani,Dynamicsecondaryionmass spectrometryandX-rayphotoelectronspectroscopyonartisticbronzeand copperartificialpatinas,Appl.Surf.Sci.255(2009)6378–6385.

[35]K.Trentelman,L.Stodulski,D.A.Scott,M.Back,S.Stock,D.Strahan,etal.,The characterizationofanewpalebluecorrosionproductfoundoncopperalloy artifacts,Stud.Conserv.47(2002)217–227.

[36]A.Salvi,F.Langerame,A.Macchia,M.Sammartino,M.Tabasso,XPS characterizationof(copper-based)colouredstainsformedonlimestone surfacesofoutdoorRomanmonuments,Chem.Cent.J.6(2012)S10.

[37]Y.Zhu,D.Li,B.Shi,L.Wan,F.Xu,B.Tao,Thefilmsonbronzesurfaceformed byAMTcompositeregentthroughXPSandAESmethods,Corros.Sci.Prot. Technol.12(2000)24–26.

[38]A.Galtayries,A.Mongiatti,P.Marcus,C.Chiavari,Surfacecharacterisationof corrosioninhibitorsonbronzesforartisticcasting,Corr.ofHerit.Artefacts, Book48(2007)335–350.

[39]A.Daccà,P.Prati,A.Zucchiatti,F.Lucarelli,P.A.Mandò,G.Gemme,etal., CombinedPIXEandXPSanalysisonrepublicanandimperialRomancoins, Nucl.Instrum.MethodsPhys.Res.Sect.B:BeamInteract.Mater.At.161 (2000)743–747.

[40]G.M.Ingo,E.Angelini,T.DeCaro,G.Bultrini,A.Mezzi,CombineduseofXPS andSEM+EDSforthestudyofsurfacemicrochemicalstructureof

archaeologicalbronzeRomanmirrors,Surf.InterfaceAnal.36(2004)871–875. [41]P.Northover,A.Crossley,C.Grazioli,N.Zema,S.LaRosa,L.Lozzi,etal.,A

multitechniquestudyofarcheologicalbronzes,Surf.InterfaceAnal.40(2008) 464–468.

[42]L.Lozzi,P.Picozzi,N.Zema,C.Grazioli,A.Crossley,P.Northover,etal.,A multitechniquestudyofarchaeologicalbronzes:PartII,Surf.InterfaceAnal. 43(2010)1120–1127.

[43]A.Mezzi,T.DeCaro,C.Riccucci,F.Faraldi,C.Veroli,D.Caschera,Unusual surfacedegradationproductsgrownonarchaeologicalbronzeartefacts,Appl. Phys.A:Mater.Sci.Process.113(2013)1121–1128.

[44]F.Caridi,A.M.Mezzasalma,E.D.Castrizio,Aninvestigationonthepatinaof ancientbronzecoins,Radiat.Eff.DefectsSolids169(2014)371–379. [45]G.M.Ingo,G.Guida,E.Angelini,G.DiCarlo,A.Mezzi,G.Padeletti,Ancient

mercury-basedplatingmethods:combineduseofsurfaceanalytical techniquesforthestudyofmanufacturingprocessanddegradation phenomena,Acc.Chem.Res.46(2012)2365–2375.

[46]A.Crabbé,M.A.Languille,I.Vandendael,J.Hammons,M.G.Silly,G. Dewanckel,etal.,ColorandoAuro:Contributiontotheunderstandingofa medievalrecipetocolourgildedsilverplates,Appl.Phys.A:Mater.Sci. Process.111(2013)39–46.

[47]A.Balbo,C.Chiavari,C.Martini,C.Monticelli,Effectivenessofcorrosion inhibitorfilmsfortheconservationofbronzesandgildedbronzes,Corros.Sci. 59(2012)204–212.

[48]B.Cellini,Itrattatidell’oreficeriaedellascultura,secondoilcodiceMarciano, Hoepli,Milano,1927.

[49]J.Avila,I.Razado-Colambo,S.Lorcy,J.-L.Giorgetta,F.Polack,M.C.Asensio, Interferometer-controlledsoftX-rayscanningphotoemissionmicroscopeat SOLEIL,J.Phys.Conf.Ser.425(2013)132013.

[50]J.Avila,I.Razado-Colambo,S.Lorcy,B.Lagarde,J.-L.Giorgetta,F.Polack,etal., ANTARES,ascanningphotoemissionmicroscopybeamlineatSOLEIL,J.Phys. Conf.Ser.425(2013)192023.

[51]C.W.Chang,Q.P.Lee,C.E.Ho,C.R.Kao,Cross-interactionbetweenAuandCuin Au/Sn/Cuternarydiffusioncouples,J.Electron.Mater.35(2006)366–371. [52]M.R.Pinnel,Diffusion-relatedbehaviourofgoldinthinfilmsystems,Gold

Bull.12(1979)62–71.

[53]E.Figueiredo,R.J.C.Silva,M.F.Araújo,J.C.Senna-Martinez,Identificationof ancientgildingtechnologyandLateBronzeAgemetallurgybyEDXRF, Micro-EDXRF,SEM-EDSandmetallographictechniques,Microchim.Acta.168 (2010)283–291.

[54]L.Selwyn,Corrosionchemistryofgildedsilverandcopper,in:GildedMet. Hist.Technol.Conserv.,ArchetypePublications,London,UK,2000,pp.21–47. [55]B.Feng,J.Weng,B.C.Yang,S.X.Qu,X.D.Zhang,Characterizationofsurface

oxidefilmsontitaniumandadhesionofosteoblast,Biomaterials24(2003) 4663–4670.

[56]S.Colin,E.Beche,R.Berjoan,H.Jolibois,A.Chambaudet,AnXPSandAESstudy ofthefreecorrosionofCu-,Ni-andZn-basedalloysinsyntheticsweat, Corros.Sci.41(1999)1051–1065.

[57]ASMInternational,AlloyPhaseDiagrams—ASMHandbook,ASM International,1992.

[58]L.Robbiola,R.Portier,Aglobalapproachtotheauthenticationofancient bronzesbasedonthecharacterizationofthealloy–patina–environment system,J.Cult.Herit.7(2006)1–12.

[59]I.Mabille,A.Bertrand,E.M.M.Sutter,C.Fiaud,Mechanismofdissolutionofa Cu–13Snalloyinlowaggressiveconditions,Corros.Sci.45(2003)855–866. [60]E.Paparazzo,L.Moretto,X-rayphotoemissionstudyofsolderedlead

materialsrelevancetothesurfaceandinterfacechemicalcompositionof Romanleadpipes“fistulae¨,Vacuum49(1998)125–131.

[61]E.Cano,J.M.Bastidas,J.L.Polo,N.Mora,Studyoftheeffectofaceticacidvapor oncoppercorrosionat40and80%relativehumidity,J.Electrochem.Soc.148 (2001)B431.

[62]C.Chiavari,K.Rahmouni,H.Takenouti,S.Joiret,P.Vermaut,L.Robbiola, Compositionandelectrochemicalpropertiesofnaturalpatinasofoutdoor bronzemonuments,Electrochim.Acta.52(2007)7760–7769.

Figure

Fig. 1. Fire-gilded bronze: 3-D digital microscopy topographic image of the free surface, with indication of a porous area, corresponding to grooves in the bronze substrate, where gold was not compacted by burnishing (a)
Fig. 3. Fire-gilded bronze: GD-OES concentration profiles of Au, Hg and bronze alloying elements (Cu, Sn, Zn, Pb) measured from the free surface
Fig. 4. Corroded gilded bronze (runoff conditions, TOW = 30 days): SEM-BSE image (top left corner) and EDS X-ray maps showing elemental distribution in the cross section of a corrosion crater at the gold/bronze interface.
Fig. 5. Cross-section of corroded gilded bronze (same crater as in Fig. 4); SEM-BSE image (top right) and HR-SRPES maps with the different kinetic energy ranges: Cu 764–785 eV; Au 754–764 eV; Pb 696–715 eV Sn 345–366 eV; combined image Cu, Au and Sn
+3

Références

Documents relatifs

The target of the paper is i to investigate the multiscale nature of the turbulent eddies in the surface layer SL, ii to explain the existence of a ⫺1 power law in the

The only point of convergence between the partial and general equilibrium models is that it is still possible within a partial equilibrium model to analyze the trade policy effects

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

To check whether a statement is safe, strictly unsafe, unreachable, or possibly unsafe, we determine for each edge in the control-flow graph whether it can be part of a feasible

de comparer la déformation axiale et radiale du béton fournie par les jauges externes et le capteur 3D interne. On remarque la bonne répétabilité de la réponse du capteur 3D

By taking into account a particular binding pattern of Unkempt (see below), reproducibility of binding, and the combined number of unique iCLIP tags, we identified 1186, 1020, and

This study helps to understand how the absence of an object definition (‘unknown object’) and the planning of a design process to account for the ‘late’