• Aucun résultat trouvé

Characterization of Fatigue Behaviour, from Material Science to Civil Engineering Applications

N/A
N/A
Protected

Academic year: 2021

Partager "Characterization of Fatigue Behaviour, from Material Science to Civil Engineering Applications"

Copied!
30
0
0

Texte intégral

(1)

Characterization

of Fatigue Behaviour,

from Material Science

to Civil Engineering

Applications

OptiBri-Workshop

"Design Guidelines for Optimal Use of

HSS in Bridges"

3

rd

May 2017

Chantal

Bouffioux

(2)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Size effect

Laws validation

interest of HSS

Beams

Critical bridge

detail

A B C

Future applications

Static & fatigue

tests

Small samples

Material behaviour

Static

Fatigue (small size)

Large welded

plates

Fatigue tests

Residual stress

Effect of:

size & machining

welding

post-treatments

(3)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Size effect

Laws validation

interest of HSS

Beams

Critical bridge

detail

A B C

Future applications

Static & fatigue

tests

Small samples

Material behaviour

Static

Fatigue (small size)

Large welded

plates

Fatigue tests

Residual stress

Effect of:

size & machining

welding

post-treatments

Fatigue behaviour

(4)

OptiBri Workshop “Design Guidelines for Optimal Use of HSS in Bridges” U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

4 materials:

-

B

ase

M

aterial:

BM

(HSS - S690QL)

-

H

eat

A

ffected

Z

one:

HAZ1

(25 mm thick)

HAZ2

(40 mm thick)

-

W

elded

M

etal:

WM

BM-Plate

BM-Stiffener

WM

HAZ

(5)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Static tests:

RD

Tensile test

RD

Large tensile test

RD

d

d

b

RD

d

d

b

Shear test

Bauschinger shear test

RD

Large tensile test

RD

d

d

b

RD

d

d

b

Shear test

Bauschinger shear test

RD

Large tensile test

RD

d

d

b

RD

d

d

b

Shear test

Bauschinger shear test

or

(6)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Static behavior – material laws & parameters :

Elastic part: Hooke's law: E, ν

Plastic part: Hill's law (Hill48):

Isotropic hardening: Voce formulation:

Back-stress (kinematic hardening): Armstrong-Frederick's equation:

E & ν: defined by tensile tests

F, G, H: defined by tensile tests in 3 directions (RD, TD, 45°)

N, σ

0

, K, n, C

x

, X

sat

: defined by Optim

𝐹

𝐻𝐼𝐿𝐿

𝜎 =

1

2

𝐻 𝜎

𝑥𝑥

− 𝜎

𝑦𝑦 2

+ 𝐺 𝜎

𝑥𝑥

− 𝜎

𝑧𝑧 2

+ 𝐹 𝜎

𝑦𝑦

− 𝜎

𝑧𝑧 2

+ 2𝑁 𝜎

𝑥𝑦2

+ 𝜎

𝑥𝑧2

+ 𝜎

𝑦𝑧2

− 𝜎

𝐹2

= 0

𝑋 = 𝐶

𝑋

( 𝑋

𝑠𝑎𝑡

𝜀

𝑝𝑙

− 𝜀

𝑝𝑙

. 𝑋 )

𝜎

𝐹

= 𝜎

0

+ 𝐾(1 − 𝑒𝑥𝑝(−𝑛. 𝜀

𝑝𝑙

))

(7)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Static behavior – material data (inverse method):

Data for Hooke, Hill, Voce and Armstrong-Frederick laws (units: MPa, s)

Material

Elast. data

Yield locus

Isotropic hardening

Kinematic

hardening

E

ν

F

G

H

N=L=M

K

σ

0

n

C

X

X

sat

BM (S690QL)

210 116

0.3

1

1

1

3.9

0

674

0

31.9

167

HAZ1, HAZ2

210 000

0.3

1

1

1

4.45

371

827

511

52.5

152

WM

210 000

0.3

1

1

1

3.2

241

531

285

42.6

218

Ultimate tensile strength (Mpa)

σ

u,eng

σ

u,true

BM (S690QL)

838

905

HAZ1, HAZ2

1338

1424

WM

1008

1101

For fatigue tests:

σ

u,eng

= F

i

/

A

0

For FEM:

σ

u,true

= F

i

/

A

i

BM: hardening fully kinematic

HAZ1

HAZ2: same static behaviour

(8)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion 0 200 400 600 800 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Sh

e

ar

s

tr

e

ss

(

MP

a)

Gamma

Shear tests

BMnum

HAZnum

WMnum

BMexp HAZexp WMexp

Static behavior – comparison of material behavior:

0 200 400 600 800 1000 1200 1400 1600 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Tr

u

e

s

tr

e

ss

(

M

P

a)

True strain

Tensile tests

BMnum

HAZnum

WMnum

BMexp HAZexp

BM

WM

HAZ

BM

WM

HAZ

(9)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Fatigue tests:

Material

Smooth

Notch

BM (S690QL) 4 R

3 geom.

HAZ1

1 R

1 geom.

HAZ2

2 R

1 geom.

WM

2 R

1 geom.

R= σ

min

/ σ

max

= 0.1 or 0.2 or

0 1 2 3 4 5 6

St

re

ss

N cycles

σ

max

σ

min

σ

ave 0

Vibrophore

On vibrophore

Axial loading

Frequency: 100 – 150 Hz

(→ correction factor)

(10)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Fatigue behavior – material laws & parameters :

Multiaxial Lemaître Chaboche fatigue model

∂D ∂N = 0 if fD< 0 = 1 − 1 − D β+1 α A II M β if fD ≥ 0 fD = AII− A∗II AII= 1 2 3

2 σ ijmax − σ ijmin σ ijmax − σ ijmin with σ ij= σij−

1 3 σkk k AII= AII 1 − D AII∗= σl0 (1 − 3. b. σHm) (Sines' criterion) M = M0 1 − 3. b. σHm α = 1 − a AII− AII ∗ σu− σeqmax σHm= 1 3 1 T Tr σ (t) dt T

D:

damage val., 0: sound material, 1: rupture

N:

number of cycle

A

II

:

2

nd

invar. of amplit. deviator of σ tensor

A

II*

:

fatigue limit

f

D

:

damage yield locus

σ

Hm

:

mean hydrostatic stress

σ

eqmax

:

maximum Von Mises stress per cycle

<x>

= x if x > 0 else = 0

b= 1/σ

u

σ

u

:

ultimate tensile stress

σ

l0

:

endurance limit= fatigue limit at null σ

mean

(11)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Fatigue behavior – material laws & parameters :

Volume averaged stress gradient method

A

II

:

2

nd

invar. of amplit. deviator of σ tensor

σ

eqmax

:

maximum Von Mises stress per cycle

σ

Hm

:

mean hydrostatic stress

Ra

:

material data to define

𝜒

𝑖𝑝

= 𝐴

𝐼𝐼

, 𝜎

𝑒𝑞𝑚𝑎𝑥

, 𝜎

𝐻𝑚

For each element, variables χ

ip

: replaced

by an average value of all the elements

with their integration point inside the

circle with a radius Ra

𝜒

𝑖𝑝

=

1

𝑉

.

𝜒

𝑖𝑝 ,𝑖

. 𝑉

𝑖 𝑁𝑒𝑙𝑒𝑚 𝑖=1

𝑉 =

𝑉

𝑖 𝑁𝑒𝑙𝑒𝑚 𝑖=1

Ra

IP

(12)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Fatigue behavior – material data (inverse modelling):

HAZ1

HAZ2

: same fatigue behavior

Material

σ

U

(Mpa)

σ

l0

(Mpa)

b

β

a

M0

Ra

(mm)

a*(M0

-β)

BM

905.0

580.0

1.10 E-03

0.17

1

5.385 E+30

0.06

5.966E-06

HAZ1, HAZ2

1424.0

428.4

7.02E-04

2.094

1

4.410E+05

0.00

1.516E-12

(13)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

100

1000

1E+4

1E+5

1E+6

1E+7

Δσ

(MP

a)

Cycles, N

Exp-A Exp-B Exp-C

Num-A Num-B Num-C

BM - Notch - R= 0.1

100

1000

1E+4

1E+5

1E+6

1E+7

Δ

σ

tr u e

(M

P

a)

Cycles, N

Exp_R0.1 Law_R0.1 Exp_R0.2 Law_R0.2 Exp_R0.4 Law_R0.4 Exp_R0.5 Law_R0.5

BM - Smooth

Fatigue behavior – comparison experiments & fatigue law:

Base material (BM)

(14)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

100

1000

1E+4

1E+5

1E+6

1E+7

Δσ

(MP

a)

Cycles, N

Exp Numerical

HAZ2 - Notch - R=0.1

100

1000

1E+4

1E+5

1E+6

1E+7

Δ

σ

tr u e

(M

P

a)

Cycles, N

Exp_R0.1

Law_R0.1

Exp_R0.3

Law_R0.3

HAZ2 - Smooth

Fatigue behavior – comparison experiments & fatigue law:

Heat affected zone (HAZ) with HAZ1 ≈ HAZ2

(15)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

100

1000

1E+4

1E+5

1E+6

1E+7

Δ

σ

(MP

a)

Cycles, N

Exp

Numerical

WM - Notch - R=0.1

100

1000

1E+4

1E+5

1E+6

1E+7

Δ

σ

tr u e

(MP

a)

Cycles, N

Exp_R0.05

Law_R0.05

Exp_R0.1

Law_R0.1

WM - Smooth

Fatigue behavior – comparison experiments & fatigue law:

Weld metal (WM)

(16)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Size effect

Laws validation

interest of HSS

Beams

Critical bridge

detail

A B C

Future applications

Static & fatigue

tests

Small samples

Material behaviour

Static

Fatigue (small size)

Large welded

plates

Fatigue tests

Residual stress

Effect of:

size & machining

welding

post-treatments

(17)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Fatigue tests on plates (length= 1070 mm):

Case

Post-treatment

plate

thickness

(mm)

Stiffener

thickness

(mm)

Stiffener

length (mm)

distance to

edge

stress ratio

R

Plate

No weld

25

-

-

-

0.1

A (ref case)

PIT

25

15

60

0.1, 0.3, 0.5

B

PIT

15

15

60

0.1

E

PIT

25

15

60

no

0.1

H

PIT

40

15

60

no

0.1

C

TIG remelting

15

15

60

0.1

D

TIG remelting

25

15

60

0.1

F

TIG remelting

25

15

40

0.1

G

TIG remelting

15

6

60

0.1

I

No post-treatment

15

15

60

0.1

No edge distance

Edge distance

1070 235 5

Plate

(18)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Fatigue behavior – material data (inverse modelling):

Material

σ

U

(Mpa)

σ

l0

(Mpa)

b

β

a

M0

Ra

(mm)

a*(M0

-β)

BM-SS

905.0

580.0

1.10 E-03

0.17

1

5.385 E+30

0.06

5.966E-06

BM-plate

905.0

203.0

1.10 E-03

0.17

1

5.385 E+30

0.06

5.966E-06

100

1000

1E+4

1E+5

1E+6

1E+7

Δ

σ

tr u e

(MP

a)

Cycles, N

Small sample_Exp

Small sample_Law

Plate_Exp

Plate_Law

BM - Small samples & plates - R= 0.1

Small samples, Ra= 0.8 µm,

length: 96 mm

Plates, as produced,

length: 1070 mm

1070

235 5

σ

l0

= endurance limit= fatigue limit at null σ

mean

(19)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

100

1000

1E+4

1E+5

1E+6

1E+7

Δσ

(M

P

a)

Cycles to failure, N

Welding effect

I

BM-Plate

Fatigue tests:

welding effect

Plates

1070 235 5

Welded plates

Welding effect

(20)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

100

1000

1E+4

1E+5

1E+6

1E+7

Δσ

(MP

a)

Cycles to failure, N

PIT effect

A

B

E

H

I

Fatigue tests: PIT post-treatment effect

Welded plates

Welded plates + PIT, ≠ geom.

PIT: 4 cases

low effect of

geometry

(21)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

100

1000

1E+4

1E+5

1E+6

1E+7

Δσ

(M

P

a)

Cycles to failure, N

TIG remelt. effect

C

D

F

G

I

Fatigue tests:

TIG remelting post-treatment effect

Welded plates

Weld. plates + TIG rem. , ≠ geom.

Ongoing

(22)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

100

1000

1E+4

1E+5

1E+6

1E+7

Δσ

(M

P

a)

Cycles to failure, N

Effect of stress ratio on A

A_0.1

A_0.3

A_0.5

Fatigue tests: Stress ratio effect

Welded plates + PIT

R= σ

min

/ σ

max

=

0.1

or 0.3 or 0.5

0 1 2 3 4 5 6

St

re

ss

N cycles

σ

max

σ

min

σ

ave 0

stress ratio 

(23)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

100

1000

1E+4

1E+5

1E+6

1E+7

Δσ

(M

P

a)

Cycles to failure, N

Small samples

Plates

Weld. plates + PIT

Weld. plates + TIG rem.

Welded plates

EN 1993-1-9

cat 80

Fatigue tests

Summary, all cases, R= 0.1

EN 1993-1-9, Δσc = 80 MPa

3

1

(24)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Residual stress measurement

3 mm 13 mm P1 MW WE TD RD

Several cases:

3 geometries

3 cases: PIT, TIG remelting, no post-treat.

Mid-weld (MW), weld edge (WE), RD, TD

X-ray, neutron diffraction

Welding & post-treatment effects:

up to depth ≈ 3-4 mm

up to weld toe distance ≈ 6-7 mm

(25)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion 0 1 2 3

σ

no m in al

N cycles

Plate Stiffener Welding HAZ

X

Y

Z

Fatigue - numerical analysis

X Y

(26)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Fatigue - numerical analysis

Example of results without post-treatment , no σ

res

σ

xx

(Mpa) for nominal stress = 600 Mpa

nom

= F/A

0

and A

0

= section of web)

< 0 10 20 30 40 50 60 70 80 90 100 > 110 * 10.0

3 mm

2 mm

Stress concentration at weld toe:

up to depth ≈ 2 mm (in HAZ)

up to weld toe distance ≈ 3 mm

0 1 2 3

σ

no m in

N cycles

< 0 10 20 30 40 50 60 70 80 90 100 > 110 * 10.0

(27)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

1.

Mesh analysis element size at weld toe: 0.1 mm (results not mesh dependent)

2.

For several stress ranges and a specified stress ratio (here: 0.1):

Numerical analysis Stress distribution number of cycle at rupture

Next steps:

to add σ

res

to model (welding + post-treatment)

to improve fatigue mat. data of HAZ (σ

l0

)

to study beams and critical bridge detail

100

1000

1E+4

1E+5

1E+6

1E+7

Δσ

(M

P

a)

Cycles to failure, N

Small case samples

A

B

E

H

I

Num.

0.E+0

1.E+4

2.E+4

3.E+4

4.E+4

5.E+4

6.E+4

7.E+4

8.E+4

9.E+4

1.E+5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C

yc

le

s

to

f

ai

lu

re

, N

f

Element size (mm)

Mesh analysis

Fatigue - numerical analysis

Welded

plates

Welded plates + PIT

Num.: 1

st

tests

welded plates

(28)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Fatigue - numerical analysis, crack propagation

(29)

U n iv e rs it y o f L ièg e A rg e n c o d e p a rt m e n t – M S ²F s e c to r – M S M d iv is ion

Important test campaign has been done to prepare numerical fatigue study of bridge details:

Static tests

Static behaviour

Fatigue tests

Fatigue behaviour (small size)

Fatigue tests on large welded plates

Effects of size, surface roughness, welding,

geometry, post-treatments

Residual stresses measurements

Effect of post-treatments for num. analysis

Mesh analysis

welded plates: elem. size at weld toe: 0.1 mm

Crack propagation

deep analysis of fatigue study

BM, HAZ, WM

on small samples

Positive effect in fatigue life is shown on welded plates

(30)

E-Mail

chantal.bouffioux@ulg.ac.be

Telefon +32 (0) 4 366 92 19

Fax

+32 (0) 4 366 95 34

University of Liège

ARGENCO department

Quartier Polytech 1,

Allée de la découverte, 9 Bât B52/3

B-4000 Liège BELGIUM

Références

Documents relatifs

It is assumes that the plastic strains and stress are the source of dissipation and a comparison between plane stress/plane strain dissipation in the vicinity of crack tip is

The reasons for the outstanding performance of AI-Li alloys are manifold. It is argued that part of the improved crack growth resistance can be attributed to the

Study of thermal effects associated with crack propagation during very high cycle fatigue tests..

A cyclic plastic zone around the crack exists, and recording the surface temperature of the sample during the test may allow one to follow crack propagation and determine the number

Once the results are reported in the Paris diagram (see figure 2b), it appears that in presence of a T-stress, compared to null T-stress case, crack growth rate close to the

The fatigue crack growth rate (FCGR) is shown as a function of crack length a, for tubular specimen with a horizontal notch and crack growth curves are shown in Fig.. A very

Open grains have just a half size, and are then more influenced by the surrounding grains than by their own crystal orientation: the accumulated shear strain is partly inherited

This has been evidenced by the reduced plastic deformation near the crack path (Section 4.4) and the dislocation structure (random distribution of dislocation tangles, Figure