• Aucun résultat trouvé

Co–Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature

N/A
N/A
Protected

Academic year: 2021

Partager "Co–Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature"

Copied!
12
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 14529

To link to this article : DOI : 10.1016/j.apcatb.2015.07.019

URL :

http://dx.doi.org/10.1016/j.apcatb.2015.07.019

To cite this version : Faure, Benjamin and Alphonse, Pierre

Co–Mn-oxide spinel catalysts for CO and propane oxidation at mild

temperature. (2016) Applied Catalysis B: Environmental, vol. 180. pp.

715-725. ISSN 0926-3373

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Co–Mn-oxide

spinel

catalysts

for

CO

and

propane

oxidation

at

mild

temperature

Benjamin

Faure

faure.benjamin.n@gmail.com,

Pierre

Alphonse

CIRIMAT-UPS,UniversitédeToulouse,118routedeNarbonne31062Toulousecedex09,France

Keywords: Mixedoxalate Cobaltitespinel Totaloxidation Propane VOCsremoval

a

b

s

t

r

a

c

t

CoxMn3−xO4oxides(0≤x≤3)werepreparedbycontrolleddecompositionofmixedoxalatesnear200◦C,

followedbyacalcinationat300◦C.Theseoxidesareamorphousforx<0.9.Forhighercobaltfractionthey

haveacubicspinelstructureandtheircrystallitesizegrowswiththecobaltfraction.Thesematerials havealargesurfacearea;thehighestvalues,exceeding250m2/g,wereobtainedforx2.Thespinel

oxidesexhibitanoutstandingcatalyticactivityforpropaneoxidationatmildtemperature(20–200◦C).

TheyarealsoactiveforCOoxidationatambienttemperature.Thishighactivitywascorrelatedbothwith thesurfaceareaandthecobaltconcentration.ThemostefficientmaterialisCo2,3Mn0,7O4,whichhasa

betteractivitythancobaltoxidecatalystsreportedintheliterature.

1. Introduction

Catalyticoxidationisaveryeffectivemethodfortheabatement oflowconcentrationsofVolatileOrganicCompounds(VOCs). Cur-rently,themostactivecatalystsaresupportednoblemetals[1–3]. Howeverthesecatalystsareveryexpensiveandtheiractivitycanbe stronglyinhibitedbyCO[4],waterorchloride[5].Forlow tempera-tureapplications,likeVOCsremovalinindoorair,preciousmetals canbereplacedbytransitionmetaloxides[6].Especiallyspinel cobaltoxide(Co3O4)wasreportedtobethebestcatalystforthe

totaloxidationofCO[7]andhydrocarbons[6,8].Spineloxides,with thegeneralformulaAB2O4,containcationsitesofdifferent

coordi-nation(tetrahedralandoctahedral)withtheoxideanionsarranged in a cubicclose-packed lattice.Partialsubstitution of cobaltby manganesegivesmixedCo–Mnspineloxides,whichcanbebetter catalyststhanCo3O4fortheoxidationofVOCs[9–11].

Mostoftenthecatalystsreportedintheliteratureare synthe-sizedathightemperature(>500◦C).Thisrequirement,unavoidable

for automotive catalytic converters, becomes useless for VOCs abatementatmildtemperature(<300◦C).Actuallyitisexpected

thatmetastablenanocrystalline oxides,withverylargeporosity andsurfacearea,willbehighlyactivecatalysts.Thiskindof mate-rialscanbeeasilyobtainedbythermaldecomposition ofmetal oxalates.Indeedaclosecontrolofthedecompositionallows

prepar-∗ Correspondingauthor.

E-mailaddress:alphonse@chimie.ups-tlse.fr(P.Alphonse).

ing mixed oxides with very high surface area (300–500m2/g)

[12,13].Moreoverthiseasyandinexpensivemethodisalsovery convenienttoobtainmixedoxides[14].

Thegoalofthisstudywasthesynthesisoflargesurfacearea CoxMn3−xO4 oxides (0≤x≤ 3) by controlled decomposition of

mixedoxalates and theevaluationof thecatalytic performance of these metastable materialsfor the total oxidation of carbon monoxideandpropaneatmildtemperature(20–200◦C).Carbon

monoxideisproducedinlargeamountbytransportation,industrial anddomesticactivities.Itisextremelytoxicandcatalytic oxida-tionintoCO2 constitutesthebestsolutionforCO removalfrom

indoorair[7].Thuslowcost,preciousmetalfreecatalysts, work-ingatroomtemperaturearehighlydemanded.Propaneislargely usedasdomesticandindustrialfuel.Besidesitisalsothethirdmost commonmotorvehiclefuelintheworldbehindgasolineandDiesel fuel.Ontheotherhanditisgenerallyadmittedthatalkanesarethe leastreactiveamongVOCsandacatalystabletoremovepropaneat mildtemperaturesisexpectedtobeactiveforotherVOCsaswell.

2. Experimental

2.1. Synthesisofoxides

2.1.1. Preparationofmixedoxalates

MixedoxalatesCox/3Mn(3−x)/3C2O4.2H2Owereprecipitatedat

roomtemperaturebyquickintroductionofanaqueoussolution ofcobaltandmanganesenitrates(200mL;0.2M)intoanaqueous solution of ammonium oxalate (200mL; 0.22M) under vigor-http://dx.doi.org/10.1016/j.apcatb.2015.07.019

(3)

ousstirring.After30min,theprecipitatewasfiltered,thoroughly washedwithdeionizedwateranddriedinairat70◦C.

2.1.2. Thermaldecompositionofoxalates

Thethermaldecompositionofoxalateswascarriedoutina ver-ticaltubularfixed-bedflowreactorunderatmosphericpressure. Theinternaldiameterofreactorwas1cm.Theflowrateoftheinlet gas(4%O2inAr)was100cm3/min.Theoutletgascompositionwas

followedusingamassspectrometer(HPR20-QICfromHiden Ana-lytical).ThetemperatureofthereactingsolidwasrecordedbyaK

thermocouplepositionedinsidethepowderedsample.Thissetup allowedcontrollingboth thetemperatureofthereacting mate-rialandthecompositionoftheatmosphere.Thetemperaturewas increasedat2.5◦C/minuntilCO

2emissionwasdetected;fromthen

thedecompositionwasdoneinisothermalconditions.For exam-ple,inthecaseofmanganeseoxalatethistemperaturewasabout 210◦C.WhenCO

2emissionwasover,toensureatotal

decompo-sition,eveninthecoreofparticles,thepartialpressureofO2was

augmentedgraduallyto20%;thenthetemperaturewasincreased at5◦C/minupto300Candmaintainedtothisvaluefor1h.

2.2. Thermalanalysis(TGA-DSC)

Thethermaldecompositionofoxalateswasstudiedby thermo-gravimetricanalysis(TGA)anddifferentialscanningcalorimetry (DSC),usinga constantheatingrate(5◦C/min),ona TGA-DSC-1

Mettler–Toledodevicein thetemperaturerange30–600◦C. The

flowinggaswasamixture20%O2inAr.About5mgofoxalate

pow-derwereplacedina40mLaluminiumpanandthereferencewas anemptyaluminiumpan.

2.3. PowderX-raydiffraction(PXRD)

ThecrystalstructurewasinvestigatedviapowderX-ray diffrac-tion.Datawascollected,atroomtemperature,withaBrukerAXS D4–2 diffractometer,in theBragg–Brentanogeometry,using filteredCuKaradiationandagraphitesecondary-beam monochro-mator.Diffractionintensitiesweremeasuredbyscanningfrom20 to80◦(2)withastepsizeof0.02(2).

Aquantitativeestimationofthelatticeparametersand peak broadeningwasaccomplishedbyprofilefittingofthewholeXRD patternsusingtheFullprofsoftware[15].Thepeakprofileswere modeledbyThompson-Cox-Hastings[16]pseudo-Voigtfunctions. The parameters refined were zero shift (2), background, cell parametersandpeakshape.Thesizeandstraincontributiontothe integralbreadthofeachreflectionwerecalculatedbythesoftware. Theinstrumentalbroadeningcontributionwasevaluatedbyusing ana-aluminasample(NISTStandardReferenceMaterial1976b).

Thestructuralchangesversustemperaturewerefollowedby HighTemperatureX-rayDiffraction(HTXRD)withaBrukerAXSD8 diffractometer(usingNi-filteredCuKaradiation)equippedwith ahightemperaturechamber AntonPaarHTK1200N. Diffraction intensitieswererecordedinsyntheticairflow(20%O2inN2),at

fixedtemperature,every10◦C,intherange100–500C.The

heat-ingratebetweeneach stepwas10◦C/min.Thetime neededto

recordeachpatternwasabout15min.

2.4. Specificsurfacearea,poresizedistribution

Specificsurfaceareaandporesizedistributionwerecalculated fromnitrogenadsorption-desorptionisothermscollectedat77K, usinganadsorptionanalyzer(MicromeriticsTristarII3020).The specificsurfaceareaswerecomputedfromadsorptionisotherms, usingtheBrunauer–Emmett–Teller(BET)method[17].Thepore sizedistributions(PSD)werecomputedfromdesorptionisotherms

bytheNLDFTmethod[18](withQuantachromeAutosorb-1 soft-wareusingsilicaequilibriumtransitionkernelat77K,basedona cylindricalporemodel).

Porevolume(Vpore)wascalculatedfromtheadsorbedvolume

atarelativepressureof0.995(Vsat)by:

Vpore=

N2gasdensity

N2liq.densityVsat

=0.00155Vsat

Priortoanalysis,toremovethespeciesadsorbedonthesurface, theoxalatesamples(about0.5g)weredegassedfor16hat70◦C

whereastheoxidesamples(about0.1g)weredegassedfor16hat 90◦C(finalpressure<10−3Pa).

2.5. Electronmicroscopy

Transmission electron microscopy analyses were performed withaJeolJEM-1400operatingat80kV.Sampleswereprepared byputtingadropofanethanolsuspensionofparticlesona carbon-coatedcoppergrid.

Scanningelectronmicroscopyanalyseswereperformedwitha SEMFEGFEIQuanta-250at20kV.Thesampleswerepreparedby puttingadropofanethanolsuspensionofparticlesonanaluminum sampleholder.Beforeanalysis,thesampleswerecoveredwitha thinlayer(5nm)ofPtbysputtercoating.

2.6. ChemicalanalysisbyX-rayfluorescence

Theelementalcompositionwasdeterminedonpowder sam-plesbyX-rayfluorescencewithaBrukerS2Rangerworkingwitha maximumvoltageof50kVandacurrentof2mA.

2.7. Catalytictests

Theactivitiesofcatalystsweretested forCO andC3H8 total

oxidation.Thesetestswereperformed,atambientpressure,ina tubularfixedbedflowglassreactor(internaldiameter=6mm).The catalystmasswasalwayscloseto0.05g.Thecatalystpowderwas packedinthetubegivinga2–3mmbedlength.Thevolumetric flowratewas1.63mLs−1givingacontacttimeof0.03s.Thesizeof

catalystparticleswasabout10mm.Thereactoroperatesat differ-entialconditionsonlyforpropaneoxidation,atmildtemperatures (conversion<10%).Thereactantsweredosedbymassflow con-trollers (Brooks5850).The catalysttemperaturewascontrolled byaK-typethermocouplepositionedinsidethecatalystbed.For COoxidationthetemperaturerangewas30–200◦Candtheinlet

gascompositionwas0.8%CO+20%O2inAr.ForC3H8 oxidation

thetemperaturerangewas30–300◦Candtheinletgas

composi-tionwas0.4%C3H8+20%O2 inAr.Thecatalysttemperaturewas

increasedataheatingrateof200◦C/h.Thegasphasecomposition

duringthetestswasmonitoredbymassspectrometry(HPR20-QIC fromHidenAnalytical).BeforetheCOoxidationtest,thecatalysts werefirstpretreatedwith20%O2inArfor60minat200◦C.The

C3H8oxidationtestwasdoneafterCOtestwithoutany

pretreat-ment.

3. Resultsanddiscussion

3.1. Characterizationofoxalateprecursors 3.1.1. XRD

TheXRDpattern(Fig.1)ofmanganeseoxalatecorrespondsto themonoclinicstructurewiththespacegroupC2/c(PDF# 00-025-0544)whereascobaltoxalatehastheorthorhombicstructurewith thespacegroupCccm(PDF#00-025-0250).Thestructureofmixed Co–Mnoxalatesdependsontheirmanganesecontent.Foroxalates containingmoreMnthanCo,patternmatchingwiththemonoclinic

(4)

Fig.1. ExamplesofXRDpatternsofCox/3Mn(3−x)/3C2O4.2H2OaftertheprofilefittingwiththeFULLPROFsoftware[15].Theupperpatternswereindexedforthemonoclinic structure(PDF#00-025-0544)whereasthelowerpatternswereindexedfortheorthorhombicstructure(PDF#00-025-0250).

Table1

StructureparametersofCox/3Mn(3−x)/3C2O4.2H2Odeterminedbyprofilefittingof XRDpatternswithFULLPROFsoftware[15].Disthecrystallitesize.

x Spacegroup a(nm) b(nm) c(nm) ˇ(◦) D(nm) 0 C2/c 1.200 0.565 0.998 128.3 52 0.6 C2/c 1.197 0.561 0.996 128.2 55 0.9 C2/c 1.194 0.557 0.996 128.1 51 1.6 Cccm 1.192 0.550 1.556 90 15 2.0 Cccm 1.188 0.545 1.557 90 17 2.3 Cccm 1.191 0.546 1.564 90 21 3 Cccm 1.187 0.542 1.557 90 32

structuregives abetteragreementwhereas,whenCoequalsor exceedsMn,abestfitisobtainedwithorthorhombicstructure.The latticeparametersandthecrystallitesizearereportedinTable1. BothaandblatticeparametersdecreasewhentheproportionofCo increasesindicatingthatthesmallerCo2+ions(r=89pmHS)

sub-stituteforthelargerMn2+ions(r=97pmHS).Thecrystallitesize

isconstant,atabout50nm,forthemonoclinicstructureanddrops near20nmwhenthestructurebecomesorthorhombic.However thecrystallitesizeofcobaltoxalateislarger,atabout30nm,than thatofCo-richmixedoxalates.

3.1.2. Scanningelectronmicroscopy

TheSEMimagesforseveralcompositionsareshowninFig.2. Theparticlemorphologychangesaccordingtothechemical

com-Table2

BETsurfacearea(SBET)andporevolume(Vpore)ofCox/3Mn(3−x)/3C2O4.2H2O deter-minedfromN2adsorptionisothermsat77K.

x SBET(m2/g) CBET Vpore(cm3/g)

0 26±2 130 0.095±0.008 0.6 2.4±0.2 120 0.010±0.001 0.9 4.0±0.3 130 0.030±0.002 1.6 5.0±0.4 150 0.062±0.005 2.0 4.4±0.3 110 0.044±0.003 2.3 6.0±0.5 160 0.074±0.005 3 4.0±0.3 170 0.024±0.002

position.Theparticlesofmanganeserichoxalates(upperimages) areveryirregularinsizeandshapewhereastheparticlesofcobalt richoxalatesaremoreuniform.Theseparticlesareatleasttentimes largerthanthecrystallitesizedeterminedfromXRD.For2≤x<3 theparticlesaggregateinball-shapedunits(lowerleftimage).We didnotobservesuchaggregatesforcobaltoxalate,whichgivesrod likeparticles(lowerrightimage).

3.1.3. Specificsurfaceareaandporevolume

TheBETsurfacearea(SBET)andporevolume(Vpore)ofoxalates

arereportedinTable2.Thesurfaceareasofallthecompounds con-tainingcobaltaresimilar,intherange4–6m2/g.Theyareatleast5

timeslowerthanthesurfaceareaofmanganeseoxalatewhichhas alsothelargestporevolume.Forthisoxalatewesuspectedthatthe

(5)

Fig.2. SEMimagesofsomeoxalates.

degassingprocedure(16hat70◦Cinvacuum)inducedthe

begin-ningofdehydrationbecausetheonsettemperatureofdehydration waslowerthanformixedoxalates(seeSection3.2.1). Neverthe-lessdoublingtheevacuationtimedidnotchangesignificantlythe texturalproperties.

3.2. Decompositionofoxalateprecursors 3.2.1. Thermalanalysisofoxalatedecomposition

TheTGA-DSCanalysiscurvesforseveralcompositionsare plot-tedin Fig.3.The decomposition occursin two main separated stages:below200◦Ctheendothermicdehydrationgivingthe

anhy-drousoxalate,followed bythe exothermicdecomposition near 300◦C. Foran oxalatecontaining2H

2Opermole,themassloss

duetodehydrationmustdecreaseslightlyfrom20.1%forx=0to 19.7%forx=3.Weobtaintheexpectedvalueformanganeseoxalate whereasthemasslossisonly19%forcobaltoxalate,indicatinga numberofwatermoleculesslightlylessthan2.Besides,forcobalt oxalate,theendothermicdehydrationpeakhasasmallshoulder ontherightsideequivalenttoabout10%ofthewholearea.This peakisalwayspresentwhateverthemassofsampleanalyzedor theheatingrate.Itcouldbetheindicationthatwehaveamixture betweentheorthorhombicformandasmallamountofthe mono-clinicpolymorphwiththespacegroupC2/c(PDF#00-025-0251) notdetectedontheXRDpatterns.

Thermaldecompositionoftransitionmetaloxalateshydrates hasbeenstudiedfor manyyears [19–33].It wasobserved that the decomposition product for these oxalates depends on the reducibilityofthemetalliccationinvolved[23,25,32].Withcations

presentingalowreducibility,likeMn2+,thedecompositionleads

tothemetaloxidefollowingthereaction:

MnC2O4→MnO+CO+CO21H= 151kJ/mol (1)

WhereasformorereduciblecationslikeCo2+thedecomposition

producesthemetal:

CoC2O4→ Co+2CO2H= 94kJ/mol (2)

Howeverinair,CoisoxidizedinCo3O4:

3Co+2O2→ Co3O41H=−891kJ/mol (3)

SimilarlyMnOwillbealsooxidizedinair.Accordingtothe reac-tionconditionstheproductwasreportedasMn3O4[34],Mn2O3

[22,35],MnO2[26]oramorphousMnOx[36].

Moreoverthemanganeseorcobaltoxidesformedareknownto begoodcatalystsfortheCOoxidation[7]:

CO+1/2O2→ CO21H= −283kJ/mol (4) Therefore,sincetheseoxidationreactionsareveryexothermic, theoveralldecompositionreactionislargelyexothermictoo.

Theeffectofcobaltfractiononsomecharacteristicsofmixed oxalatedehydrationanddecompositionisillustratedinFig.4.Four featuresarefollowed,theonsettemperatureofdehydration(Ti),

thewidthofthedecompositionpeak(in◦C),theenthalpyof

dehy-drationand theenthalpyof decomposition.The upper-leftplot shows thattheTi ofmixed oxalatesis closetotheTi ofcobalt

oxalate(130◦C) whereas thedehydration ofMn oxalatebegins

atleast30◦Cbelow.Thelower-leftplotshowsthattheenthalpy

(6)

Fig.3.TGA-DSCcurvesforsomeoxalates.

about520J/g(95kJ/moloxalate);onlytheenthalpyobservedfor manganeseoxalateisslightlylower.Thisvalueisveryclosetothe enthalpyreportedbyMaciejewskietal.[30].

Weobservedthattheonsettemperatureofdecomposition aug-mentslinearly withthe cobalt content of oxalates, goingfrom 230◦C for manganese oxalate to255C for cobalt oxalate.The

upper-rightplotshowsthatthewidthofthedecompositionpeak, whichislinkedtotherateofthereaction,markedlydecreaseswhen theproportionofcobaltincreases.Neverthelesstheenthalpyof decomposition,estimatedbyintegrationoftheexothermicpeak, doesnotrisemuchwiththecobaltfractionasshownbythe lower-rightplot.Thisis confirmedby theredlinein this plot,which correspondstothe valuescalculated fromthermodynamicdata (1fH◦298)[37,38]assumingtheformationofanidealsolidsolution

havingthespinelstructure(cf.§3.2.2).Thereforewethinkthatthe increaseofthedecompositionratewiththeproportionofcobalt couldbeexplainedbytheveryhighreactivityofmetalcobaltin oxygencontainingatmospheres.Thustoavoidatemperature over-shoot,leadingtoafastgrowthofcrystallites,thedecompositionof cobalt-richoxalatesshallbeperformedinisothermalconditionand lowoxygenpartialpressure.

3.2.2. HT-XRDofoxalatedecomposition

Thethermaldecompositionoftheoxalateswasalsofollowed byHT-XRD.Thesampleswereheatedbystepof10◦Cat5C/min.

Takingintoaccountthetimerequiredtorecordeachpattern,the heatingrateontheaveragewasabout0.5◦C/min.Thus,compared

withTGA-DSCforwhichtheheatingratewas5◦C/min,apeakshift

towardlowertemperaturecanbeexpected.

TherelevantXRDpatternsforseveralcompositionsareplotted inFig.5.Theupper-leftchartcorrespondstomanganeseoxalate.

Thefirstpattern,recordedat150◦C,correspondstotheanhydrous

oxalatewhichhasanorthorhombicstructurewiththespacegroup Pmna(PDF#00-032-0646).Thisanhydrousoxalatedecomposes from230◦Ctogiveanamorphousphasewhichcrystallizesonlyat

400◦CincubicMn

2O3(bixbyite)withthespacegroupIa3(PDF#

00-041-1442).Thistransformationgivesasmallexothermalpeak togetherwithaslightmasslossat450◦ContheTGA-DSCplot(see

Fig.3,x=0).

The upper-right plot corresponds to the mixed oxalate Co0.2Mn0.8C2O4.2H2O(xCo=0.6).Theanhydrousoxalatepatternis

observedfrom140◦C.Likeformanganeseoxalate,thisanhydrous

oxalatedecomposesfrom220◦Ctogiveanamorphousphasewhich

crystallizesat450◦Cinatetragonallydeformedspinel(spacegroup

I41/amd)likeMn3O4(hausmannite,PDF#00-024-0734).Mn3O4

isa “normal”spinelbecauseallMn3+cationsarelocatedin the

octahedralsites,givingthecationdistributionMn2+[Mn3+] 2O4[39].

Bordeneuveetal.[40],fromneutrondiffractiondatarecordedon CoxMn3-xO4ceramics,showedthat,forx<1,thesubstitutionoccurs

onlyinthetetrahedralsitewhereCo2+replacesMn2+.

Thedeformationofthecubicspinelstructureiscorrelatedwith adistortionofthecoordinationoctahedronaroundMn3+,usually

interpretedasaconsequenceofthecooperativeJahn–Tellereffect

[41].

The lattice parameters of hausmannite are a=0.576nm and

c=0.944nm[41].Profilematching(usingFullProfsoftware[15]) gives a=0.575nm and c=0.938nm for the pattern recorded at 450◦Canda=0.576nmandc=0.938nmforthepatternrecordedat

500◦C.Thelowercvalueinoursamplescouldoriginatefrom

par-tialoxidationofMn3+intonon-distortingMn4+intheoctahedral

sitesbecause,inhausmannitestructure,thecoordination octahe-dronaroundMn3+areelongatedapproximatelyparallelto[001].

(7)

Fig.4.EffectofcobaltfractionontheonsettemperatureofdehydrationTi(upper-left),thewidthofthedecompositionpeak(upper-right),theenthalpyofdehydration (lower-left)andtheenthalpyofdecomposition(lower-right).

Profilematchingalsoprovidesanestimationofthecrystallitesize

D;wefoundD=12nmfor450◦CandD=14nmfor500C.

Itisworthnoticingthatthecrystallizationobservedat450◦C

isassociatedwithasmallmasslossonTGcurvebut,unlike man-ganeseoxalate,givesnodetectablethermalevent(Fig3,x=0.6). Thiscouldbeanindicationthat,inthis case,thecrystallization involvesonlylittlechangeinthestructuralarrangementofatoms, becausetheamorphousstatehasaproto-spinelstructureasitwas previouslyassumedfornickelmanganitespinelspreparedbylow temperaturedecompositionofmixedoxalates[42].

The lower-left plot corresponds to the mixed oxalate Co0.3Mn0.7C2O4.2H2O (x=0.9). The dehydration occurs above

130◦C giving a compound with a XRD pattern similar to the

monocliniccobaltoxalatewiththespacegroupP21/n(PDF# 00-037-0719). This compound decomposes at 240◦C generating a

poorlycrystallinephasecorrespondingtothecubicspinel(space groupFd-3m).Then,from350◦C,thisphaseisprogressively

con-vertedinthetetragonalspinel.Profilematchinggivesa=0.574nm,

c=0.930nmandD=16nmforthepatternrecordedat500◦C.

Thecriticalconcentrationof distortingMn3+required inthe

octahedralsitestotriggertheJahn–Tellereffectisabout55%[41]. Thusthetransientformationofthecubicspinelcouldbeexplained bythepartialoxidation,aftertheoxalatedecomposition,ofmore than45% of Mn3+ into non-distorting Mn4+

. From 350◦C Mn4+

cationsarereducedinMn3+inducingtheprogressiveconversion

inthetetragonalspinel.

Inthecaseofcobaltoxalate(lower-rightplot)thedehydration occursabove140◦C,givingthemonocliniccobaltoxalate(PDF#

00-037-0719),which startstodecomposeat230◦C toyieldthe

cubicspinelCo3O4(spacegroupFd-3m,PDF#00-042-1467).

Pro-filematching,forthepatternrecordedat300◦C,givesa=0.809nm

andD=12nm.

3.3. Characterizationofoxidesusedascatalysts 3.3.1. XRD

Whatever the decomposition temperature of oxalates, the oxidesusedascatalystswereheatedinairat300◦Cfor1h.The

crystal structure, latticeparameter and crystallite sizeof these materialsarereportedinTable3.Asshownintheprevious sec-tion,theoxidesforwhichx<0.9areamorphous.TheXRDpattern ofCo0.9Mn2.1O4showsverybroadlinescorrespondingtoacubic

spinelcompoundbutisistoopoorlycrystallizedtoevaluateitscell parameterandcrystallitesize.Forx>0.9alltheproductshavea cubicspinelstructure.Thecellparametersofthemixedoxidesare slightlylargerthanthecellparameterofCo3O4.Neutrondiffraction

dataonceramicsshowedthat,for1<x<2,thetetrahedralsitesare fullyoccupiedbyCo2+andthesubstitutionnowoccursin

octahe-dralsiteswhereMn3+isreplacedbothbyCo2+andCo3+bearing

inmindthateachCo2+alsoimpliestheoxidationofoneMn3+in

Mn4+topreservetheglobalelectroneutrality[40].BecauseCo2+

(8)

Fig.5. XRDpatternsrecordedatincreasingtemperatureduringthedecompositionofoxalatesinair.

thanLSCo3+ions(55pm)itisexpectedthatthecellparameterof

mixedoxidesbelargerthanthatofCo3O4.Thebiggestcell

param-eterisobservedforx=2probablybecausethisoxidecontainsthe largestamountofCo2+.Furthermoretheincreaseofcobaltcontent

isassociatedwithasignificantgrowthofthecrystallite.

3.3.2. Electronmicroscopy

Atmediummagnification,theSEMimagesofoxalatesbefore and after decomposition are similar as shown in the case of Co2.3Mn0.7O4 in Fig.6(left andcenter images). Thus, despitea

masslosscloseto60%,whenthereactionconditionsallows

con-Table3

Microstructuralandtexturalpropertiesofmixedoxides(CoxMn3−xO4)obtainedafterheatinginairat300◦C.StructuralparameterswasdeterminedbyprofilefittingofXRD patternswithFULLPROFsoftware[15];Disthecrystallitesize.BETsurfacearea(SBET)andporevolume(Vpore)werecalculatedfromN2adsorptionisothermsat77K.The valuesofSBETandVporearetheaverageofseveralmeasurements.

x Structure a(nm) D(nm) SBET(m2/g) CBET Vpore(cm3/g)

0 Amorphous 90±5 110 0.16±0.01 0.6 Amorphous 100±10 140 0.21±0.02 0.9 Cubicspinel 230±20 160 0.28±0.03 1.6 Cubicspinel 8.11 6 270±30 50 0.33±0.04 2.0 Cubicspinel 8.12 7 260±30 40 0.48±0.05 2.3 Cubicspinel 8.10 9 220±20 35 0.29±0.03 3 Cubicspinel 8.09 16 60±5 50 0.27±0.01

(9)

Fig.6.SEMimagesofCo0.77Mn0.23C2O4.2H2Ooxalate(leftimage)andCo2.3Mn0.7O4oxide(middleimage).TEMmicrographofCo2.3Mn0.7O4oxide(rightimage).

trollingthedecompositionrate,theexternalshapeoftheoxalate particlesiskept.Itispossibleonthecentralmicrographytomake outmanycracksindicatingthattheoxideparticlesarehighly frac-turedbuttheporosityismoreeasilyevidencedontheTEMimage whichclearlyshowsthevoidbetweencrystallites(rightimage). Thecrystallitesizeisin goodagreementwiththesizeobtained fromXRD.

3.3.3. Specificsurfacearea,porevolumeandporesize distribution(PSD)

TheBETspecificsurfaceareas(SBET)andtheporevolume(Vpore)

ofthematerialsheatedat300◦C,calculatedfromtheN

2

adsorp-tionisotherms,arereportedinTable3.Inthecaseofmixedoxides, weobservethatSBETisstronglydependentofthedecomposition

conditionssothat,forseveralpreparationsdoneinsimilar condi-tions,SBETcandifferbyabout20%.Monometallicandamorphous

oxideshavethelowestsurfaceandporevolume.ThehighestSBETis

obtainedforx≈2;abovethisvaluetheincreaseofcobaltcontentis associatedwithadiminutionofthesurfaceareaandporevolume. Thehighsurfaceareaandporosityofoxidesstronglycontrast withthelowtexturalpropertiesmeasuredonoxalates(seeTable2). Thislargeinterfaceiscreatedbecausethereisalmostno shrink-ageoftheoxalateparticlesinducedbythebigmasslossoccurring duringdecompositionprocess.

Somerepresentativeisothermsand theirassociatedPSD, cal-culatedusingNLDFTmethod,areplottedinFig.7.Theporosityof thesematerialspansawiderange,frommicroporestomacropores; howevertheirPSDvariesconsiderablyaccordingtothecobalt frac-tion.Theapproximatecorrelationbetweenthecrystallitesizeand thepositionofthemainpeakofPSDletssupposethatthe meso-porescorrespondtotheinter-crystallitespaces.Theporesinthe macroporerangeareprobablyduetotheinter-granularporosity correspondingforexampletothevoidbetweentheparticles.

3.4. Catalyticactivity

Thecatalyticactivityofthemonometallicand mixedoxides, forCOandC3H8totaloxidation,ispresentedinFig.8.These

mea-surementswerenotdoneatsteadystatebutwithadynamicramp rateoftemperature(200◦C/h)andon-linemonitoringusingmass

spectrometry.For COoxidation,toreachthemaximumactivity, thecatalystswereheated ina drygasflow (20%O2 inAr).For

propaneoxidationthispre-treatmentwasnotrequiredtoobtain optimumactivity.WedetectedonlyCO2 andH2Oasproductsof

oxidationandthecarbonbalancewascloseto100%within2%.All thecatalystsweretestedoverthetemperaturerange(20tests). SomerepresentativeCO(left)andC3H8(right)conversioncurves

versustemperature(light-offcurves)areshownontheupperplots ofFig.8.Wenoticedthatthesameoxalatedecomposedinwhat

Fig.7.N2adsorption-desorptionisothermsandtheirassociatedporesize distribu-tion(PSD)calculatedusingNLDFTmethod[18].

seemstobethesameconditionscouldproducetwocatalysts hav-ingsignificantdifferencesinactivity.Thisisillustratedinthelower chartswheretheconversionobservedat60◦CforCO (left)and

200◦CforC

3H8 (right)areplotted versustheamountofcobalt.

Despitethescatteringoftheresults,theeffectofthesubstitutionof manganesebycobaltseemsrathersimilarforbothreactions. Espe-ciallyweobservethat,forx<0.9,thesubstitutiondoesnotchange theactivitywhereasforx=0.9theactivityisclearlybetter(about3 times).BesidesCo3O4hasaloweractivitythanCo2.3Mn0.7O4which

seemstobethebestcomposition.

The boost of activity for x=0.9 is associated with a strong increaseofSBETwhichrisesfrom100to230m2/g.Inanattempt

todissociatetheeffectofspecificareafromtheinfluenceofcobalt concentration,wecalculated,fromtheconversionrateandSBET,

theintrinsicactivity,Ai,definedasthenumberofreactantmmoles convertedpersecondandperm2ofcatalyst.Thisintrinsic

activ-ity,plottedagainstthecobaltfraction,isshowninFig.9.Inthe caseofCOoxidationAidoesnotappeartobedirectlydependentof

(10)

activ-Fig.8. ExamplesoftheCO(upper-left)andC3H8(upper-right)conversioncurvesversustemperature(light-offcurves).Effectofcobaltfractionontheconversionobserved at60◦CforCO(lower-left)and200CforC

3H8(lower-right).

(11)

Figure10.CO(left)andpropane(right)conversionwithtimeonstreamforCo2.3Mn0.7O4catalyst.

Table4

Comparisonofcatalystactivityforpropaneoxidationat200◦C.

Ref. Catalyst Catalystmass(g) Flowrate(cm3/min) InletC

3H8concentration(%) %C3H8conv.at175◦C Activityat175◦C(mmols−1g−1)

[49] Co3O4 0.25 50 0.80 21 0.25

[50] 4%Au/Co3O4 0.25 50 0.80 32 0.38

[51] Co3O4 0.05 98 0.37 5 0.27

thiswork Co2,3Mn0,7O4 0.05 98 0.37 8 0.43

ityisobservedforhighercobaltcontent.Forpropaneoxidation,a similarcorrelationbetweenAiandcobaltfractionisobservedfor x>1.5.Belowx=1.5,thecorrelationislessclear.

Severalworkshavedemonstratedthattheoctahedralsitesare almost exclusivelyexposed at the surface of the spinel oxides

[43–45].Moreoverit wasalsoshown thatthe catalyticactivity ofcobaltoxideswasduetoCo3+ionsinoctahedralsites[45,46].

Hence,forlowcobaltcontent,itisexpectedthatthecatalytic activ-itydoesnotchangemuchbecausethesubstitutionoccursonlyin theinactivetetrahedralsiteswhereCo2+replacesMn2+.Whenthe

tetrahedralsitesarefullyoccupiedbyCo2+(x>1)thesubstitution

occursinoctahedralsitescreatingactiveCo3+ions[40].

Theapparentactivationenergyforpropaneoxidationwas deter-minedfromArrheniusplotsintheconversionrange0–10%.Except formanganeseoxide,itwasfoundalmostconstantat60±10kJ/mol whateverthecobaltconcentration.ForMnOxtheactivationenergy

isslightlyhigherat75±10kJ/mol.

InthecaseoftheCOoxidationtheconversionistoohightoallow thecalculationofactivationenergy.

Forthebestcatalyst(Co2.3Mn0.7O4)wefollowedtheeffectofthe

oxalatedecompositiontemperature(intherange220–300◦C)on

thecatalyticactivityforpropaneoxidation.Althoughthevariations inactivitywereofthesameorderofmagnitudeasthedifferences betweenreplicatesitseemsthattheoptimumdecomposition tem-peratureis280◦C.

Thelong-termstabilityoftheconversionwastestedwiththe bestcatalyst(Co2.3Mn0.7O4).TheleftplotofFig.10showsthatthe

COconversiondecreasesbyabout8%duringthefirsthalfofthe test.Thenitseemstoremainstableuntiltheendofthetest. Unex-pectedlyweobservedvariationsoftemperatureassociatedwith variationsofconversion.Wecouldnotdetermineifitwasthe tem-peraturechangethatinducedconversionchangeortheconverse. Asregardspropaneoxidation,therightplotofFig.10indicatesthat theconversionwasstableformorethan14hat160◦C.

Tocomparethecatalyticactivityofourmaterialswiththedata reportedintheliteraturewecalculatedthespecificactivitydefined asthenumberofreactantmmolesconvertedpersecondandper gramofcatalyst.

AsitwasdemonstratedthatCOconversionwasstrongly depen-dentupontheamountofwaterintheinletgas[46–48]welimited ourcomparisontopropaneoxidation.Thiscomparisonrevealed (Table4)thatCo2.3Mn0.7O4activitywasmorethan50%higherthan

thatofCo3O4catalystsfoundinthemostrecentpublicationsand

wassimilartocatalystsforwhichpreciousmetalhavebeenadded toenhancetheactivity.

4. Conclusion

Cobalt-manganesemixedoxalatedihydratescrystallizeinthe monoclinicstructurewhenthecobaltfractionis lowerthan0.5 andinorthorhombicstructureotherwise.Thecontrolled decom-positionoftheseoxalatesnear200◦C,followedbyacalcinationat

300◦C,stronglyrestrainstheshrinkageofparticlesandthe

crys-tallitesintering,producingmixedoxidesCoxMn3−xO4withavery

largesurfacearea.Forx<0.9thesematerialsareamorphous.For

x≥0.9theyhaveacubicspinelstructureandtheircrystallitesize increaseswiththecobaltfraction.

Thesespineloxidesexhibitanoutstandingcatalyticactivityfor propaneoxidation.TheyarealsoactiveforCOoxidationevenat ambienttemperature.Thishighactivityiscorrelated both with the surface area and the cobalt concentration. For manganese oxide the apparent activation energy for propane oxidation is 75±10kJ/molwhereasitis60±10kJ/molandnearlyindependent ofcobaltfractionfortheothercatalysts.Themostefficientmaterial isCo2,3Mn0,7O4,whichhasanactivitymorethan50%higherthan

thebestCo3O4catalystsreportedintheliterature.

Acknowledgments

ThisworkwasfinanciallysupportedbytheDGEandtheRegional CouncilofMidi-PyrénéesintheframeworkoftheSOFTAIRproject.

References

[1]L.F.Liotta,Catalyticoxidationofvolatileorganiccompoundsonsupported noblemetals,Appl.Catal.B:Environ.100(2010)403–412.

(12)

[2]M.Ousmane,L.F.Liotta,G.Carlo,Di,G.Pantaleo,A.M.Venezia,G.Deganello,L. Retailleau,A.Boreave,A.Giroir-Fendler,SupportedAuCatalystsFor Low-TemperatureAbatementofPropeneandToluene,AsModelVOCs: SupportEffect,Appl.Catal.B:Environ.101(2011)629–637.

[3]V.P.Santos,S.A.C.Carabineiro,P.B.Tavares,M.F.R.Pereira,J.J.M.Orfao,J.L. Figueiredo,OxidationofCO,ethanolandtolueneoverTiO2supportednoble

metalcatalysts,Appl.Catal.B:Environ.99(2010)198–205.

[4]M.J.Patterson,D.E.Angove,N.W.Cant,Theeffectofcarbonmonoxideonthe oxidationoffourC6–C8hydrocarbonsoverplatinum,palladiumand rhodium,Appl.Catal.B:Environ.26(2000)47–57.

[5]P.Marecot,A.Fakche,B.Kellali,G.Mabilon,P.Prigent,J.Barbier,Propaneand propeneoxidationoverplatinumandpalladiumonalumina:effectsof chlorideandwater,Appl.Catal.BEnviron.3(1994)283–294.

[6]G.Busca,M.Daturi,E.Finocchio,V.Lorenzelli,G.Ramis,R.J.Willey,Transition metalmixedoxidesascombustioncatalysts:preparation,characterization andactivitymechanisms,Catal.Today33(1997)239–249.

[7]S.Royer,D.Duprez,Catalyticoxidationofcarbonmonoxideovertransition metaloxides,ChemCatChem3(2011)24–65.

[8]B.Solsona,I.Vazquez,T.Garcia,T.E.Davies,S.H.Taylor,Completeoxidationof shortchainalkanesusingananocrystallinecobaltoxidecatalyst,Catal.Lett. 116(3–4)(2007)116–121.

[9]J.Zhu,QiumingGao,MesoporousMCo2O4(M=Cu,MnandNi)spinels:

structuralreplication,characterizationandcatalyticapplicationinCO oxidation,Micropor.Mesopor.Mater.124(2009)144–152.

[10]S.Todorova,H.Kolev,J.P.Holgado,G.Kadinov,Ch.Bonev,R.Pereniguez,A. Caballero,Completen-hexaneoxidationoversupportedMn–Cocatalysts, Appl.Catal.B:Environ.94(2010)46–54.

[11]B.Puertolas,A.Smith,I.Vazquez,A.Dejoz,A.Moragues,T.Garcia,B.Solsona, Thedifferentcatalyticbehaviourinthepropanetotaloxidationofcobaltand manganeseoxidespreparedbyawetcombustionprocedure,Chem.Eng.J. 229(2013)547–558.

[12]C.Drouet,P.Alphonse,Synthesisofmixedmanganiteswithhighsurfacearea bythermaldecompositionofoxalates,J.Mater.Chem.12(2002)3058–3063.

[13]V.Iablokov,K.Frey,O.Geszti,N.Kruse,HighcatalyticactivityinCOoxidation overMnOxnanocrystals,Catal.Lett.134(2010)210–216.

[14]J.Robin,Etudedesoxalatesmétalliquescommematièrespremièrespourla preparationdesolutionsolidesd’oxydes,BulletindelaSociétéChimiquede France20(1953)1078–1084.

[15]J.Rodríguez-Carvajal,RecentdevelopmentsoftheprogramFULLPROF, Commissiononpowderdiffraction(IUCr)Newsletter26,12–19.

[16]P.Thompson,D.E.Cox,J.B.Hastings,RietveldrefinementofDebye-Scherrer synchrotronX-raydatafromAl2O3,J.Appl.Crystallogr.20(1987)79–83. [17]S.Brunauer,P.Hemmett,E.Teller,Adsorptionofgasesinmultimolecular

layers,J.Am.Chem.Soc.60(1938)309–319.

[18]N.Seaton,J.Walton,N.Quirke,Anewanalysismethodforthedetermination oftheporesizedistributionofporouscarbonsfromnitrogenadsorption measurements,Carbon27(1989)853–861.

[19]D.Dollimore,D.Nicholson,Thethermaldecompositionofoxalates:partI, Var.Surf.AreaTemp.Treat.AirJ.Chem.Soc.96(1962)0–96.

[20]D.Broadbent,D.Dollimore,J.Dollimore,Thethermaldecompositionof oxalates.partVII.Theeffectofpriordehydrationconditionsuponthe subsequentdecompositionofcobaltoxalate,J.Chem.Soc.A.(1966) 1491–1493.

[21]D.Dollimore,J.Dollimore,J.Little,Thethermaldecompositionofoxalates. PartX.Nitrogenadsorptiondataonsolidresiduesfromtheisothermalheat treatmentofmanganese(II)oxalatedihydrate,J.Chem.Soc.A.(1969) 2946–2951.

[22]M.E.Brown,D.Dollimore,A.K.Galwey,Thermaldecompositionof manganese(II)oxalateinvacuumandinoxygen,J.Chem.Soc.FaradayTrans. 170(1974)1316–1324.

[23]K.Nagase,K.Sato,N.Tanaka,Thermaldehydrationanddecomposition reactionsofbivalentmetaloxalatesinthesolidstate,Bull.Chem.Soc.Jpn.48 (1975)439–442.

[24]J.Mu,D.D.Perlmutter,Thermaldecompositionofcarbonates,carboxylates, oxalates,acetatesformatesandhydroxides,Thermochim.Acta49(1981) 207–218.

[25]D.Dollimore,Thethermaldecompositionofoxalates.Areview,Thermochim. Acta117(1987)331–363.

[26]X.Gao,D.Dollimore,Thethermaldecompositionofoxalates.Part26.A kineticstudyofthethermaldecompositionofmanganese(II)oxalate dihydrate,Thermochim.Acta215(1993)47–63.

[27]A.Coetzee,M.E.Brown,D.J.Eve,C.A.Strydom,Kineticsofthethermal dehydrationsanddecompositionsofsomemixedmetaloxalates,J.Therm. Anal.41(1994)357–385.

[28]A.K.H.Nohman,H.M.Ismail,G.A.M.Hussein,Thermalandchemicaleventsin thedecompositioncourseofmanganesecompounds,J.Anal.Appl.Pyrolysis 34(2)(1995)265–278.

[29]A.K.Nikumbh,A.E.Athare,S.K.Pardeshi,Thermalandelectricalpropertiesof manganese(II)oxalatedihydrateandcadmium(II)oxalatemonohydrate, Thermochim.Acta326(1999)187–192.

[30]M.Maciejewski,E.Ingier-Stocka,W.D.Emmerich,A.Baiker,Monitoringofthe gasphasecomposition:aprerequisiteforunravellingthemechanismof decompositionofsolids.Thermaldecompositionofcobaltoxalatedihydrate, J.Therm.Anal.Calorim.60(2000)735–758.

[31]B.V.L’vov,Kineticsandmechanismofthermaldecompositionofnickel, manganese,silver,mercuryandleadoxalates,Thermochim.Acta364(2000) 99–109.

[32]B.Malecka,E.Drozdz-Cielsa,P.K.Olszewski,Kineticsofthermal

decompositionofmanganese(II)oxalate,J.Therm.Anal.Calorim.74(2003) 485–490.

[33]M.A.Mohamed,A.K.Galwey,S.A.Halawy,Acomparativestudyofthethermal reactivitiesofsometransitionmetaloxalatesinselectedatmospheres, Thermochim.Acta429(2005)57–72.

[34]B.Donkova,D.Mehandjiev,Mechanismofdecompositionofmanganese(II) Oxalatedihydrateandmanganese(II)oxalatetrihydrate,Thermochim.Acta 421(2004)141–149.

[35]M.E.Brown,D.Dollimore,A.K.Galwey,Thermochemistryofdecompositionof manganese(II)oxalatedihydrate,Thermochim.Acta21(1977)103–110.

[36]V.Iablokov,K.Frey,O.Geszti,N.Kruse,HighcatalyticactivityinCOoxidation overMnOxnanocrystals,Catal.Lett.134(2010)210–216.

[37]N.B.S.The,Tablesofchemicalthermodynamicproperties,J.Phys.Chem.Ref. Data11(supplementno.2)(1982).

[38]O.Kubaschewski,C.B.Alcock,P.J.Spencer,MaterialsThermochemistry,6th ed.,PergamonPress,1993.

[39]Y.Xiao,D.E.Wittmer,F.Izumi,S.Mini,T.Graber,P.J.Viccaro,Determinationof cationsdistributioninMn3O4byanomalousX-raypowderdiffraction,Appl.

Phys.Lett.85(2004)736–738.

[40]H.Bordeneuve,C.Tenailleau,S.Guillemet-Fritsch,R.Smith,E.Suard,A. Rousset,StructuralvariationsandcationdistributionsinMn3−xCoxO4

(0<x<3)denseceramicsusingneutrondiffractiondata,SolidStateSci.12 (2010)379–386.

[41]D.Jarosch,Crystalstructurerefinementandreflectancemeasurementsof hausmannite,Mn3O4,Mineral.Petrol.37(1987)15–23.

[42]C.Laberty,M.Verelst,P.Lecante,P.Alphonse,A.Mosset,A.Rousset,Awide angleX-rayscattering(WAXS)studyofnonstoichiometricnickelmanganite spinelsNiMn2h3ı/4O4+ı,J.SolidStateChem.129(1997)271–276. [43]M.Shelef,M.A.Z.Wheeler,H.C.Yao,Ionscatteringspectrafromspinel

surfaces,Surf.Sci.47(1975)697–703.

[44]J.P.Jacobs,A.Maltha,J.G.H.Reintjes,J.Drimal,V.Ponec,H.H.Brongersma,The surfaceofcatalyticallyactivespinels,J.Catal.147(1994)294–300.

[45]K.Omata,T.Takada,S.Kasahara,M.Yamada,Activesiteofsubstitutedcobalt spine1oxideforselectiveoxidationofCO/H2.PartII,Appl.Cata.A:Gen.146

(1996)255–267.

[46]X.Xie,Y.Li,Z.Q.Liu,M.Haruta,W.Shen,Low-temperatureoxidationofCO catalysedbyCo3O4nanorods,Nature458(2009)746–749.

[47]Y.F.YuYao,TheoxidationofhydrocarbonsandCOovermetaloxides:III. Co3O4,J.Catal.33(1974)108–122.

[48]F.Grillo,M.M.Natile,A.Glisenti,Lowtemperatureoxidationofcarbon monoxide:theinfluenceofwaterandoxygenonthereactivityofaCo3O4

powdersurface,Appl.Catal.B:Environ.48(2004)267–274.

[49]T.Garcia,S.Agouram,J.F.Sanchez-Royo,R.Murillo,A.M.Mastral,A.Aranda,I. Vazquez,A.Dejoz,B.Solsona,Deepoxidationofvolatileorganiccompounds usingorderedcobaltoxidespreparedbyananocastingroute,Appl.Cata.A: Gen.386(2010)16–27.

[50]B.Solsona,E.Aylon,R.Murillo,A.M.Mastral,A.Monzonis,S.Agouram,T.E. Davies,S.H.Taylor,T.Garcia,Deepoxidationofpollutantsusinggold depositedonahighsurfaceareacobaltoxidepreparedbyananocasting route,J.Hazard.Mater.187(2011)544–552.

[51]G.Salek,P.Alphonse,P.Dufour,S.Guillemet-Fritsch,C.Tenailleau, Low-temperaturecarbonmonoxideandpropanetotaloxidationby nanocrystallinecobaltoxides,Appl.Catal.B:Environ.147(2014)1–7.

Figure

Fig. 1. Examples of XRD patterns of Co x/3 Mn (3−x)/3 C 2 O 4 .2H 2 O after the profile fitting with the FULLPROF software [15]
Fig. 2. SEM images of some oxalates.
Fig. 3. TGA-DSC curves for some oxalates.
Fig. 4. Effect of cobalt fraction on the onset temperature of dehydration T i (upper-left), the width of the decomposition peak (upper-right), the enthalpy of dehydration (lower-left) and the enthalpy of decomposition (lower-right).
+5

Références

Documents relatifs

In this paper we prove there is no exact packing measure for the level sets of stable trees (including the Brownian case) and we also prove that there is no exact Hausdorff measure

(a) Silica nanoparticles coated with a supported lipid bilayer [17]; (b) gold particles embedded within the lipid membrane of a vesicle [31]; (c) silica particles adsorbed at

Cette approche n’est cependant pas complètement satisfaisante, puisque de nombreuses requêtes ne contiennent pas de tels mots-clefs mais des combinaisons de mots qui, séparément,

Pour l’ann´ee 1991-1992 Bruno Torr´esani et Philippe Tchamitchian organis`erent au CPT `a Marseille une seconde « Ann´ee Ondelettes » qui donna lieu `a plusieurs manifestations :

Nous avons mis en œuvre un code numérique pour l’étude de la ventilation traversante naturelle dans une cavité ouverte. Nous avons choisi un modèle de pièce qui sera la base

Human OA and mouse articular chondrocytes were stimulated with increasing concentrations of visfatin (1, 2.5, 5 and 10 μg/mL) for 24 hours and NGF mRNA expression and release

En détail, il s’agit d’un unique câble à fibre optique, placé sur deux circonférences, avec deux méthodes de fixation (Figure 1); pour faciliter les comparaisons, les lieux de

Ces médi caments sont généralement issus de la pharmacopée traditionnelle et sont couramment uti lisés par la communauté avec une amélioration de la présentation