• Aucun résultat trouvé

Atmospheric CO2 exchanges over the European Continental shelf

N/A
N/A
Protected

Academic year: 2021

Partager "Atmospheric CO2 exchanges over the European Continental shelf"

Copied!
53
0
0

Texte intégral

(1)

Atmospheric CO

2

exchanges over the

European Continental Shelf

Alberto Borges & Michel Frankignoulle

University of Liège

Chemical Oceanography Unit

http://www.ulg.ac.be/oceanbio/co2

(2)
(3)

pCO

2

in the Scheldt estuary

Biogest cruises

0 5 10 15 20 25 30 0 2000 4000 6000 8000 Winter (december 96) Spring (may 98) Summer (july 96) Fall (october 98) salinity µ a tm

(4)

O

2

saturation level

in the Scheldt estuary

Biogest cruises

0 5 10 15 20 25 30 0 20 40 60 80 100 Winter (december 96) Spring (may 98) Summer (july 96) Fall (october 98) salinity %

(5)

Total organic carbon

in the Scheldt estuary

Biogest cruises

0 5 10 15 20 25 30 0 5000 10000 15000 Winter (december 96) Spring (may 98) Summer (july 96) Fall (october 98) salinity µ m o l k g -1

(6)

CO

2

atmospheric fluxes

in the Scheldt estuary

Biogest cruises

0 5 10 15 20 25 30 0 500 1000 1500 2000 Winter (december 96) Spring (mai 98) Summer (july 96) Fall (october 98) salinity m m o l m -2 d a y -1

(7)

470 tons of C per day

net emission of CO

2

from the Scheldt estuary

historical data-set

0 1 2 3 4 5 6 7 8 9 10 11 12 0 200 400 600 800

months of the year

to n s o f C d a y -1

(8)

CO

2

emission by the Biogest estuaries

tons of C per day

(9)
(10)

Surface area in Europe of salinity < 34

111 200 km²

(11)

emission of CO

2

by

European estuaries

0

20

40

60

80

0

25

50

75

% surface of internal estuaries

m

il

li

o

n

t

o

n

s

C

y

e

a

r

-1

(12)

emission of CO

2

by

European estuaries

0

20

40

60

80

0

25

50

75

0

3

6

9

12

% surface of internal estuaries

m

il

li

o

n

t

o

n

s

C

y

e

a

r

-1

%

a

n

tr

o

p

o

g

e

n

ic

e

m

is

s

io

n

(13)

2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 51.1 51.2 51.3 51.4 51.5 51.6 51.7 51.8 la ti tu d e ( °N )

Zeebrugge

(14)

2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 longitude (°E) 51.1 51.2 51.3 51.4 51.5 51.6 51.7 51.8 la ti tu d e ( °N )

Zeebrugge

(15)

2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 51.1 51.2 51.3 51.4 51.5 51.6 51.7 51.8 la ti tu d e ( °N ) 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5

Salinity 10-21 march 97

(16)

Partial pressure of CO

2

(pCO

2

)

10-21 march 97

2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Longitude (°E) 51.1 51.2 51.3 51.4 51.5 51.6 51.7 51.8 la ti tu d e ( °N ) 180 220 260 300 340 380 420 460 500 540 580

(17)

2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 longitude (°E)

15-26 February 99

51.1 51.2 51.3 51.4 51.5 51.6 51.7 51.8 la ti tu d e ( °N ) 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 longitude (°E)

03-12 May 99

51.1 51.2 51.3 51.4 51.5 51.6 51.7 51.8 la ti tu d e ( °N ) 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 longitude (°E)

20-28 August 97

51.1 51.2 51.3 51.4 51.5 51.6 51.7 51.8 la ti tu d e ( °N ) 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 longitude (°E)

20-30 October 97

51.1 51.2 51.3 51.4 51.5 51.6 51.7 51.8 la ti tu d e ( °N ) 60 110 160 210 260 310 360 410 460 510 560 610 660

Winter

Summer

Spring

Fall

(18)

pCO

2

Zeebrugge Station

0 1 2 3 4 5 6 7 8 9 10 11 12 50 150 250 350 450 550 650 750

months of the year

µ

a

tm

chlorophyll a

0 1 2 3 4 5 6 7 8 9 10 11 12 0 5 10 15 20 25

months of the year

µ

g

l

-1

(19)
(20)

Annually integrated flux:

+ 4.5 mmol m

-2

day

-1

(exchange coeff. Wanninkhof 1992)

Surface of the Scheldt plume:

2100 km

2

(21)

Annually integrated flux:

+ 4.5 mmol m

-2

day

-1

(exchange coeff. Wanninkhof 1992)

Surface of the Scheldt plume:

2100 km

2

Annual emission of CO

2

:

112 tC day

-1

=

26%

Of the inner Scheldt estuary characterised by:

Flux

=

+ 173 mmol m

-2

day

-1

=

456 tC day

-1

(22)

Provisional C budget for the Scheldt plume

(tC day

-1

)

Inputs

CO

2

from the Scheldt

34

a

Organic C from the Scheldt

16

b

- 52

c

Organic C from the coast

47

c

Outputs

Organic carbon preservation in sediments

62

c

CO

2

emission

112

a

Sum

97 - 133

175

a

Borges & Frankignoulle (2002)

b

Soetaert & Herman (1995)

c

Wollast (1976; 1983)

(23)
(24)

pCO

2

English Channel

-6 -4 -2 0 2 250 300 350 400 450 500

Fall (September 95)

Summer (July 98)

Spring (May 97)

Winter (March 95)

longitude (°E)

µ

a

tm

O

2

saturation

-6 -4 -2 0 2 85 95 105 115 125

longitude (°E)

%

(25)

pCO

2

English Channel (1993-1999)

0 1 2 3 4 5 6 7 8 9 10 11 12 300 350 400 450

month of the year

µ

a

tm

O

2

saturation

0 1 2 3 4 5 6 7 8 9 10 11 12 90 95 100 105 110

month of the year

(26)
(27)

Annually integrated 

pCO

2

≈ 0

(28)

Annually integrated 

pCO

2

≈ 0

Annually integrated CO

2

air-sea flux ≈

≈ 0

(29)

Annually integrated 

pCO

2

≈ 0

Annually integrated CO

2

air-sea flux ≈

≈ 0

Why?

New primary production = 1.0 mmolC m

-2

day

-1

(30)

Annually integrated 

pCO

2

≈ 0

Annually integrated CO

2

air-sea flux ≈

≈ 0

Why?

New primary production = 1.0 mmolC m

-2

day

-1

(

15

N incubations from L’Helguen et al. (1996))

9 mmolC m

-2

day

-1

Continental shelf average

5 mmolC m

-2

day

-1

Southern Bight of the North Sea

(31)

Annually integrated 

pCO

2

≈ 0

Annually integrated CO

2

air-sea flux ≈

≈ 0

Why?

New primary production = 1.0 mmolC m

-2

day

-1

(

15

N incubations from L’Helguen et al. (1996))

9 mmolC m

-2

day

-1

Continental shelf average

5 mmolC m

-2

day

-1

Southern Bight of the North Sea

7 mmolC m

-2

day

-1

Gulf of Biscay

Benthic calcification in Eastern Channel = 19 mmolCaCO

3

m

-2

day

-1

(32)

Annually integrated 

pCO

2

≈ 0

Annually integrated CO

2

air-sea flux ≈

≈ 0

Why?

New primary production = 1.0 mmolC m

-2

day

-1

(

15

N incubations from L’Helguen et al. (1996))

9 mmolC m

-2

day

-1

Continental shelf average

5 mmolC m

-2

day

-1

Southern Bight of the North Sea

7 mmolC m

-2

day

-1

Gulf of Biscay

Benthic calcification in Eastern Channel = 19 mmolCaCO

3

m

-2

day

-1

(Migné et al. 1998)

Release of CO

2

= +13 mmolC m

-2

day

-1

(33)

Annually integrated 

pCO

2

≈ 0

Annually integrated CO

2

air-sea flux ≈

≈ 0

Why?

New primary production = 1.0 mmolC m

-2

day

-1

(

15

N incubations from L’Helguen et al. (1996))

9 mmolC m

-2

day

-1

Continental shelf average

5 mmolC m

-2

day

-1

Southern Bight of the North Sea

7 mmolC m

-2

day

-1

Gulf of Biscay

Benthic calcification in Eastern Channel = 19 mmolCaCO

3

m

-2

day

-1

(Migné et al. 1998)

Release of CO

2

= +13 mmolC m

-2

day

-1

Area 5400 km

2

Whole of Channel

(34)
(35)

pCO

2

Gulf of Biscay

0 1 2 3 4 5 6 7 8 9 10 11 12 300 320 340 360 380 400 420 440 observed

theoretical as a function of temperature evolution

months of the year

µ

a

tm

Chlorophyll a

0 1 2 3 4 5 6 7 8 9 10 11 12 0.0 0.5 1.0 1.5 2.0

months of the year

µ

g

l

(36)

Air-sea exchange of CO

2

integrated annually in the Gulf of Biscay:

(37)

Air-sea exchange of CO

2

integrated annually in the Gulf of Biscay:

Wanninkhof (1992)

- 7.9 mmol m

-2

day

-1

=

0.17 GtC year

-1

(38)

Air-sea exchange of CO

2

integrated annually in the Gulf of Biscay:

Wanninkhof (1992)

- 7.9 mmol m

-2

day

-1

=

0.17 GtC year

-1

Extrapolation to the overall European continental shelf (5 million km²)

North Atlantic Ocean (42° to 78°N):

(39)

Air-sea exchange of CO

2

integrated annually in the Gulf of Biscay:

Wanninkhof (1992)

- 7.9 mmol m

-2

day

-1

=

0.17 GtC year

-1

Extrapolation to the overall European continental shelf (5 million km²)

North Atlantic Ocean (42° to 78°N):

Wanninkhof (1992)

=

0.34 GtC year

-1

(Sarmiento et al. 1995)

(40)

Air-sea exchange of CO

2

integrated annually in the Gulf of Biscay:

Wanninkhof (1992)

- 7.9 mmol m

-2

day

-1

=

0.17 GtC year

-1

Extrapolation to the overall European continental shelf (5 million km²)

North Atlantic Ocean (42° to 78°N):

Wanninkhof (1992)

=

0.34 GtC year

-1

(Sarmiento et al. 1995)

European Continental shelf is an additional CO

2

sink of 50%

East China Sea (Wang et al. 2000):

Liss & Merlivat (1986)

- 3.3 mmol m

-2

day

-1

Tans et al. (1990)

- 7.7 mmol m

-2

day

-1

Confirms the « continental shelf pump hypothesis » of Tsunogai et al. (1999):

(41)

Galician coast

temperature (°C) 27 June - 7 July 98

-10.3

-10.1

-9.9

-9.7

-9.5

-9.3

-9.1

-8.9

-8.7

Longitude (°E)

42.1

42.2

42.3

42.4

42.5

42.6

42.7

42.8

42.9

43.0

43.1

43.2

L

a

ti

tu

d

e

(

°N

)

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

Cap Finisterre

Rias

(42)

265

275

285

295

305

315

325

335

345

355

365

375

385

395

405

415

-10.3

-10.1

-9.9

-9.7

-9.5

-9.3

-9.1

-8.9

-8.7

Longitude (°E)

42.1

42.2

42.3

42.4

42.5

42.6

42.7

42.8

42.9

43.0

43.1

43.2

L

a

ti

tu

d

e

(

°N

)

(43)

temperature (°C) 6 - 16 January 98

-10.8-10.6-10.4-10.2-10.0 -9.8 -9.6 -9.4 -9.2 -9.0 -8.8 -8.6 Longitude (°E) 41.2 41.4 41.6 41.8 42.0 42.2 42.4 42.6 42.8 43.0 43.2 43.4 L a ti tu d e ( °N )

13.7

13.8

13.9

14.0

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

15.0

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

16.0

(44)

temperature (°C) 6 - 16 January 98

-10.8-10.6-10.4-10.2-10.0 -9.8 -9.6 -9.4 -9.2 -9.0 -8.8 -8.6 Longitude (°E) 41.2 41.4 41.6 41.8 42.0 42.2 42.4 42.6 42.8 43.0 43.2 43.4 L a ti tu d e ( °N )

13.7

13.8

13.9

14.0

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

15.0

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

16.0

(45)

pCO

2

(µatm) 6 - 16 January 98

-10.8-10.6-10.4-10.2-10.0 -9.8 -9.6 -9.4 -9.2 -9.0 -8.8 -8.6 Longitude (°E) 41.2 41.4 41.6 41.8 42.0 42.2 42.4 42.6 42.8 43.0 43.2 43.4 L a ti tu d e ( °N )

310

315

320

325

330

335

340

345

350

(46)

Annual integration of the air-sea CO

2

fluxes:

June/July 97

june/july 98

upwelling season

August 98

September 99

(47)

Annual integration of the air-sea CO

2

fluxes:

June/July 97

june/july 98

upwelling season

August 98

September 99

(48)

Annual integration of the air-sea CO

2

fluxes:

June/July 97

june/july 98

upwelling season

August 98

September 99

January 98

downwelling season

Upwelling season = March to October = 6 months

Continental shelf:

(49)

Annual integration of the air-sea CO

2

fluxes:

June/July 97

june/july 98

upwelling season

August 98

September 99

January 98

downwelling season

Upwelling season = March to October = 6 months

Continental shelf:

- 6.1 mmol m

-2

day

-1

(exchange coeff. Wanninkhof 1992)

Off-shore region:

(50)

Summary of CO

2

atmospheric fluxes

mmolC m

-2

day

-1

surface area of

continental shelves

(based on Walsh, 1988)

0° - 30°

30° - 60° 60°- 90°

0

25

50

75

100

28%

58%

14%

Latitude

%

surface area of

continental shelves

(based on Walsh, 1988)

0° - 30°

30° - 60°

60° - 90°

0

25

50

75

100

Northern Hemisphere

Southern Hemisphere

14

%

14

%

50

%

8

%

13

%

1

%

Latitude

%

www.ulg.ac.be/oceanbio/co2

(51)
(52)
(53)

Références

Documents relatifs

The largest correlation is obtained at lag 0, suggesting that the variability of the alongshore geos- trophic velocities is modulated by the cross‐shore pressure gradient generated

The Maranhense Gulf receives inputs of organic and inorganic carbon from terrestrial sources (river, estuary, mangrove, pore-water and groundwater) and the

In this contribution, we will explore an effect of the land plants on the Earth climate evo- lution neglected up to now: its physical impact on the global water cycle, on the albedo

Les résultats sont pertinents pour les professionnels qui œuvrent auprès de patients souffrant de dépendance aux opioïdes, bien que la XR-NTX ne soit pas encore disponible au

form and a connection preserving it make such a quantization triple which is easily associated with a twisted quantization triple and hence gives a map from

The retrieved trace gas column amounts allow for the calculation of emissions ratios (ERs) and emissions factors (EFs) for each stage of the studied fires (headfire, backfire

We used the VIKING near-infrared imaging survey to search for quasars above a redshift z  6.5. We employed two sets of color criteria to select potential quasars at high redshift.

In a similar context, Danóczy and Hahnloser (2006) also proposed a two-state HMM for detecting the “singing-like” and “awake-like” states of sleeping songbirds with neural