• Aucun résultat trouvé

CO2 Geological Storage in the Province of Québec, Canada. Basin-scale prospectivity assessment and capacity evaluation.

N/A
N/A
Protected

Academic year: 2021

Partager "CO2 Geological Storage in the Province of Québec, Canada. Basin-scale prospectivity assessment and capacity evaluation."

Copied!
1
0
0

Texte intégral

(1)

CO Geological Storage in the Province of Québec, Canada

2

Basin-scale prospectivity assessment and capacity evaluation

Karine Bédard,

Institut national de la recherche scientifique, Centre - Eau Terre Environnement

Michel Malo, Félix-Antoine Comeau

SÉQUESTRATION GÉOLOGIQUE DU CO2

CHAIRE DE RECHERCHE

Acknowlegments

3

ρCO2 = CO density (kg/m )2

Calculated for each cell of the 3D model. Function of temperature and pression.

3

802 to 818 kg/m between 800 and 3500 m.

GCO2 = CO storage ressource mass estimate (kg)2

G

= E

x A x h x ɸ x ρ

CO2 saline t g tot CO2

2

A = Total area of the formation (m )t

h = Gross thickness of the formation (m)g 3

A x h = Gross volume of the formation (m )t g

Calculated directly with 3D model.

Theoretical Capacity Effective Capacity Practical Capacity Matched Capacity After Bac hu et al ., 2007. Cairnside = 3% Covey Hill = 5%

ɸ = Total porosity of the formation (%)tot

Esaline = Storage efficiency factor for saline formation (%)

Defined by the Carbon Sequestration Atlas of the United States and Canada (DOE-NETL, 2010)

Lithology Formations E(P10) E(P50) E(P90)

Clastics Cairnside

Covey Hill 0.51% 2.0% 5.4%

Malo and Bédard (2012); Bédard et al. (2011)

ST. LAWRENCE

LOWLANDS ANTICOSTI APPALACHIAN GASPÉ MAGDALEN

Seismicity (tectonic setting) Low (4) Low (4) Low (4) Low (4) Low (4) Size Medium (3) Very large (5) Very large (5) Large (4) Large (4) Depth Intermediate (4) Intermediate (4) N/A Intermediate (4) Intermediate (4) Deformation

(faults and fractures)

Limited (3) Limited (3) Extensive (1) Extensive (1) Limited (3) Reservoir-seal pair Excellent

(3) Excellent (3) Poor (1) Poor (1) Excellent (3)

Geothermal Cold basin

(3) Cold basin (3) Cold basin (3) Cold basin (3) Cold basin (3) Hydrocarbon potential Medium (3) Medium (3) None (1) Small (2) Large (4) Evaporites None (1) None (1) None (1) None (1) Domes (2) Coal None (1) None (1) None (1) None (1) Deep (2) Maturity of exploration Developing (3) Exploration (2) Unexplored (1) Exploration (2) Exploration (2)

On/Off shore Onshore

(4) Shallow offshore and onshore (3) Onshore (4) Onshore (4) Shallow offshore (2) Climate Temperate (5) Temperate (5) Temperate (5) Temperate (5) Temperate (5) Accessibility Easy (4) Difficult (2) Easy (4) Easy (4) Difficult (2) Infrastructures Extensive (4) Minor (2) Extensive (4) Extensive (4) Minor (2) CO sources2 Many (5) Few (2) Moderate (3) None (1) Few (2) General score Rk 0.84 0.70 0.51 0.59 0.68 GEOLOGICAL CRITERIA PRACTICAL CRITERIA More favorable Less favorable

B

ASIN

S

UITABILITY FOR

CO S

2

TORAGE

The basin classification method used for Southern Québec is based on the work of Bachu (2003) and Kaldi and Gibson-Poole (2008). Five (5) basins were evaluated :

ŸMagdalen Basin

ŸSilurian-Devonian Gaspé Basin

ŸCambrian-Ordovician Appalachian Basin

ŸAnticosti Basin

ŸSt. Lawrence Lowlands Basin

B

ASIN

E

VALUATION AND

R

ANKING FOR

CO S

2

TORAGE

The St. Lawrence Lowlands Basin is, by far, the most prospective

for CO sequestration in the Province of Québec. It contains 2

excellent reservoir-seal pairs, many well and seismic data are

available, several large CO emitters are present directly in the basin, 2

accessibility is easy and infrastructure is extensively developed. Deep

saline aquifers present in the autochthon sedimentary units are

considered as potential CO reservoir in the basin. 2

S

T

. L

AWRENCE

L

OWLANDS

B

ASIN

C

HARACTERISTICS

The St. Lawrence Lowlands Basin is made up of Cambrian to

Upper Ordovician rocks resting unconformably on the Precambrian Shield. It represents a complete siliciclastic and carbonate platform succession. NE-SW normal syn-sedimentary faults affect the

succession as well as the bedrock which result in a deepening of the basin toward to Appalachians to the SE.

Logan’s Line Lotbinière (A072) Lotbinière (A192) Sainte-Croix

(A167) Saint-Flavien (A178) Saint-Flavien (A180)

St-Flavien thrust slice (1500-1800 m deep)

A A’

Scale

0 5 km

T

wo way travel time

0 1 2 3 4 sec Precambrien basement

Potential storage reservoirs Potsdam

Beekmantown

Trenton, Black River & Chazy Utica Shale

Lorraine/Sainte-Rosalie _-O Appalachian Basin

Modified from Castonguay et al. (2010)

T

ARGETED

R

ESERVOIR ROCKS Cairnside Formation

Covey Hill Formation

Sandstones Quartz (99%)

Fine to medium grained

Well rounded and well sorted Average porosity : ~3%

Sandstones, conglomerates, shales Quartz, feldspars, others

Poorly sorted

Average porosity : ~5%

Well data : formation tops in depth

Geological map : formation limits at the surface Bedrock map from seismic lines : bedrock geometry

3D M

ODEL

I

NPUT

D

ATA

C

OVEY

H

ILL AND

C

AIRNSIDE

: 800-3500 m

D

EPTH

: 800-3500 m

3D G

EOLOGICAL

M

ODEL 9 km Wells Covey Hill Cairnside Precambrian basement Caprocks Trenton/Black River/Chazy Beauharnois Theresa LEGEND ORDOVICIAN CAMBRIAN M U M U L Potsdam Beekmantown Utica Lorraine Queenston Cairnside Covey Hill Theresa Beauharnois Precambrian shield = Sainte-Rosalie Trenton Black River Chazy

C

APROCKS

Lorraine / Ste-Rosalie groups Utica Shale

Shales, siltstones, sandstones

Black calcareous shales

St. Lawrence River

F

ORMATION

T

HICKNESS

Covey Hill average : ~400 m

Thickness (m)

Cairnside average : ~180 m

Thickness (m)

3D M

ODEL OF THE

S

T

. L

AWRENCE

L

OWLANDS

B

ASIN

The evaluation of the effective storage capacity of the St. Lawrence Lowlands was performed using a 3D geological model of the basin. This allowed calculating the volume of the potential reservoirs as

well as the density of CO in every cell of the model. 2

The Covey Hill and Cairnside formations are considered in the basin-scale storage capacity evaluation. The Trenton, Black River, Chazy and Beekmantown groups are not considered because of their low global porosity.

60°W 65°W 65°W 70°W 70°W 75°W 50°N 50°N 45°N 45°N A’ A 0 50 100 150 200 km Canada USA Mexico New Brunswick Nova Scotia P.E.I. USA Province of Québec Québec City Montréal Gulf of St. Lawrence Anticosti Island CO emissions by facility (2009)2 100,000 - 250,000 tons 250,000 - 500,000 tons 500,000 - 1,000,000 tons > 1,000,000 tons LL Québec boundaries A’ A M-2001 seismic line P-C Magdalen S-D Gaspé Belt Precambrian basement Sedimentary basins Lowlands _-O St. Lawrence O-S Anticosti _-O Appalachians

G

EOLOGICAL

M

AP

Références

Documents relatifs

Dans l'énumération des branchiospines, nous avons suivi la méthode déjà établie dans notre publication de 1946 (p. Chez tous les spécimens du Québec, le premier arc branchial fut

La province de Québec couvre ure sr- perficie d'environ 600,000 milles carrées. Elle est le plus grande du Canada. Située dans la partie est du pays, elle est limi- tée au nord par

mines 1.11 sont maintenant la propriété de la Krarbott and llattiroa Company de Ambler, (Pensylvsnit) nuis .ntinuent à opérer de la mamie façon et muf connue eut le nom de

La directrice générale mentionne qu’aucun problème n’est survenu quant aux décisions prises par le Conseil lors de la séance ordinaire du 6 juillet 2021 et de la séance

L'utilisation des lanternes volantes ou tout autres objets volants contenant une flamme nue sont interdits en tout temps sur tout le territoire. Quiconque manipule sans nécessité

Afin de calculer un coût marginal en dollars de 1976, nous avons transformé la colonne A de chaque tableau pour obtenir la colonne B qui exprime le programme d'inves- tissement

Since the fishing results are the most effective tools in order to do a more effective management the anglers will be asked for cooperating or for doing themselves a complete

Si nous avions comme voisin un pays pauvre, ou encore un pays où la population serait moins adonnée au sport de la pêche et de la chasse, notre faune, aquatique ou