• Aucun résultat trouvé

On a vector moment problem arising in the analysis of neutral type systems

N/A
N/A
Protected

Academic year: 2021

Partager "On a vector moment problem arising in the analysis of neutral type systems"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-00580029

https://hal.archives-ouvertes.fr/hal-00580029

Submitted on 12 May 2011

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On a vector moment problem arising in the analysis of

neutral type systems

Kateryna Sklyar, Rabah Rabah, Grigory Sklyar

To cite this version:

Kateryna Sklyar, Rabah Rabah, Grigory Sklyar. On a vector moment problem arising in the analysis of neutral type systems. Spectral and Evolution Problems, 2011, 20 (2), pp.133–137. �hal-00580029�

(2)

Òðóäû ìåæäóíàðîäíîé êîíôåðåíöèè Êðûìñêàÿ îñåííÿÿ ìàòåìàòè÷åñêàÿ øêîëà-ñèìïîçèóì 2010 ÓÄÊ 517.929 MSC2000: 34K40 Ê.Â. Ñêëÿð, Ð. Ðàáàõ, Ã.Ì. Ñêëÿð

Îá îäíîé âåêòîðíîé ïðîáëåìå ìîìåíòîâ, âîçíèêàþùåé â

àíàëèçå ñèñòåì íåéòðàëüíîãî òèïà

1 Ìû ðàññìàòðèâàåì ðàçðåøèìîñòü âåêòîðíîé ïðîáëåìû ìîìåíòîâ, ñâÿ-çàííîé ñ àíàëèçîì óïðàâëÿåìîñòè íåêîòîðûõ ñèñòåì ñ çàïàçäûâàíèåì íåéòðàëüíîãî òèïà. Íàì óäàëîñü òî÷íî îïðåäåëèòü ìèíèìàëüíûé èíòåð-âàë íà êîòîðîì ïðîáëåìà ìîìåíòîâ ðàçðåøèìà. Êëþ÷åâûå ñëîâà: âåêòîðíàÿ ïðîáëåìà ìîìåíòîâ, ñèñòåìû íåéòðàëüíîãî òèïà, òî÷íàÿ óïðàâëÿåìîñòü, ðàñïðåäåëåíèå ñïåêòðà. Èññëåäóÿ çàäà÷ó óïðàâëÿåìîñòè äëÿ íåéòðàëüíûé ñèñòåì âèäà ˙ z(t) = A−1z(t − 1) +˙ 0 Z −1 A2(θ) ˙z(t + θ) dθ + 0 Z −1 A3(θ)z(t + θ) dθ + Bu(t), (1) ãäå A−1 åñòü ïîñòîÿííàÿ n × n ìàòðèöà, det A−1 6= 0, A2, A3  n × n ìàòðè-öû ñ ýëåìåíòàìè èç L2(−1, 0) è B  ïîñòîÿííàÿ n × r ìàòðèöà, ìû ñâåëè åå ê ê ýêâèâàëåíòíîé ïðîáëåìå ìîìåíòîâ [4]. Ìû ðàññìàòðèâàåì îïåðàòîðíóþ ìîäåëü ñèñòåì íåéòðàëüíîãî òèïà (1) ââåäåííóþ â ðàáîòå [2].  ïðîñòðàíñòâå ñîñòîÿíèé M2(−1, 0; Cn) = Cn× L2(−1, 0; Cn) ñèñòåìà (1) ïðèîáðåòàåò âèä d dt  y(t) zt(·)  = A y(t) zt(·)  + Bu, (2) ãäå îïåðàòîð A çàäàí ðàâåíñòâîì A y(t) zt(·)  = R0 −1A2(θ) ˙zt(θ)dθ + R0 −1A3(θ)zt(θ)dθ dzt(θ)/dθ  . Îáëàñòü îïðåäåëåíèÿ îïåðàòîðà A D(A) =(y, z(·)) : z ∈ H1(−1, 0; Cn), y = z(0) − A −1z(−1) ⊂ M2. Îïåðàòîð A ÿâëÿåòñÿ ãåíåðàòîðîì C0-ãðóïïû. Îïåðàòîð B îïðåäåëåí ðàâåíñòâîì Bu = (Bu, 0). Ñîîòíîøåíèå ìåæäó ðåøåíèÿìè ñèñòåìû íåéòðàëüíîãî òèïà (1) è ñèñòåìîé (2) çàäàíî ñëåäóþùåé çàìåíîé y(t) = z(t) − A−1z(t − 1), zt(θ) = z(t + θ). Ïîëíîå îïèñàíèå ñïåêòðàëüíûõ ñâîéñòâ îïåðàòîðà A äàíî â [5]. Ðàññìîòðèì äëÿ ïðîñòîòû ñëó÷àé, êîãäà âñå ñîáñòâåííûå çíà÷åíèÿ A−1 ÿâëÿþòñÿ ïðîñòûìè. Îáî-çíà÷èì ýòè ñîáñòâåííûå çíà÷åíèÿ ÷åðåç µm, m = 1, . . . , n. Ìû áóäåì èñïîëüçîâàòü îáîçíà÷åíèå ˜A âìåñòî A â ñëó÷àå, êîãäà A2(θ) = A3(θ) = 0. Ñîáñòâåííûå çíà÷åíèÿ îïåðàòîðà ˜A òîæå ÿâëÿþòñÿ ïðîñòûìè è èìåþò âèä ˜ λmk = ln |µm| + i(Arg µm+ 2πk), m = 1, . . . , n, k ∈ Z, à ñîîòâåòñòâóþùèå èì ñîáñòâåííûå âåêòîðà èìåþò âèä ˜ ϕmk =  0 eλ˜mkθΦm  ∈ M2, 1Ðàáîòà âûïîëíåíà ïðè ÷àñòè÷íîé ïîääåðæêå ãðàíòà ìèíèñòåðñòâà íàóêè è âûñøåãî îáðàçîâàíèÿ Ïîëüøè, ãðàíò No. N514 238438.

(3)

2 Ê.Â. Ñêëÿð, Ð. Ðàáàõ, Ã.Ì. Ñêëÿð ãäå A−1Φm = µmΦm, m = 1, . . . , n. Êðîìå òîãî, ˜Aèìååò íóëåâîå ñîáñòâåííîå çíà÷å-íèå ˜λ0 = 0, êîòîðîìó ñîîòâåòñòâóåò n-ìåðíîå ñîáñòâåííîå ïîäïðîñòðàíñòâî ïîðîæ-äåííîå âåêòîðàìè ˜ϕ01, . . . , ˜ϕ0n. Ñåìåéñòâî ñîáñòâåííûõ âåêòîðîâ { ˜ϕmk}∪{ ˜ϕ0j}îáðàçóåò áàçèñ Ðèññà â M2. Ýòîò áàçèñ îáîçíà÷èì ϕe.  îáùåì ñëó÷àå, åñëè ïðåäïîëîæèòü, ÷òî A2(θ)è A3(θ)òàêîâû, ÷òî âñå ñîáñòâåííûå çíà÷åíèÿ A: λmk, m = 1, . . . , n, k ∈ Z îñòàþòñÿ ïðîñòûìè, òî ýòè ñîáñòâåííûå çíà÷åíèÿ óäîâëåòâîðÿþò óñëîâèþ X k,m λ m k − ˜λmk 2 < ∞, (3) à ñîîòâåòñòâóþùèå ñîáñòâåííûå âåêòîðà {ϕm k}óñëîâèþ X k,m kϕm k − ˜ϕmkk2< ∞. Ñîáñòâåííûå âåêòîðà {ϕm k} âìåñòå ñ {ϕ0j} îáðàçóþò áàçèñ Ðèññà â M2, êîòîðûé ÿâëÿåòñÿ êâàäðàòè÷íî áëèçêèì ê ñïåêòðàëüíîìó áàçèñó { ˜ϕ}îïåðàòîðà ˜A[5, 6]. Ïóñòü { ˜ψ} è {ψ} ÿâëÿþòñÿ áèîðòîãîíàëüíûìè áàçèñàìè äëÿ { ˜ϕ}è {ϕ} ñîîòâåò-ñòâåííî. Íåòðóäíî ïðîâåðèòü, ÷òî { ˜ψ} è {ψ} åñòü ñïåêòðàëüíûå áàçèñû ñîïðÿæåí-íûõ îïåðàòîðîâ ˜A∗ è Añîîòâåòñòâåííî è ˜ A∗ψ˜km=λ¯˜mkψ˜km, A∗ψmk = ¯λmkψkm, ãäå ( · ) îáîçíà÷àåò êîìïëåêñíîå ñîïðÿæåíèå. Êðîìå òîãî, áàçèñû ÿâëÿþòñÿ òàêæå êâàäðàòè÷íî áëèçêèìè [3]: X k,m ψ m k − ˜ψkm 2 < ∞. Äàëåå çàìåòèì, ÷òî, êàê ýòî ïîêàçàíî â [6], âåêòîðà ˜ψkm, k 6= 0 èìåþò âèä ˜ ψkm= 1 k+12Ψm ∗ ! ∈ M2 ψmk = 1 k+12Ψmk ∗ ! , (4) ãäå Ψm, m = 1, . . . , n ñîáñòâåííûå âåêòîðà ìàòðèöû A−1, A−1ψm= ¯µmψm, è X k,m kΨmk− Ψmk2 < ∞, m = 1, . . . , n. (5) Äëÿ êàæäîãî x ∈ M2 ìû èìååì ðàçëîæåíèå x = X ϕ∈{ϕ} hx, ψiϕ. Èçâåñòíî, ÷òî ñîñòîÿíèå x =  y z(·)  ∈ M2 äîñòèæèìî çà âðåìÿ T ñ ïîìîùüþ óïðàâëåíèÿ èç u(·) ∈ L2(0, T ; Cr)òîãäà è òîëüêî òîãäà, êîãäà îíî èìååò âèä x =  y z(·)  = T Z 0 eAtBu(t)dt, u(·) ∈ L2(0, T ; Cr). (6) Ýòî óñëîâèå óïðàâëÿåìîñòè ìîæåò áûòü çàïèñàíî, èñïîëüçóÿ áàçèñ {ϕ} â âèäå X ϕ∈{ϕ} hx, ψiϕ = X ϕ∈{ϕ} T Z 0 heAtBu(t), ψidtϕ.

(4)

Îá îäíîé âåêòîðíîé ïðîáëåìå ìîìåíòîâ, âîçíèêàþùåé â àíàëèçå ñèñòåì íåéòðàëüíîãî òèïà3 Òî åñòü óñëîâèå óïðàâëÿåìîñòè (6) ýêâèâàëåíòíî ñëåäóþùåé ñèñòåìå ðàâåíñòâ: hx, ψi = T Z 0 heAtBu(t), ψidt, ψ ∈ {ψ}. (7) Ïóñòü {b1, . . . , br} ñòîëáöû ìàòðèöû B è bi = bi 0  ∈ M2, i = 1, . . . , r. Çàïèøåì ïðàâóþ ÷àñòü ðàâåíñòâà (7) â âèäå T Z 0 heAtBu(t), ψidt = r X i=1 T Z 0 heAtbi, ψiui(t)dt. Ïîñêîëüêó {ψ} ñïåêòðàëüíûé áàçèñ A∗, òî óñëîâèå óïðàâëÿåìîñòè (6) ýêâèâà-ëåíòíî ñèñòåìå ðàâåíñòâ smk =  k + 1 2  hX, Ψmki = T Z 0 eλmkt b1 k,mu1(t) + . . . + brk,mur(t) dt, (8) m = 1, . . . , n, k ∈ Z, ãäå bjk,m = k + 12 hbj, ψmki. Ðàâåíñòâà (8) ïðåäñòàâëÿþò ñîáîé âåêòîðíóþ ïðîáëåìó ìîìåíòîâ îòíîñèòåëüíî íåèçâåñòíûõ uj(·) ∈ L2[0, T ], j = 1, . . . , r. Èñïîëüçóÿ (4), ìû çàìåòèì, ÷òî  k + 1 2  hbj, ˜ψmki =bj 0  ,Ψm ∗  = hbj, Ψmi = bjm, òî åñòü ýòè çíà÷åíèÿ íå çàâèñÿò îò k. Òîãäà èç (5) ñëåäóåò, ÷òî êîýôôèöèåíòû bj k,m óäîâëåòâîðÿþò óñëîâèþ X k,m b j k,m− b j m 2 =X k,m |hbj, ψmk− ψmi|2 < ∞ j = 1, . . . , r. (9)  ñêàëÿðíîì ñëó÷àå, êîãäà r = 1, ïðè óñëîâèè b1m = hb1, ψmi 6= 0, m = 1, . . . , n, (10) êîòîðîå ÿâëÿåòñÿ óñëîâèåì óïðàâëÿåìîñòè äëÿ ïàðû (A−1, B)è óñëîâèè hb1, ψkmi 6= 0, m = 1, . . . , n; k ∈ Z, (11) îçíà÷àþùåì àïïðîêñèìàòèâíóþ óïðàâëÿåìîñòü ñèñòåìû (2), ïðîáëåìà (8) ïðåäñòàâ-ëÿåò ñîáîé íå êëàññè÷åñêóþ òðèãîíîìåòðè÷åñêóþ ïðîáëåìó ìîìåíòîâ îòíîñèòåëüíî ñêàëÿðíîé ôóíêöèè u(·) ∈ L2[0, T ]. Ðàçðåøèìîñòü ýòîé ïðîáëåìû ïîëíîñòüþ èçó÷å-íà â [1].  âåêòîðíîì ñëó÷àå ïðîáëåì çíà÷èòåëüíî òðóäíåå. Êàê ïîêàçàíî â ðàáîòå [4], ìèíèìàëüíûé èíòåðâàë ðàçðåøèìîñòè (8) ñâÿçàí ñ ïåðâûì èíäåêñîì óïðàâëÿåìîñòè n1(A−1, B) ñèñòåìû ˙x = A−1x + Bu(ñì. [7]). Ýòîò ðåçóëüòàò ïîäòîëêíóë íàñ ðàññìîòðåòü îáðàòíóþ çàäà÷ó: èçó÷àòü ïðîáëåìó ìîìåíòîâ (8), åñòåñòâåííî, ïðè íåêîòîðûõ ñïåöèàëüíûõ ïðåäïîëîæåíèÿõ, èñïîëüçóÿ èçâåñòíûå ðåçóëüòàòû îá óïðàâëÿåìîñòè äëÿ ñèñòåì íåéòðàëüíîãî òèïà. Ìû ïîêàçûâàåì, ÷òî óñëîâèÿ (3), (9), âìåñòå ñ íåêîòîðûìè óñëîâèÿìè àíàëî-ãè÷íûìè (10), (11) ÿâëÿþòñÿ íå òîëüêî íåîáõîäèìûìè, íî òàêæå áëèçêè ê äî-ñòàòî÷íûì äëÿ òîãî, ÷òîáû ïðîáëåìà ìîìåíòîâ (8) áûëà ýêâèâàëåíòíà ïðîáëåìå óïðàâëÿåìîñòè äëÿ íåêîòîðîé óïðàâëÿåìîé ñèñòåìû íåéòðàëüíîãî òèïà (1). Òåîðåìà 1.I. Ïóñòü ïðîáëåìà ìîìåíòîâ (8) ñîîòâåòñòâóåò ïðîáëåìå óïðàâëÿ-åìîñòè äëÿ íåêîòîðîé òî÷íî óïðàâëÿåìîé ñèñòåìû íåéòðàëüíîãî òèïà (1). Òîãäà âûïîëíÿþòñÿ óñëîâèÿ

(5)

4 Ê.Â. Ñêëÿð, Ð. Ðàáàõ, Ã.Ì. Ñêëÿð i) X k,m λ m k − ˜λmk 2 < ∞, ãäå ˜λmk = ln|µm| + i(Arg µm+ 2πk), m = 1, . . . , n, k ∈ Z, µ1, . . . , µr íåêîòîðûå íåíóëåâûå ðàçëè÷íûå êîìïëåêñíûå ÷èñëà; ii) X j,k,m b j k,m− b j m 2 < ∞, ãäå bjm (m = 1, . . . , n, j = 1, . . . , r) åñòü íåêîòîðûå äåéñòâèòåëüíûå ÷èñëà òàêèå, ÷òîX j bjm > 0, m = 1, . . . , n; iii) X j b j k,m > 0, m = 1, . . . , n, k ∈ Z. II. Îáðàòíî, ïóñòü ÷èñëà {˜λm k}óäîâëåòâîðÿþò óñëîâèþ i). Òîãäà ñóùåñòâóåò ε > 0òàêîå, ÷òî äëÿ ëþáîé ïîñëåäîâàòåëüíîñòè {bjk,m}, óäîâëåòâîðÿþùåé óñëîâèþ ii) â ñëåäóþùåì óñèëåííîì âèäå X j,k,m b j k,m− b j m < ε, à òàêæå óñëîâèþ iii), ïðîáëåìà ìîìåíòîâ (8) áóäåò ñîîòâåòñòâîâàòü ïðîáëåìå óïðàâëÿåìîñòè äëÿ íåêîòîðîé ñèñòåìû íåéòðàëüíîãî òèïà (1). Ïðè ýòîì ìàò-ðèöà A−1 ðàçìåðà n × n è ìàòðèöà B ðàçìåðà n × r â ñèñòåìå íåéòðàëüíîãî òèïà ìîãóò áûòü âûáðàíû êàê: A−1=diag{µ1, . . . , µn}, B = {bjm} j=1,...,r m=1,...,n. Îòìåòèì, ÷òî òåîðåìà 1 ÿâëÿåòñÿ ïðÿìûì îáîáùåíèåì òåîðåìû î ðàñïðåäåëå-íèè ñïåêòðà ñèñòåìû íåéòðàëüíîãî òèïà ñ îäíîìåðíûì óïðàâëåíèåì [6]. Îáîçíà÷èì ÷åðåç RT ìíîæåñòâî ìîìåíòíûõ ïîñëåäîâàòåëüíîñòåé {smk} äëÿ êîòîðûõ ïðîáëåìà (8) ðàçðåøèìà, ò.å. ñóùåñòâóþò ôóíêöèè uj(t), j = 1, . . . , r èç L2[0, T ] òàêèå, ÷òî ðàâåíñòâà (8) âûïîëíÿþòñÿ. Èç îáùåé òåîðèè ïðîáëåìû ìîìåíòîâ ñëåäóåò, ÷òî RT ÿâëÿåòñÿ ïîäìíîæåñòâîì ïðîñòðàíñòâà l2. Ñ ïîìîùüþ ñâåäåíèÿ ïðîáëåìû ìîìåí-òîâ ê çàäà÷å óïðàâëÿåìîñòè ìû ìîæåì îïðåäåëèòü òî÷íîå çíà÷åíèå T0 òàêîå, ÷òî RT = l2 ïðè T > T0. Ñîïîñòàâëÿÿ òåîðåìó 1 è ðåçóëüòàò ðàáîòû [4] (ðàçäåë 7), ìû ïîëó÷àåì Òåîðåìà 2. Ïóñòü óñëîâèÿ âòîðîé ÷àñòè òåîðåìû 1 i)  iii) âûïîëíåíû. Ìû èìååì: (1) Åñëè T > n1(A−1, B) òîãäà RT = l2. (2) Åñëè T = n1(A−1, B) òîãäà RT åñòü ïîäïðîñòðàíñòâî ïðîñòðàíñòâà l2 êîíå÷íîìåðíîé êîðàçìåðíîñòè â l2 (âîçìîæåí ñëó÷àé, êîãäà RT = l2). (3) Åñëè T < n1(A−1, B)òîãäà RT ÿâëÿåòñÿ ïîäïðîñòðàíñòâîì l2 áåñêîíå÷íî-ìåðíîé êîðàçìåðíîñòè. Ïðèìåð. Ðàññìîòðèì äâå âåêòîðíûå ïðîáëåìû ìîìåíòîâ: s1 k= T Z 0 e(i(π+2πk)+ε1k)t(11u1(t) + u2(t))dt, s2k= T Z 0 e(i2πk+ε2k)t(u1(t) + u2(t))dt, s3 k= T Z 0 e(log 2+i2πk+ε3k)t(u1(t) − u2(t))dt, s4k= T Z 0 e(log 3+i2πk+ε4k)t(u1(t) − u2(t))dt, (12)

(6)

Îá îäíîé âåêòîðíîé ïðîáëåìå ìîìåíòîâ, âîçíèêàþùåé â àíàëèçå ñèñòåì íåéòðàëüíîãî òèïà5 è s1k= T Z 0 e(i(π+2πk)+ε1k)t(6u1(t) − u2(t))dt, s2 k= T Z 0 e(i2πk+ε2k)t(4u1(t) − u2(t))dt, s3k= T Z 0

e(log 2+i2πk+ε3k)t(3u1(t) − u2(t))dt,

s4 k=

T

Z

0

e(log 3+i2πk+ε4k)t(2u1(t) − u2(t))dt,

(13) k ∈ Z, P k(ε j k)2 < ∞, j = 1, . . . , 4. Îáå ïðîáëåìû ìîìåíòîâ ìîãóò áûòü ñâåäåíû ê çàäà÷å óïðàâëÿåìîñòè äëÿ ñèñòåì âèäà (1), ãäå A−1 =     0 1 0 0 0 0 1 0 0 0 0 1 6 −5 −5 5     , {µ1, µ2, µ3, µ4} = {−1, 1, 2, 3}, ñîîòâåòñòâóþùèå ñîáñòâåííûå âåêòîðà ìàòðèöû A∗−1 åñòü Ψ1 =     −6 11 −6 1     , Ψ2 =     6 1 −4 1     , Ψ3 =     3 −1 −3 1     , Ψ4 =     2 −1 −2 1     , è â ïåðâîì ñëó÷àå B1 =     0 0 1 0 0 0 0 1    , âî âòîðîì ñëó÷àå B2 =     0 0 0 0 1 0 0 1    äëÿ îïðåäåëåííîãî âûáîðà A2(θ), A3(θ). Ïîñêîëüêó n1(A−1, B1) = 2 è n1(A−1, B2) = 3, òî ïðîáëåìà ìîìåíòîâ (12) ðàçðåøèìà äëÿ âñåõ {sj k} ∈ l2, åñëè T > 2, â òî âðåìÿ êàê ïðîáëåìà ìîìåíòîâ (13) ðàçðåøèìà ïðè T > 3. Ñïèñîê ëèòåðàòóðû

[1] Avdonin S. A., Ivanov S. A. Families of exponentials. The method of moments in controllability problems for distributed parameter systems // Cambridge University Press, Cambridge  1995.

[2] Burns, John A., Herdman, Terry L., Stech, Harlan W. Linear functional-dierential equations as semigroups on product spaces, SIAM J. Math. Anal. Vol. 14, Issue 1 (1983), 98116.

[3] Ãîõáåðã È.Ö., Êðåéí Ì.Ã. Ââåäåíèå â òåîðèþ ëèíåéíûõ íåñàìîñîïðÿæåííûõ îïåðàòî-ðîâ // Íàóêà, Ìîñêâà  1965.

[4] Rabah R., Sklyar G. M. The Analysis of Exact Controllability of Neutral-Type Systems by the Moment Problem Approach, SIAM J. Control Optim. Vol. 46, Issue 6 (2007), 21482181. [5] Rabah R., Sklyar G. M., Rezounenko A. V. Stability analysis of neutral type systems in

Hilbert space, J. Dierential Equations 214 (2005), No. 2, 391428.

[6] Rabah R., Sklyar G. M., Rezounenko A. V. On strong regular stabilizability for linear neutral type systems, J. Dierential Equations 45 (2008), No. 3, 569593.

[7] Wonham W. M. Linear multivariable control: A geometric Approach // Springer, New York  1985.

(7)

6 Ê.Â. Ñêëÿð, Ð. Ðàáàõ, Ã.Ì. Ñêëÿð

E-mail: sklar@univ.szczecin.pl, rabah@emn.fr

Ê.Â. Ñêëÿð, 70451, Poland, Szczecin, Institute of Mathematics, University of Szczecin, Wielkopolska str., 15

Ð. Ðàáàõ, France, F-44307, France, Nantes Cedex 3, IRCCyN, Ecole des Mines de Nantes, 4 rue Alfred Kastler

Ã.Ì. Ñêëÿð, 70451, Poland, Szczecin, Institute of Mathematics, University of Szczecin, Wielkopolska str., 15

Abstract

We consider solvability of a vector moment problem by means of its correspondence to controllability problem for a certain delayed system of neutral type. In this way we succeded to determine exsctly the minimal interval on which the moment problem is solvable. Àííîòàöèÿ Ìû ðàññìàòðèâàåì ðàçðåøèìîñòü âåêòîðíîé ïðîáëåìû ìîìåíòîâ, ñâÿçàííîé ñ àíàëèçîì óïðàâëÿåìîñòè íåêîòîðûõ ñèñòåì ñ çàïàçäûâàíèåì íåéòðàëüíîãî òèïà. Íàì óäàëîñü òî÷íî îïðåäåëèòü ìèíèìàëüíûé èíòåðâàë íà êîòîðîì ïðîáëåìà ìî-ìåíòîâ ðàçðåøèìà. Àíîòàöiÿ Ìè ðîçãëÿäà¹ìî çàäà÷ó ðîçâ'ÿçàííÿ ïðîáëåìè ìîìåíòiâ, ùî ïîâ'ÿçàíà ç àíàëiçîì êåðîâàíîñòi äåÿêèõ ñèñòåì ç çàïiçíåííÿì íåéòðàëüíîãî òèïó. Íàì âäàëîñÿ òî÷íî âèçíà÷èòè ìiíiìàëüíèé iíòåðâàë íà ÿêîìó ïðîáëåìó ìîìåíòiâ ìîæíà âèðiøèòè.

Références

Documents relatifs

We obtain existence and uniqueness of the solution in suitable Sobolev spaces and propose a numerical method to compute the optimal

To determine the distance from the center, the direction,and the magnitude of industrial building construction during the years 1946 through 1951 in the Boston

The results are based on the analysis of the Riesz basis property of eigenspaces of the neutral type systems in Hilbert

Pour nombre de conseillers interrogés, exercer le mandat prud’homal, ce n'est pas seulement « juger en droit », mais c’est aussi « faire du social ». Bien

En effet, si tout débit constant régule la glycémie, il est évident que suite à une perturbation de type repas ou injection de glucose (via le terme m(t)), la glycémie de ce modèle

In Chapter 4 we will use some Quotient Inductive Types to define the presheaf interpretation of the fibrant replacement in Cubical Type

Elisa Hubert ∗ Axel Barrau ∗∗ Yacine Bouzidi ∗∗∗ Roudy Dagher ∗∗∗∗ Alban Quadrat †.. ∗ University of Lyon, UJM-St-Etienne, LASPI,

Thanks to this approximation and since reachability sets are almost semilinear we finally prove in Section 9 that the vector addition system reachability problem can be decided