• Aucun résultat trouvé

21st century Antarctic surface mass balance downscaling from global circulation models

N/A
N/A
Protected

Academic year: 2021

Partager "21st century Antarctic surface mass balance downscaling from global circulation models"

Copied!
1
0
0

Texte intégral

(1)

21

st

 century Antarc.c surface mass balance downscaling 

from global circula.on models

Cécile Agosta

12

, Vincent Favier

1

, Christophe Genthon

1

, Hubert Gallée

1

 and Gerhard Krinner

1

1

Laboratoire de Glaciologie et Géophysique de l’Environnement – CNRS/UJF – Grenoble France. Contact : Cecile.Agosta@gmail.com

Université de Grenoble – Grenoble France

 

21

st

  century SMB forecast : improvements obtained with the downscaling step

The problem

1. Modeled surface mass balance is highly sensiMve to horizontal resoluMon

2. A coarse horizontal resoluMon is inadequate to resolve the steep topographic 

slopes around the edges of AntarcMca

3. High  resoluMon  SMB  (~10km)  from  medium  resoluMon  atmospheric  GCM 

(~100km) generally increases excessively the computaMonal Mme

4. A  correct  method  has  to  adequately  capture  the  impact  of  fine‐scale 

topography on precipitaMon

5. Surface Energy Balance (SEB) at high resoluMon is crucial, parMcularly at the ice 

sheet margins 

6. General circulaMon models (GCM) for the future should not be forced with Sea‐

Surface CharacterisMcs (SSC) taken from a coupled model but should instead be 

corrected through an anomaly method in which the present‐day observed SSC 

are used for the present‐day control simulaMon (Krinner et al., 2008) 

we  developed  a  new,  low  Mme  consuming  downscaling  method  for  high 

resoluMon (15km) SMB modeling over long periods (21

st

 and 22

nd

 centuries) 

Method : HiDEP model

1. The model computes the adiabaMc cooling effect due to the uplic of air masses across  the  fine  topography.  Orographic  precipitaMon  is  computed  through  an  explicit  formulaMon based on gravity wave theory (e.g. Gallée et al., 2011). 

2. Meteorological variables are interpolated to force the LMDZ4 surface scheme in order  to compute ablaMon and snow/ice evoluMon.

3. The  downscaling  model  is  applied  on  AGCM  outputs  obtained  with  the  anomaly  method from Krinner et al. (2008) 

Runs

The HiDEP model was forced by lower resoluMon climate forcing from ERA‐Interim and  from LMDZ4 Atmospheric GCM, including several improvements for the simulaMon of  polar  climates.  For  LMDZ4  simulaMons,  we  prescribe  anthropogenic  forcing  (greenhouse  gas  concentraMons (CO2,  CH4,  N2O,  CFC11,  CFC12) following  the  SRES‐ A1B  scenario  and  SSC  anomalies  using  the  oceanic  output  of  two  coupled  ocean‐ atmosphere  (MPI‐ECHAM5,  HADCM3)  model  experiments  from  CMIP3  climate  projecMon. We also used data from the E1 scenarios of the FP6‐ENSEMBLE program.

Figure 1 : HiDEP model : inputs and outputs

HiDEP  suggests  a  larger  SMB  increase  of  about  0.15  mm  s.l.e.  a‐1 

than in the low resoluMon GCM simulaMons (Figure 4). SMB increase  is  mainly  due  to  an  important  increase  in  solid  precipitaMon  in  intermediate elevaMon regions, between the coast and the plateau  (Figure 5).

Figure  2  :  Red  lines  are  SMB  contours  for  1980‐2007  period  at  Law  Dome  for  a)  ERA‐Interim  b) 

HiDEP forced by ERA‐Interim. c) SMB paMern based on observaNons from van Ommen et al. (2004).  Green lines are elevaNon contours. 

Figure 3 : a) SMB from ERA‐Interim, HiDEP forced 

by  ERA‐Interim  and  ObservaNon  for  each  20‐ observaNons bins b) Nash‐Sutcliff Efficiency (NSE)  between  modeled  and  measured  SMB  values  before and aWer downscaling step

ValidaMon

Low  resoluMon  ERA‐Interim  and  high  resoluMon HiDEP SMB data were compared  to  point  data  from  Vaughan  et  al.  (1999).  Regional SMB pajern is in good agreement  with the current general  picture of SMB in  AntarcMca, and the downscaled SMB bejer  reproduces  the  field  data  in  the  low  elevaMon areas (Figures 2 & 3).

by  the  GCM  sea  surface  characterisNcs  and  blue  bars  are  results  aWer  downscaling step HiDEP. EC refers to ECHAM5, and HA refers to HadCM3.

Figure  5  :  Difference 

of  P‐E  (precipitaNon  minus  evaporaNon)  and  SMB  between  1 9 8 0 ‐ 2 0 0 7  a n d  2070‐99  periods  for  A1B  scenario  for  LMDZ4‐HADCM3 and  HiDEP  forced  by  LMDZ4‐HADCM3.

However, more  negaMve SMB  are  also  observed  in several  regions,  that limits the trend  over  the  enMre  grounded  ice  sheet. Higher  liquid precipitaMon amount and melMng  should be observed  at  low elevaMon in Adelie Land, on Lambert glacier the eastern part of Droning Maud Land, and on the  AntarcMc Peninsula (Figure 5). Results show that SMB will results from conflict between higher snow  accumulaMon amounts and higher liquid precipitaMon and ablaMon rates. In such case, degree day  approaches do not sufficiently represent physical processes and should be considered with cauMon  due to the very poor data base used for precise calibraMon.  References :   Gallée, H., et al. (2011), A downscaling approach towards high‐resoluMon surface mass balance over AntarcMca, Surveys in Geophysics.   Krinner G, et al. (2008) Influence of oceanic boundary condiMons in simulaMons of AntarcMc climate and surface mass balance change during the coming century.  J. Clim.    van Ommen TD, et al. (2004) Deglacial and Holocene changes in accumulaMon at Law Dome, East AntarcMca. Ann Glaciol    Vaughan DG, Bamber JL, Giovinejo M, Russell J, Cooper APR (1999) Reassessment of net surface mass balance in AntarcMca. J Clim !"" #"" $"" %" &" " '&" '%" '$"" '#"" '!"" ()*+,-.'/ 01*/.-.'/ 01*/.-2)3 44-5676-89'$ :&"!"'&";;<-'-:$;="'&""!<->-?$3-@A7BC91D

the magnitude of the SMB can be one order of magnitude larger and the SMB increases with height. Hence we exclude the Antarctic Peninsula in our comparison.

[19] Nevertheless, the model-simulated SMB for the

Antarctic Peninsula (Figure 3) is briefly evaluated here. Although the limited model resolution smoothes the topog-raphy, the model-simulated SMB patterns are reasonable. For example, accumulation patterns in King George VI Sound are modeled well, because the model topography captures the sheltered position of the sound. The SMB on Dyer Plateau is overestimated, probably because the topo-graphic shape of the Dyer Plateau in the model is still a ridge instead of a plateau. Smaller grid spacing indeed improves model-simulated SMB patterns, as shown by Van Lipzig et al. [2004]. They also showed that the influence of snow drift on the plateau of the Antarctic Peninsula cannot be neglected, however, this process is not included in RACMO2/ANT.

[20] The model-simulated SMB behaves rather linearly

with elevation in the northern part of the peninsula (Figure 4), in agreement with the linear relationship that was found by Turner et al. [2002] based on SMB observa-tions. The model-simulated SMB increases 3.3 mm w.e.

yr!1 per m elevation. This is much more than the 1.40 that

was found by Turner et al. [2002] for the Western side of the peninsula. This might be due to the effects of snow drift which is not incorporated in RACMO2/ANT.

[21] A linear relation between elevation and SMB is less

distinct for Alexander Island. If all grid points in Alexander

Island are used, the SMB increases with 2.5 mm w.e. yr!1

per m elevation. The three large values (>2 m) in the north eastern corner of Alexander Island largely determine the slope. If these are omitted, the slope decreases to 1.2 mm

w.e. yr!1 per m elevation. Figure 3 shows that the southern

part of Alexander Island lies in the precipitation shadow of the northern hills. The relation between elevation and SMB is thus not equal above Alexander Island and in general lower than for the northern spine. These results differ from Turner et al. [2002], who uses the relationship of the

Figure 2. (a) Model-simulated and observed SMB over Law Dome. Observations are indicated by circles. Crosses mark land grid points, and diamonds mark grid points on sea, for which the annual solid precipitation is displayed. The dashed contours display the model surface elevation with an interval of 250 m. The green borders indicate the edges of the land and ice shelves and also the border of the excluded area. (b) Pattern based on SMB observations from [van Ommen et al., 2004] (reprinted with permission from the International Glaciological Society), which disagrees with the observations in Figure 2a.

Figure 3. Model-simulated and observed SMB in the Antarctic Peninsula. Observations are indicated by circles. A light blue is used for model sea grid points. The crosses mark land grid points. Model elevation is drawn in thin black lines with 500 m interval. The thick green line indicates the actual edges of land and ice shelves and also the southern border of the peninsula. The numbers mark locations in the peninsula: 1, King George VI Sound; 2, Dyer Plateau; 3, Alexander Island.

D11104 VAN DE BERG ET AL.: ANTARCTIC SURFACE MASS BALANCE

4 of 15

D11104

F o r  i n s t a n c e ,  S M B  distribuMon  at  Law  Dome  (Figure 3) is also improved.  The  SMB  distribuMon  pajern  is  quite  similar  to  the  figure  given  by  van  Ommen et al. (2004). 

Our  results reflect that the  SMB  distribuMon is mainly  caused by  the  orographic  forcing  on  precipitaMon  even  if  snowdric  is  an  important  variable  in  strong  katabaMc wind areas. However, the SMB lapse rate across mountain ranges is not  as pronounced as in observaMon, suggesMng that including humidity advecMon is  necessary when Fœhn effect is strong.  ACM Outputs    SublimationH iDEP SnowmeltH iDEP RefreezingH iDEP PrecipH iDEP : ! RainfallH iDEP SnowfallH iDEP

HiD

E

P

Boundary layer fields 3H time step 3D fields 6H time step High-Resolution Topography !" # " # $## "### "$## %### %$## &### &$## '### # "## %## &## '## $## # $## "### "$## %### %$## &### &$## '### ()*!+,-./01234526745 809(:234526745 ()*!+,-./01 809(: 674./3;-0<,4 =>( >?@2A112B 5.52C/ !" D %#!<74./3;-0<,42.E.3;-0<,21.;,2A1D %#!<74./3;-0<,42.E.3;-0<,21.;,2A1D

A1B

-1.5

-1.25

-1

-075

-0,5

-0.25

0

mm a

-1

s.l.e.

E1

EC HA 21 c. - 20 c. LMDZ4 HiDEP 22 c. - 20 c. EC HA HA HA EC HA HA EC HA HA Figure 4 : Sea level rise due 

to  SMB  difference  between  1980‐2007  and  2070‐99  for  E1  and  A1B  scenarios.  Red  bars  show  results  for  LMDZ4 simulaNons forced

a)

b)

c)

a)

Références

Documents relatifs

Our assumption follows from the argu- ment that the position-valence nature of a conflict will be the primary characteristic of the substance; political decision makers will

Data pruning In all the previous items, the entire set of data is used. However, because of a large redundancy, not all data are equally important, or useful. Hence, one can

The conjunction of new and consolidated sequences discriminability maps further revealed that a common cortical processing network, including non-motor primary and associative

The Small Volume Nebulizer (SVN) nebulizes microliter- sized liquid samples, allowing for highly time- and mass-resolved chemical analysis of dissolved organic species

from the landscape and process compatible model structure are, therefore, deemed as best estimates of the actual time series of average catchment scale soil saturation within the

Le calcul des statistiques essentielles des populations étudiées risque dans ce cas de comporter de graves erreurs s'il est basé sur une fraction de celle-ci qui ne reflète

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.