• Aucun résultat trouvé

Modèles de regression en présence de compétition

N/A
N/A
Protected

Academic year: 2021

Partager "Modèles de regression en présence de compétition"

Copied!
98
0
0

Texte intégral

(1)Modèles de regression en présence de compétition Aurélien Latouche. To cite this version: Aurélien Latouche. Modèles de regression en présence de compétition. Sciences du Vivant [q-bio]. Université Pierre et Marie Curie - Paris VI, 2004. Français. �tel-00129238�. HAL Id: tel-00129238 https://tel.archives-ouvertes.fr/tel-00129238 Submitted on 7 Feb 2007. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2)   

(3)       !"$#%&')(. *,+.-0/21354616789:<;>=@?.A'BDCE=F?.A':HGJILKNM2OQPSR>TVU>TW X.Y[Z!\[]5^`_[Z5]aX.bcY dfehgji Y[Z!kmlm]!^onDbp_2q i.r0s ] t q i Y qcuv_2]!^.lmYwkx]zy{Y2bc|v]z|.] } & aQz ~D€‚8 5Qƒ#%&'„(. ip† ]!_|.]kmba_ s.‡ \[]‰ˆ ŠŒ‹wŽJ8‘J’)j‘”“.•J–—“v‘J’E’™˜8‹›šœ‘Jšž“.•J’™‘JšŸ>‘ ‘”Ÿ‹›¡ƒ•¢v˜£¢E˜8‹¤š. q i [_ ]5^ i ]Qkm]Q¥c¦|.Z r ]!§u.Y[]a¥c¦{¦,¨. ~D€`©vªh«>¬­H€a®°¯²±'³µ´{¶V·N¸—¶V¹5º

(4) ~²€¼» d §‰]Q½%b,_ s ]!Y[lx^.]¾ i bc^`_2lm^¿hÀjb,X.X>qcYÁ_2] i YQ t¤ÃwÄ8t¤Å Æ dfeÈÇ bc^vlm]5kJ½Éq{§­§‰]5^vy{]5\!¿hÀjb,X.X>qcYÁ_2] i YÂ Ç ÀÊË8Ì vÍ À

(5) d Æ d §‰] ™Î kxϙlm]Q½ s ]ÐϙY[]!_5¿ Ç lmYÁ] r _[] i Y|.]z_ sv‡ \[]­Â t›ÃwÄ8t¤Å Æ dfe ÀbcX s bcÑ!k t qcY r0s ]!Y5¿ ÍÓÒ b,§­lx^hb,_2] i YQ d ½ ÃÔÄ8t¤ÅÆ dfeVÕzi Î&Ö s qc§bc\!¿ ÍÓÒ b,§­lx^hb,_2] i Y t›ÃwÄ8t¤Å Æ dfehg kmbclm^ ×{b r5ØÙi ]!\ڛbckxkm]!Y[q{^Û¿ ÍÓÒ b,§­lx^hb,_2] i YQ t¤ÃwÄ8t¤Å Æ.

(6)   

(7)  .   "!$#%'&() * + $,.-/&10'23'&154$260,8790:!;<-(7=0?>@)$#%'&()$0A$7BC&10'DE!;79#F2G!;0'7%HI0JK,8#=&1L"DE!$7M7=?ONP&/$#=&($7.;#=7 #=!"QR!$-(,87 T3UPV W;XZYA[G\^]`_abXZc=ab\ed fhgZiFgZcGXZYjXZc=ab\kUlUlUmUnUmUlUmUlUlUmUlUmUnUmUlUlUmUlUmUlUnUmUlUmUlUmUlUlUmU T3UpT qGrCcGsZautvrCc9d6Xxwutv\Iy=zGXld6Xm\IrCzG\|{}wbgZ[~_wuautPautvrCc UmUlUlUmUlUmUnUmUlUlUmUlUmUlUnUmUlUmUlUmUlUlUmU T3Up€ 9r.d6‚Z]vX\ƒd6X „†r‡<XZaˆd6Xmq$tPcGX ‰‹ŠewI_ŒUmUlUmUlUlUmUlUmUnUmUlUlUmUlUmUlUnUmUlUmUlUmUlUlUmU T3U  ‘auzGd6Xld6gZaI_tP]P]vgX dG_cG\’z6cMs_Cd3wbXm[~_wI_YjgZauwutvy8zGX“UmUlUmUnUmUlUlUmUlUmUlUnUmUlUmUlUmUlUlUmU • Q–J-/&(#F23'&()$0A$2G$0j-(2—J"-(2G"&`L#F23'&() €3UPV ™ˆš3›|XsZautœž\xUlUmUlUmUlUnUmUlUmUlUmUlUlUmUnUmUlUmUlUlUmUlUmUnUmUlUlUmUlUmUlUnUmUlUmUlUmUlUlUmU €3UpT 9gZauŸGr.d6X\ UmUlUmUlUnUmUlUmUlUmUlUlUmUnUmUlUmUlUlUmUlUmUnUmUlUlUmUlUmUlUnUmUlUmUlUmUlUlUmU €3Up€ ¡¢¤£3_YA[6]vXn\utP¥XeœžrCwuYnz6]`_¦œ/rCwƒ[6wbrC[§rCwuautvrCc~_]EŸ~_¥'_wbd6\^Yjr8d6XZ]P]PtPc6¨©rœsrCYA[§XZautPc6¨jwutv\uª3\'¡Cf?UmU ˜ ¬l~J"C&1,=,=0A!­Q– "®8-(7¯"7M°’&/;79±³²©2F´µJK)!$?!";7¯>@)$#%'&()­"7¶C&(0DE!;7¶Q·2G-K0J¸,=#=&`H L,=7 GUPV ™ˆš3›|XsZautœž\xUlUmUlUmUlUnUmUlUmUlUmUlUlUmUnUmUlUmUlUlUmUlUmUnUmUlUlUmUlUmUlUnUmUlUmUlUmUlUlUmU GUpT 9gZauŸGr.d6X\ UmUlUmUlUnUmUlUmUlUmUlUlUmUnUmUlUmUlUlUmUlUmUnUmUlUlUmUlUmUlUnUmUlUmUlUmUlUlUmU GUp€ ¡¢pMtv\I\u[XsZt»~Xd¶wbXZ¨%wbX\b\utvrCc¯Yjr.d6XZ] œ/rCw’auŸGXnsZz6Ynz6]`_autPiFX tPcGsZtvd6XZcGsXxœ(z6cGsZautvrCc;¡Cf¼UlUmUlUlUmU S ½m2G-/&("&1,B"!¾Q– "®8-(7M"7M°’&/;7B±¿²©2F´ÀDE!$2G;5-(2—#F.Á326C&(264"-(79$,8JK78$Â!À7.Q–J"0 o3UPV ™ˆš3›|XsZautœž\xUlUmUlUmUlUnUmUlUmUlUmUlUlUmUnUmUlUmUlUlUmUlUmUnUmUlUlUmUlUmUlUnUmUlUmUlUmUlUlUmU o3UpT 9gZauŸGr.d6X\ UmUlUmUlUnUmUlUmUlUmUlUlUmUnUmUlUmUlUlUmUlUmUnUmUlUlUmUlUmUlUnUmUlUmUlUmUlUlUmU o3Up€ Ä@ÅÆcGrCabXmrCc¯tPcGsZ]PzGd3tPc6¨?autPYjXÇ{Èd6XZ[XZcGd6XZc8aesr'iC_wut`_abXmtPc¯wbXZ¨%wbX\I\utvrCc¯Yjr8d6XZ]Eœ/rCw’srCYA[§XZautPc6¨ wutv\uª3\’dG_aI_:É©UmUlUmUlUnUmUlUmUlUmUlUlUmUnUmUlUmUlUlUmUlUmUnUmUlUlUmUlUmUlUnUmUlUmUlUmUlUlUmU t.  S Ž. o . V ” .˜ VZ VZ V« *~¹ T%º T%º €3V S~à o%” o3V o3V.

(8) Ê §Ë :23,8Ì)&(7B$7BQ– ",8-/&(023'&()­7.ÂJ",=07.;#F79$79#F)Q·JK,F'&1'&() «3UPV ™ˆš3›|XsZautœž\xUlUmUlUmUlUnUmUlUmUlUmUlUlUmUnUmUlUmUlUlUmUlUmUnUmUlUlUmUlUmUlUnUmUlUmUlUmUlUlUmU «3UpT 9gZauŸGr.d6X\ UmUlUmUlUnUmUlUmUlUmUlUlUmUnUmUlUmUlUlUmUlUmUnUmUlUlUmUlUmUlUnUmUlUmUlUmUlUlUmU «3Up€ Ä@Έr'ÏÐabrAtPYA[6wbr'iFXnrCz6w’z6cGd6XZwb\uaI_cGd3tPc6¨©rœsrCYA[§XZautPc6¨?wutv\uª3\ƒ_c~_]PŒ3\utv\)ÑÉ·UmUlUmUlUmUlUlUmU Í Òn;#=-/!$0'&()$0A7Fj¬e7=0JK78#%'&1Á)7=0. tPt. ÊÍ «F «%Ž «%Ž Ó)¹.

(9) Ô Õ×ÖµØÚÙ.ÛnÜÞÝ ß à¯á ··â äãäå¾ â á æ X¶abXZwuYjXMd6X¶wutv\by=zGX\¼srCYA[gZautPautœž\Rç/rCz¾srCcGsZz6wuwbXZc=ab\Çèj\bX¶wI_[6[rCwuabXB_z¾d6rCY?_tPcGXMd6XM]}fp_c~_]PŒ.\IXMd6X \uz6wui.tvXnrCéEê§XZcB[6]PzG\xd f z6c9abXZYA[G\jç/rCzRd6gZ]`_t1èˆd fhgZiFgZcGXZYjXZc=aê rCcRrCšG\bXZwuiFXA_zG\b\ut"z6c9a@Œ8[§X©ç/rCzBz6cGXÞs_zG\bX'è z6c6tvy8zGXld fhgZiFgZcGXZYjXZc=aU £8tEsXlsrCcGsXZ[6aˆwbXZYjrCc=abX _zMëˆìxíbíbí@î^\utv‚sZ]vX%ê~_iFXsm]}fhX\uautPY?_autvrCcBd6X\ˆ_i%_c=aI_¨FX\ed6X ]`_¦i%_CssZtPc~_autvrCcRsrCc=auwbX ]`_¦iC_wutvrC]vX \uz6w^]}fhX\b[gZwI_cGsX d6Xmi8tvXn[~_w^ïðXZwucGrCz6]P]Ptðç|V'C«%”FèÇê)tP]$_?srCc6c=zMz6c9wbXZ¨=_tPc d f tPc8abgZwbñZanwbgsXZc=aê;cGrCaI_YAYjXZc=aA_iFXs¼d6XAcGrCYnš6wbXZzG\bX\¦_[6[6]Ptvs_autvrCcG\ÞXZc·gZ[6tvd6gZYAtvrC]vrC¨%tvX¼XZa XZc—wbXsbŸGXZwbsbŸGX sZ]PtPc6tvy8zGX%U æ X\’XLJ3XZYA[6]vX\’XZc¯\brCc8a’cGrCYnš6wbXZz3‡—ò.]vrCwb\’d f z6cGXˆ¨%wbr%\I\bX\b\bXe\utPYA[6]vX%ê3]`_Þsg\I_wutvXZc6cGXmXZYA[§ñsbŸGXxz6c _CssrCzGsIŸGXZYjXZc=am[~_w^iFrCtvX š~_C\b\bXnXZaˆtPc8iFXZwb\bXZYjXZc=aU§‘cBŸGgZY?_abrC]vrC¨%tvX%ê]vX\^[~_autvXZc8ab\ˆ]vXZzGsgZYAtvy8zGX\ewbXsXZiC_c8a z6cGXx_]P]vrC¨%wbXÇó§Xed6XˆYjr8ôZ]P]vXˆ[XZz6iFXZc8að[6wbg\bXZc=abXZwðz6cGXeY?_]`_Cd3tvXˆd3z©¨%wbXÇó rCc<srCc8auwbXe]}f ŸGõCabXÞç(]vX\†]PŒ.YA[6ŸGr8sZŒ.abX\ d3zj¨%wbXÇó rCc©_auaI_Cy8z~_c=a†]}fhrCwu¨=_c6tv\uYjXed3z?wbXsXZiFXZz6wöèÇê8wbXsbŸ8z6abXZwðrCz©d6gsgd6XZwU=í@])X\ua†_]vrCwb\¸[§r%\b\utPš6]vXƒd6XˆsrCcG\ut{ d6gZwbXZw’y8zGXˆsX\†auwbrCtv\’gZiFgZcGXZYjXZc=ab\ ç/XZaO[~_w’XLJ3abXZcG\utvrCc<]vXZz6w†wutv\Iy=zGXx_C\b\br.sZtvg'èK\IrCc=a’XZc¯srCYA[gZautPautvrCc¯dG_cG\ð]`_ YjX\uz6wbX rCéM]`_?\uz6wuiFXZc=zGX¦d3z9d6gs‚\ˆ[§r%\ua|{}¨%wbXÇó§XÞXZYA[§ñsbŸGX ]`_j\uz6wuiFXZc8zGX d f z6cGX wbXsbŸ8z6abXÞXZaed6Xn]`_jY?_]`_Cd3tvX d3z¯¨%wbXÇó rCcMsrCc=auwbXn]}f ŸGõCabX%U ÷ c·Yjr.d6‚Z]vX¯ø¯wutv\by8zGX\¦srCYA[gZautPautœž\Aø K s_zG\IX\nY z6auzGXZ]P]vXZYjXZc=a?XLJ6sZ]PzG\utPiFX\¦X\uaÞwbXZ[6wbg\bXZc=abg<\uz6wÞ]`_ q"tP¨%z6wbX·ç|V%UPV'èÇUKùxX<cGrCY š6wbXZzG\bX\?YjgZauŸGr.d6X\?rCc8a?gZabg¯[6wbrC[§r%\bgX\A[§rCz6w?gZauzGd3tvXZwj]vX\?wutv\by=zGX\?srCYA[gZautPautœž\ ç/W$\ut`_autv\êKVº%º%ŽFèÇUEKc—[~_wuautvsZz6]PtvXZwêE]}fp_[6[6wbr.sbŸGXj[~_wnabXZYA[G\ld fhgZiFgZcGXZYjXZc=ab\Þ]`_abXZc=ab\n[6wbrC[r%\IgX¦[~_wÞ£3_YA[3{ œžrCwbdç|Vº%o%TFèˆ_j\brCz6iFXZc8amgZabgnz6autP]Ptv\bgX dG_cG\e]`_js_wI_CsZabgZwutv\I_autvrCc—d6X\eYjr8d6‚Z]vX\ed6XÞ\uz6wui8tvXn[6z6tv\ˆd6X\ˆwutv\by8zGX\ srCYA[§gZautPautœ/\'U6„†XZauabXm_[6[6wbr.sbŸGXmsrCcG\utvd6‚ZwbX K iC_wut`_š6]vX\ƒ_]vg_abrCtPwbX\’[§r%\utPautPiFX\ê T ê§UUUê T ê.sIŸ~_CsZz6cGXmsrCw|{ wbX\u[§rCcGdG_c=a¸_z¦abXZYA[G\‘d6Xð\uz6wuiFXZc8zGX’d f z6cjd6X\‘gZiFgZcGXZYjXZc=ab\KsrCcG\utvd6gZwbg\'ê%dG_cG\]`_ˆ\btPauz~_autvrCcAŸ=Œ.[rCauŸGgZautvy8zGX rCé©\bXZz6]~z6c¼aȌ.[Xˆd fhgZiFgZcGXZYjXZc=að[XZz6a†\uz6wuiFXZc6tPwmç(]vX\OgZiFgZcGXZYjXZc8ab\†gZaI_c8a†XLJ6sZ]PzG\utœž\öèÇU æ XƒabXZYA[G\ T X\uað_]vrCwb\ ]vXÞYAtPc6tPYnz6Yúd6X\ T XZax]`_©s_zG\bX¦d fhgZiFgZcGXZYjXZc=a ε X\ua k ]vrCwb\Iy=zGX T = T UE„†X\xabXZYA[G\x]`_abXZc=ab\mcGX¦\brCc8a ¨FgZcGgZwI_]vXZYjXZc8aj[~_C\¦rCšG\bXZwuiC_š6]vX\AXZaAd6rCtPiFXZc8aA[6]Pz6abõCa¦ñZauwbX©i.zG\¦srCYAYjX<z6cGX¼wbXZ[6wbg\IXZc=aI_autvrCc­auŸGgrCwutvy8zGX%U „†XZ[§XZcGdG_c=aê)tP]v\ƒ\brCc8ae_zG\b\ut"_CdG_[6abg\eø¦]`_jYjr8d6gZ]Ptv\ö_autvrCc9d6Xm]`_j[6wbXZYAtv‚ZwbXny8zGX\uautvrCcM[§r%\bgXldG_cG\^]vXls_Cd3wbX V 1. k. k. K.

(10) =1 =2. =K. ðû ü1ýðþ V%UPVeÿ

(11)       ! d6XÞwutv\by8zGX\msrCYA[gZautPautœž\êEø©\I_iFrCtPwny=zGX¦\bXÞ[~_C\b\IXZwI_tPa|{}tP]K\ut]}f z6cGXAd6X\ls_zG\bX\md fhgZiFgZcGXZYjXZc=a [rCz6i%_tPamñZauwbX \uz6[6[6wutPYjgXBç([~_wÞXLJ6XZYA[6]vX%êE]`_¶YjrCwuaI_]PtPabg?]PtvgX©_z·aI_š~_¨%tv\uYjX%ê"dG_cG\ ]}fhgZiC_]Pz~_autvrCcµd f z6c·[6wbrC¨%wI_YAYjX<d6X \bXZcG\btPš6tP]Ptv\I_autvrCc)èÇUKňz­srCc=auwI_tPwbX%êK]vX\?rCšG\bXZwuiC_autvrCcG\?\brCc=ajz6c6tvy8zGXZYjXZc=a©srCcG\uautPauzGgX\jd6X¯wbg_]Ptv\ö_autvrCcG\?d3z srCz6[6]vX (T, ε) ç/gZiFXZc8auzGXZ]P]vXZYjXZc=aetPcGd3tvsgX\’[~_w i XZc<wbgǜžgZwbXZcGsXnø ]}f tPcGd3tPi8tvd3z)èðXZa’tP]E_¦gZabgxYjrCc8auwbgly=zGXe[6]Pz3{ \utvXZz6wb\¸d3tv\uauwutPš6z6autvrCcG\E›urCtPc=abX\Od6X\KabXZYA[G\¸]`_abXZc=ab\¸\IrCzG\¸d3tó gZwbXZc=abX\†srCcGd3tPautvrCcG\¸d f tPcGd6gZ[§XZcGdG_cGsX^Y z6auzGXZ]P]vX [§rCz6iC_tvXZc8ansrCcGd3z6tPwbX¼ø¯]`_<YjñZYjXji.wI_tv\bXZYnš6]`_cGsX¼d6X\nrCšG\bXZwui%_autvrCcG\¼#ç "KwbXZc=autvsX©XZa _]}UPêKVºFCŽFèÇU;Kc3»GcEêEtP] X\uaƒsrCz6wI_c8aedG_cG\^]vX\ƒgZauzGd6X\esZ]PtPc6tvy=zGX\ˆy=zGXmsX\ˆd6rCc6cGgX\ˆ\brCtvXZc8a^\brCz6YAtv\bX\eø¦z6c¶[6wbr.sX\b\uzG\ƒd6XnsXZcG\uz6wbX ø¦d3wbrCtPabX%ê6tPcGd6gZ[§XZcGdG_c=aed6X (T, ε) êGy8z6t;srCYA[6]Ptvy8zGXm]}fhX\uautPY?_autvrCcEU ""rCz6wl_c~_]PŒ.\IXZwˆd6X\xd6rCc6cGgX\xdG_cG\ˆz6cRs_Cd3wbXÞd6Xnwutv\by8zGX\esrCYA[gZautPautœž\êd6XZz3‡¶aȌ.[X\xd6X [6wbrCš~_š6tP]PtPabg\ [§XZz6iFXZc=a^ñZauwbXnd6gÇ»Gc6tvX\nò ÿÂ]`_?[6wbrCš~_š6tP]PtPabg ÄȚ6wuz6abXÇÉÞd fhgZiFgZcGXZYjXZc8ald6Xna@Œ8[§X k XZcB[6wbg\bXZcGsX¦d6X\e_z6auwbX\xwutv\Iy=zGX\ed fhgZiFgZcGXZYjXZc=aê d3tPabXA_zG\b\bt;œžrCcGsZautvrCcBd f tPcGsZtvd6XZcGsXAsZz6Y z6]vgXArCzB\IrCzG\|{žœ/rCcGsZautvrCc—d6X wbgZ[~_wuautPautvrCc–d6Xn]}fhgZiFgZcGXZYjXZc8and6X a@Œ8[§X k ê F (t) = Pr(T ≤ t, ε = k) ÿÂ]`_n[6wbrCš~_š6tP]PtPabgˆÄÈcGXZauabXÇÉed fhgZiFgZcGXZYjXZc8aƒd6X^a@Œ8[§X k ê.dG_cG\†]`_n\btPauz~_autvrCc<rCé<\bXZz6]§sX^wutv\Iy=zGXx_¨%tPwI_tPa’\uz6w ]`_A[rC[6z6]`_autvrCcEU í@]K_¼gZabg¦YjrCc8auwbgjy8zGX ]vX\x[6wbrCš~_š6tP]PtPabg\ncGXZauabX\mcEfhgZaI_tvXZc=an[~_C\md6X\ly=z~_c8autPabg\mtvd6XZc=aut»)_š6]vX\Þø©[~_wuautPwld6X\ rCšG\bXZwui%_autvrCcG\ê¸[~_C\¼[6]PzG\©y8zGX¶]`_d3tv\uauwutPš6z6autvrCc·›urCtPc=abXRd6X\¼abXZYA[G\?]`_abXZc8ab\ê’ø—YjrCtPcG\<d6XM\bz6[6[r%\bXZw©[~_w XLJ6XZYA[6]vXny8zGXm]vX\ƒabXZYA[G\ˆ]`_abXZc=ab\x\brCc8a^Y z6auzGXZ]P]vXZYjXZc=axtPcGd6gZ[XZcGdG_c8ab\U „†XZ[XZcGdG_c8aêsXZauabXnŸ=Œ.[rCauŸG‚\IXlcGX [§XZz6aƒñZauwbXmiFgZwut»~gX?ç/W$\ut`_autv\êEVºFCoFèÇU ùm_cG\†]vXxs_Cd3wbXxd6Xˆwutv\Iy=zGX\ðsrCYA[§gZautPautœ/\ê.]}fhrCš3›uXZa’sXZc=auwI_]EX\ua†]`_nœ/rCcGsZautvrCc¯d6Xewutv\by8zGXˆs_zG\bXÇ{È\b[gsZt»~y8zGX d fhgZiFgZcGXZYjXZc8a†d6Xða@Œ8[§X k êFy8z6tG\f tPc=abXZwu[6wb‚ZabXesrCYAYjX’]`_x[6wbrCš~_š6tP]PtPabgˆd6Xƒ\uz6wuiFXZc=zGXˆd6X’]}fhgZiFgZcGXZYjXZc=aðd6X’a@Œ8[§X K. k. T.

(12) Gd _cG\z6cÞtPc8abXZwuiC_]P]vXðtPc3»Gc6tPabg\btPY?_]}êF\I_CsbŸ~_c8aKy=zGXðsXZa‘gZiFgZcGXZYjXZc=a¸cGX†\'fhX\ua$[~_C\‘XZcGsrCwbXð[6wbr.d3z6tPaK_zAd6gZš6z6a d6X’]}f tPc8abXZwuiC_]P]vX%U.ù¦f z6cGX’Y?_c6tv‚ZwbXˆ[6]PzG\K¨FgZcGgZwI_]vX%êF]vXƒYjr8d6‚Z]vXeøxwutv\by8zGX\¸srCYA[§gZautPautœ/\OX\uaKz6c?s_C\¸[~_wuautvsZz6]PtvXZw d6X\OYjr8d6‚Z]vX\ðY z6]Paut{ÈgZaI_ab\lç}„†rCYAYjXZc6¨FX\ê Vº%º%ºFèOrCé<øn[~_wuautPw’d f z6c©gZaI_aOÄÈi.tPiC_c8a|ÉIê.]vX\¸tPcGd3tPi.tvd3zG\ð[XZz6iFXZc8a XLJ3[gZwutPYjXZc8abXZw K s_zG\bX\¸d fhgZiFgZcGXZYjXZc8ab\ðXLJ3sZ]PzG\utPiFX\eç1»G¨%z6wbXnV%UPV'èÇU æ X\KaI_z3‡jd6X’auwI_cG\utPautvrCcRç/rCzjtPc=abXZcG\utPabg'è XZc8auwbXƒsbŸ~_Cy8zGX’gZaI_a¸\brCc8aKd6X\œ/rCcGsZautvrCcG\¸d6Xðwutv\by=zGX’s_zG\IXÇ{È\u[gsZt»~y8zGX%U æ _m\IrCYAYjX’d6XðabrCz6abX\KsX\‘tPc=abXZcG\btPabg\ srCwuwbX\u[§rCcGdM_z¯wutv\by8zGXx¨%]vrCš~_]$d6Xmy8z6tPauabXZwƒ]}fhgZaI_aðÄÈi.tPi%_c=a|ÉIU ÷ c¶Yjr.d6‚Z]vX d6XnwbgZ¨%wbX\b\utvrCcBXZc=abXZcGdBgZaI_š6]PtPwˆz6cGXnwbXZ]`_autvrCcBXZc8auwbXnz6cGX iC_wut`_š6]vXnwbgZ[rCcG\IX¼ç(tvsZt;z6cBd6gZ]`_t d fhgZiFgZcGXZYjXZc8aöèeXZaed6X\esri%_wut`_š6]vX\mXLJ.[6]Ptvs_autPiFX\e[§rCz6iC_c8amrCzMcGrCcRd6gZ[XZcGd3wbX¦d3zBabXZYA[G\U)ùxXncGrCYnš6wbXZz3‡ Yjr.d6‚Z]vX\ðd6X^wbgZ¨%wbX\b\btvrCc¼[§rCz6wO]`_lœžrCcGsZautvrCc<d6Xˆwutv\by8zGXˆs_zG\IXÇ{È\u[gsZt»~y8zGXerCc=a’gZabg^[6wbrC[§r%\bg\ê.XZc©[~_wuautvsZz6]PtvXZw ]vX9Yjr8d6‚Z]vXR\bXZYAt{}[~_wI_YjgZwutvy8zGX·ø·wutv\by8zGX\¼[6wbrC[§rCwuautvrCc6cGXZ]v\¶d6X–„†r‡ ç|VºFCTFèÇêðy=z6txwbXZ]PtvXB]`_—œžrCcGsZautvrCcÐd6X wutv\by8zGXxs_zG\bXÇ{È\u[§gsZt»~y=zGXmøÞz6cGXxsri%_wut`_š6]vX Z ç/y=z6t§[§XZz6aðñZauwbXxz6c<iFXsZabXZz6wöè†[~_wð]`_ wbXZ]`_autvrCc·ò λ (t; Z) = ê3rCé λ (t) X\uaOz6cGXˆœžrCcGsZautvrCc¶srCc=autPc8zGXmcGrCc¯\u[gsZt»~gX%ê.wbXZ[6wbg\bXZc8aI_c=aƒ]vXˆwutv\by8zGXxd6Xˆš~_C\IX%U λ (t) exp(βZ) W$rCz6abXǜ/rCtv\ê)]`_jœ/rCcGsZautvrCc—d6XÞ\uz6wui8tvXnY?_wu¨%tPc~_]vX%ê S(t) = Pr(T > t) êd6gZ[XZcGd9tvsZtd6XnabrCz6abX\e]vX\^œ/rCcGsZautvrCcG\ d6Xxwutv\by8zGXms_zG\bXÇ{È\u[§gsZt»~y8zGXld6X\ K s_zG\bX\ƒsrCcG\utvd6gZwbgX\xøÞauwI_iFXZwb\. k. k. k0. k0. (. S(t) = exp −. K Z X. ). t. λk (u)du .. ùxX\AYjr.d6‚Z]vX\?d6X¯wbgZ¨%wbX\I\utvrCcÂ[§rCz6wj]`_BœžrCcGsZautvrCcÂd f tPcGsZtvd6XZcGsXBsZz6Ynz6]vgXMrCc8a©_zG\b\bt^gZabg¯[6wbrC[§r%\bg\Mç/q"tPcGX _cGdMŠewI_Œê Vº%º%%º $6q"tPcGX%êGT%”%”3V $GňcGd6XZwb\bXZc¶XZaƒ_]}UPêGT%”%”%€FèÇUG‘c¯[~_wuautvsZz6]PtvXZwê)q"tPcGXmXZaƒŠxwI_Œ<rCc=aƒ[6wbrC[§r%\bgxz6c Yjr.d6‚Z]vXj\bXZYAt{}[~_wI_YjgZwutvy8zGX©ø¯wutv\by=zGX\n[6wbrC[rCwuautvrCc6cGXZ]v\Þd6X¦œžrCwuYnz6]`_autvrCcµ\utPYAtP]`_tPwbX¼_z·Yjr8d6‚Z]vX¼d6X¼„†r‡ ê [§rCz6wð]`_lœžrCcGsZautvrCc¶d6Xewutv\by8zGXx_C\I\br8sZtvgXmø ]`_ œžrCcGsZautvrCc¶d f tPcGsZtvd6XZcGsXlsZz6Ynz6]vgXx[6wbrC[§r%\bgXx[~_w^ŠewI_Œ—ç|Vº%Ž%ŽFèeò d ç|V%UPV'è α (t) = − log{1 − F (t)} dt æ XnYjr8d6‚Z]vX¦øAwutv\Iy=zGX\^[6wbrC[rCwuautvrCc6cGXZ]v\m\fhgsZwutPa α (t; Z) = α (t) exp(γZ) rCé α (t) X\ua^z6cGXlœ/rCcGsZautvrCc srCc8autPc=zGXmcGrCc¯\u[§gsZt»~gX%U æ _ œžrCcGsZautvrCc<d6Xxwutv\Iy=zGXm_C\b\br.sZtvgXxøÞ]`_lœžrCcGsZautvrCc¶d f tPcGsZtvd6XZcGsXlsZz6Y z6]vgXmX\uaƒ_zG\b\ut _[6[§XZ]vgXeœ/rCcGsZautvrCcBd6Xxwutv\by8zGXmd6Xl\brCzG\|{}wbgZ[~_wuautPautvrCcµç &')(+*-,.&0/#10,2(0'%/#,23-465798:71;*GèÇU ™ˆc d3tv\u[r%\IXKd6rCcGs¸d6XOd6XZz3‡lYjr8d6‚Z]vX\$d6X‘œžrCwuYnz6]`_autvrCc¦\utPYAtP]`_tPwbX%êY?_tv\"d6rCc=a$]}f tPc=abXZwu[6wbgZaI_autvrCcjd3tó ‚ZwbX¸XZa y8z6t8cGX†[§XZz6iFXZc=a‘[~_C\‘ñZauwbX’\utPY z6]PaI_cGgZYjXZc=aKi.wI_tv\êC\I_z3œ)dG_cG\]vXðs_C\‘d6gZ¨FgZcGgZwbg’rCéA\bXZz6]vX†z6cGX’s_zG\bX’_¨%tPa‘\uz6w ]`_x[§rC[6z6]`_autvrCcEU=ùm_cG\¸z6c¼srCc=abXLJ3abXƒ[6wI_autvy8zGX^d fp_c~_]PŒ3\bXˆd6Xƒd6rCc6cGgX\OXZc?[6wbg\bXZcGsX^d6XƒsrCYA[§gZautPautvrCcEê8tP]~X\ua _]vrCwb\ tPYA[§rCwuaI_c=ad6X‘[§rCz6iFrCtPw;XLJG_YAtPcGXZwE[6]PzG\E[6wbgsZtv\bXZYjXZc8a$]vX\EtPYA[6]Ptvs_autvrCcG\$d f z6cnsIŸGrCt‡nd6X‘Yjr.d6gZ]Ptv\I_autvrCcEU í@] \fp_¨%tPa^d6Xm]}fhrCš3›uXsZautœd6XnsXxauwI_i%_tP]$d6XxauŸG‚\bX%U k=1. k. 0. k. k. €. k0. k0.

(13) <>=?A@CBEDGF>HJILKMD. Cr zG\j[6wbg\IXZc=abrCcG\ê†dG_cG\?z6cÂ[6wbXZYAtvXZw¼abXZYA[G\ê¸]vX\¼d6gÇ»Gc6tPautvrCcG\©d6X\©rCš3›|XZab\?z6autP]Ptv\bg\¼XZc _c~_]PŒ.\IXMd6X \uz6wui.tvXxXZc<[6wbg\bXZcGsXld6XxsrCYA[gZautPautvrCcEê~XZc¯tPcG\utv\uaI_c=aƒ\bz6w†]}fhXLJ3tv\uabXZcGsX%ê3]}f tvd6XZc8aut»)_š6tP]PtPabgnXZa’]}f tPc=abXZwu[6wbgZaI_autvrCc d6X\‘rCš3›uXZab\‘dG_cG\z6cGXðYjr8d6gZ]Ptv\ö_autvrCc?ø^abXZYA[G\K]`_abXZc=ab\U æ XðYjr.d6‚Z]vXðd6X’q"tPcGXð‰kŠewI_Œ<ç|Vº%º%ºFè"X\ba"]vX†Yjr.d6‚Z]vX d6XxwbgǜžgZwbXZcGsXm[§rCz6w^sXxauwI_i%_tP]$d6XxauŸG‚\bX%U æ rCwb\Ad6X¼]`_B[6]`_c6t»~s_autvrCc¾d fhX\b\I_t’sZ]PtPc6tvy=zGX%ê]}fhgZi%_]Pz~_autvrCc­d3zÀcGrCYnš6wbXMd6X©\bzC›|XZab\AøBtPcGsZ]Pz6wbX¯X\ua¦z6c [6wbrCš6]v‚ZYjXjsZwuzGsZt`_]}U ÷ cGX¦abXZ]P]vXޜžrCwuYnz6]vXAcEfhXLJ3tv\uaI_c=am[~_C\l[rCz6wm]vXÞYjr.d6‚Z]vXAd6XAq$tPcGXj‰ ŠxwI_ŒFê§cGrCzG\n_iFrCcG\ d6rCcGslgZaI_š6]Pt$z6cMs_]vsZz6]$d fhXÇó XsZautœKdG_cG\ƒz6cMsrCc8abXLJ.abX d6XlsrCYA[§gZautPautvrCc9[§rCz6wƒz6cGXmtPc3œžgZwbXZcGsXlš~_C\bgXn\uz6wƒ]`_ œžrCcGsZautvrCcMd f tPcGsZtvd6XZcGsXnsZz6Y z6]vgX%U„†XxauwI_iC_tP]"srCcG\uautPauzGXm]vXx[6wbXZYAtvXZwˆd6gZiFXZ]vrC[6[§XZYjXZc=axd6XmsXZauabXmauŸG‚\bX%U N rCzG\ð_iFrCcG\’XZcG\uz6tPabXxgZauzGd3tvge]vX\†[6wbrC[6wutvgZabg\’d3z¼Yjr.d6‚Z]vXxd6Xˆq"tPcGXx‰ ŠxwI_Œj]vrCwb\by8zEf tP]§X\uaOY?_] \u[§gsZt»~g%ê cGrCaI_YAYjXZc8aê%\ut=z6cÞYjr8d6‚Z]vX†d6X’„†r‡ [§rCz6w"]`_ðœžrCcGsZautvrCc¦d6XOwutv\by8zGXOs_zG\IXÇ{È\u[gsZt»~y8zGX†X\ua$[§r%\uauz6]vg%ê:XZa"y8zEf z6cGX _c~_]PŒ3\bX¦X\uamsrCcGd3z6tPabXAXZcRYjr8d6gZ]Ptv\I_c8al]`_?œ/rCcGsZautvrCc–d6XÞwutv\by8zGX¦d6XA\brCzG\|{}wbgZ[~_wuautPautvrCcEU;„efhX\uam]vX¦d6XZz3‡3tv‚ZYjX d6gZiFXZ]vrC[6[§XZYjXZc=aey=zGXx[6wbg\bXZc8abXnsXmauwI_iC_tP]}U ù¦fp_z6auwbX‘[~_wuaê']vrCwb\;d fhgZauzGd6X\;]vrCc6¨%tPauzGd3tPc~_]vX\"d6X¸srCŸGrCwuabX%ê'sXZwuaI_tPcG\$Y?_wby=zGXZz6wb\$\brCc=a"\brCz6iFXZc=a$YjX\uz6wbg\ d6X¦Y?_c6tv‚ZwbXAwbgZ[§gZabgX%U æ X\nsri%_wut`_š6]vX\n\brCc8a _]vrCwb\ld6gZ[§XZcGdG_c=abX\nd3z—abXZYA[G\ XZamtP]KX\uald6X¦[6]PzG\xœ/wbgy=zGXZc8a y8zGXn]vX\etPcGd3tPi.tvd3zG\m\brCtvXZc=amsrCc3œ/wbrCc=abg\lø¼d6X\xgZiFgZcGXZYjXZc=ab\nXZcRsrCYA[§gZautPautvrCcEU N rCzG\m_iFrCcG\md6rCcGs¦gZzGd3tvgÞ]`_ [§r%\b\utPš6tP]PtPabgˆd f tPcGsZ]Pz6wbXed6X\ðsr'iC_wut`_š6]vX\’d6gZ[§XZcGdG_c=abX\’d3z©abXZYA[G\ðdG_cG\¸z6c©Yjr8d6‚Z]vXed6Xeq$tPcGXx‰ ŠewI_ŒFU6„†XsZt srCcG\uautPauzGXl]vXxauwbrCtv\utv‚ZYjXmiFrC]vXZa^d6XlsXxauwI_iC_tP]"d6XxauŸG‚\bX%U Kc3»GcEê6cGrCzG\’[6wbg\bXZc8abrCcG\^z6cM_wuautvsZ]vXld6Xli8z6]P¨=_wutv\I_autvrCcBøÞ]}f tPc=abXZc=autvrCcRd6XxYjgd6XsZtPcG\^XZaˆd fhgZ[6tvd6gZYAtvrC]vr{ ¨%tv\uabX\'ê)XZamsrCcG\uautPauzGX¦z6cGX¦\uŒ.c=auŸG‚\bXAsrCcGsXZwuc~_c8al]`_©\uauwI_abgZ¨%tvX¦d f z6autP]Ptv\I_autvrCc·d6X\eYjr.d6‚Z]vX\md6X wbgZ¨%wbX\I\utvrCc XZc¯[6wbg\bXZcGsXnd6XlsrCYA[gZautPautvrCcEU „OŸ~_Cy8zGXxd6gZiFXZ]vrC[6[XZYjXZc8aˆ_[6[§rCwuabgx_z©Yjr.d6‚Z]vXed6Xxq"tPcGXm‰ŠxwI_ŒBç|Vº%º%ºFèOX\ua†[6wbg\bXZc8abgm\brCzG\†]`_lœžrCwuYjX d f z6cGXetPc=auwbr.d3zGsZautvrCc9_z¯[6wbrCš6]v‚ZYjXm\brCz6]vXZiFg%ê3[6z6tv\’d6Xe]}fp_wuautvsZ]vX?ç/\IrCz6YAtv\’rCz¯_CssXZ[6abg'è’y=z6t§XZc¶srCcG\uautPauzGXx]vX d6gZiFXZ]vrC[6[§XZYjXZc=aU N. .

(14) Ô Õ×ÖµØÚÙ.ÛnÜÞÝ O. â QP ‘‘ — â á  RP —ã   ƒS â á å¾ â á    ‘ UTã  åÐ ãä RWV? RX P åÐZY[T ã  Ð  3\  á åБ  á åk åÐãä

(15) ãäP ]_^`. FaDcbedfKg=?ihjDL@khjKlBnmpoqroL@EDcbsDL@khjK. ˆ™ c¦\f tPc8abgZwbX\b\bXOtvsZt6_z3‡l[6wbrCš6]v‚ZYjX\‘d f tvd6XZc8aut»)_š6tP]PtPabg’]Ptvg\‘øƒz6cGXOYjr.d6gZ]Ptv\I_autvrCc¦[~_w$abXZYA[G\]`_abXZc8ab\U æ X\ rCšG\bXZwui%_autvrCcG\¸srCcG\btv\uabXZc=a†XZc T = YAtPc (T , . . . , T ) XZa ε = k \ut T = T ,ut.v:t`ê ε = Å^wu¨%YAtPc (T , . . . , T ) U 1. K. 1. k. wxzy|{}j{~€y|2‚„ƒu †u}M{xˆ‡‰ƒp{-{Šxz‹‰‚R{-ycŒUux€

(16) ‰ |yŽpx‚ƒp‰‹. K. æ fhrCš3›|XZaƒ[6wutPcGsZtP[~_]"d6XlsXxaȌ.[§Xld6XmYjr.d6gZ]Ptv\I_autvrCcMX\uaƒ]`_ œžrCcGsZautvrCcA›urCtPc=abX d6Xm\uz6wui8tvX%êG]vrCwb\by=zGXlabrCzG\’]vX\ wutv\by=zGX\ˆ_¨%tv\b\bXZc=aˆ\uz6w’]`_¦[§rC[6z6]`_autvrCcEê~y8z6tEX\uaƒd6gÇ»Gc6tvXm[~_w K çžT3UPV'è H(t , . . . , t ) = Pr(T ≥ t , . . . , T ≥ t ). ‘c¯[6wbg\IXZcGsXnd6XxabrCzG\’]vX\^wutv\by=zGX\'ê.rCcM[XZz6aƒd6gÇ»Gc6tPwed3tó§gZwbXZc8abX\’œžrCcGsZautvrCcG\nò ÿÂ]`_¦œ/rCcGsZautvrCcMd6Xm\IrCzG\|{}wbgZ[~_wuautPautvrCc¯ÄȚ6wuz6abXÇÉjò F (t) = Pr(T ≤ t, ε = k) ÿÂ]`_¦œ/rCcGsZautvrCcMd6Xxwutv\Iy=zGXls_zG\IXÇ{È\u[gsZt»~y8zGXjò λ (t) = lim Pr(t ≤ T ≤ t + h, ε = k|T ≥ t)/h £8tO]}fhrCcµsrCcG\btvd6‚ZwbX?]`_¶œ/rCcGsZautvrCcµd6X¼wbgZ[~_wuautPautvrCc F (t) = P F (t) = Pr(T ≤ t) XZa ]`_¯œžrCcGsZautvrCcÀd6X \uz6wui.tvX S(t) = 1 − F (t) êGrCc¶rCš6autvXZc8a^]vX\’wbXZ]`_autvrCcG\e\uz6tPi%_c=abX\ dF (t) çžT3UpTFè /S(t), k = 1, . . . , K λ (t) = 1. K. 1. 1. K. k. k. h→0. K k=1. k. k. dt. o. k. K.

(17) XZa λ(t) =. K X. çžT3Up€Fè. dF (t) /S(t). dt. λk (t) =. æ _ œžrCcGsZautvrCcMd6Xl\IrCzG\’wbgZ[~_wuautPautvrCc9gZaI_c8aƒwbXZ]PtvgXnø¦]`_ œžrCcGsZautvrCcA›urCtPc=abXld6Xl\bz6wui8tvX%ê H ê6[~_wlò i=k. ∂H(t1 , . . . , tK ) dFk (t) =− |t1 = . . . = tK = t, dt ∂tk. rCcM_. λk (t) =. 1 ,...,tK ) |t1 = . . . = tK = t − ∂H(t∂t k. H(t, . . . , t). çžT3U 8è. .. wxzy|{}>y|‹ŽƒpyŽ}‘xˆ‡‰ƒ{Š{Šxz‹Z‚6{-ycŒRux’

(18) “ |y|ux‚„ƒu‰‹. ˆ™ c srCcG\utvd6‚ZwbXBY?_tPc=abXZc~_c8a¶y=zEf z6cGXR\bXZz6]vXBs_zG\bXR_¨%tPa©\bz6w¼]`_·[rC[6z6]`_autvrCcEê†]}fhXLJ3[r%\ö_c=a k tPcGd3tvy8zGX _]vrCwb\’]vXm\IXZz6] wutv\by=zGXl_¨%tv\I\I_c=aU æ _jd3tv\uauwutPš6z6autvrCc¶Y?_wu¨%tPc~_]vXl[§rCz6w’]vXxabXZYA[G\’]`_abXZc8a T X\ua Pr(T ≥ t) = U H(t , . . . , t )|t = t, t = 0, j 6= k ùxgÇ»Gc6tv\b\IrCcG\’]`_ œ/rCcGsZautvrCcBd6Xxwutv\by8zGXxtPcG\uaI_c=aI_cGgnY?_wu¨%tPc~_]vXl[§rCz6w’]`_As_zG\bX k k. 1. XZa’cGrCabrCcG\. K. k. k. j. λkk (t) = lim Pr(t ≤ Tk ≤ t + h|Tk ≥ t)/h. ê3]`_¦œ/rCcGsZautvrCcMd6Xn\uz6wui8tvXxcGXZauabX%U™ˆc9_ h→0. Skk (t) = Pr(Tk ≥ t). žç T3UpoFè £8t.]vX\$abXZYA[G\$]`_abXZc8ab\‘\brCc=a"tPcGd6gZ[§XZcGdG_c=ab\êF_]vrCwb\"]`_ƒœ/rCcGsZautvrCcˆ›|rCtPc8abXðd6XO\uz6wui.tvX†\bX‘œ}_CsZabrCwutv\bX†XZc [6wbr.d3z6tPa d6X\ðœžrCcGsZautvrCcG\ƒd6Xl\bz6wui8tvXxcGXZauabX\ê~\brCtPa Y çžT3Up«Fè S (t ). H(t , . . . , t ) = ùxrCcGs%ê§\brCzG\msXZauabX¦Ÿ=Œ.[§rCauŸG‚\bX%ê§]vX\eœ/rCcGsZautvrCcG\md6X¦wutv\Iy=zGX¦s_zG\bX\|{È\b[gsZt»~y8zGX\mXZcR[6wbg\bXZcGsXAd6X¦abrCz6abX\x]vX\ s_zG\bX\^XZaƒXZcM\bXZz6]vXx[6wbg\bXZcGsXld6Xl]`_¦s_zG\bX k ê6\brCc=aˆgZ¨=_]vX\zê ,ut.v:t λkk (t) = −. dSkk (t) k /Sk (t) dt. K. 1. k k. K. k. k=1. λk = λkk .. .£ rCzG\;]}f Ÿ=Œ.[rCauŸG‚\IX¸d f tPcGd6gZ[§XZcGdG_cGsXOd6X\;abXZYA[G\;]`_abXZc8ab\ê]vX\Eœ/rCwuY z6]vX\†çžT3UPV'èEXZaOçžT3Up€Fè§cGrCzG\;[XZwuYjXZauabXZc8a d fhrCš6abXZc6tPwE]`_’wbXZ]`_autvrCcn\uz6tPi%_c=abXKXZc8auwbXK]`_OœžrCcGsZautvrCcnd6XK\uz6wui.tvXcGXZauabX%ê H êXZa ]`_†œžrCcGsZautvrCcnd6X‘\brCzG\EwbgZ[~_wuautPabrCc ÄȚ6wuz6abXÇÉ  Z  dF (u) çžT3U %è H (t) = exp − du S(u) W$\ut`_autv\mç|VºFCoFèO_lYjrCc=auwbgmy8zEfhXZc¼]}fp_šG\IXZcGsXed f Ÿ8Œ8[§rCauŸG‚\bXed f tPcGd6gZ[XZcGdG_cGsXmd6X\ (T , . . . , T ) ê8]vX\†[6wbrCš~_:{ š6tP]PtPabgmš6wuz6abX\ƒcGXm[XZz6iFXZc8a^ñZauwbXmtvd6XZc8aut»~gX\e_z3‡<[6wbrCš~_š6tP]PtPabg\^cGXZauabX\'U « k k. k k. t. k. 0. 1. K.

(19) ""rCz6wntP]P]PzG\bauwbXZwnsXAwbg\uz6]PaI_aÞXZal]}f tPYA[rCwuaI_cGsX¼d6XA]}f Ÿ=Œ.[§rCauŸG‚\bX?d f tPcGd6gZ[§XZcGdG_cGsX¼d6X\nabXZYA[G\l]`_abXZc8ab\ê cGrCzG\©[6wbg\bXZc8abrCcG\<tvsZtˆ]}fhXLJ6XZYA[6]vXRd6rCc6cGg9[~_w”‘" wbXZc8autvsX—XZa<_]}Umç|VºFCŽFèÇUƒ„†rCcG\utvd6gZwbrCcG\¯d6XZz3‡Âwutv\Iy=zGX\<XZc. srCYA[§gZautPautvrCcEê~_iFXsn]`_ œ/rCcGsZautvrCc9d6Xl\uz6wui.tvX†›|rCtPc8abXl\uz6tPi%_c=abX rCé. çžT3UpŽFè. H(t1 , t2 ) = exp [1 − α1 t1 − α2 t2 − exp{α12 (α1 t1 + α2 t2 )}]. ZX a α > −1 U æ X\’œ/rCcGsZautvrCcG\ˆd6Xxwutv\by=zGXms_zG\IXÇ{È\u[gsZt»~y8zGXl\brCc8aˆ_]vrCwb\ α1 , α 2 > 0. 12. λk (t) = αk [1 + α12 exp{α12 (α1 + α2 )t}] ,. k = 1, 2. 8£ t α = 0 ê¸]vX\?abXZYA[G\©]`_abXZc8ab\©\IrCc=a©tPcGd6gZ[XZcGdG_c8ab\¯s_w¼]`_–œ/rCcGsZautvrCc›urCtPc=abXBd6XM\uz6wui.tvX9\IX¯œ}_CsZabrCwutv\bX XZc[6wbr8d3z6tPa¦d6X\ œ/rCcGsZautvrCcG\¦d6X©\uz6wui8tvX?Y?_wu¨%tPc~_]vX\ê H(t , t ) = H (t ) × H (t ) U„†XZ[§XZcGdG_c=aê‘\ut†rCc srCcG\utvd6‚ZwbXl]`_ œ/rCcGsZautvrCcA›urCtPc=abXnd6Xl\uz6wui.tvX H d6gÇ»Gc6tvXm[~_w 12. 1. 2. 1 1. 1. 2 2. 2. ∗. ". H ∗ (t1 , t2 ) = exp 1 − α1 t1 − α2 t2 −. 2 X. #. αk exp{α12 (α1 + α2 )tk )}/(α1 + α2 ) ,. Cr c rCš6autvXZc=a¯d6X\?œ/rCcGsZautvrCcG\¯s_zG\bXÇ{È\b[gsZt»~y8zGXMtvd6XZc8autvy=zGX\¶_z5Yjr.d6‚Z]vX çžT3UpŽFèÇêOY?_tv\<d6X\¼abXZYA[G\©]`_abXZc8ab\ tPcGd6gZ[§XZcGdG_c=ab\ˆ[rCz6w’abrCz6abX\^]vX\’i%_]vXZz6wb\^d6X a U~™ˆcMsrCcG\uaI_abXld6rCcGsly8zEf tP];srCc8i8tvXZc8aˆd f tPcG\utv\uabXZwˆ\uz6w’]}f tPY¦{ [§rCwuaI_cGsXRd6X\¼Ÿ8Œ8[§rCauŸG‚\bX\—ç/d f tPcGd6gZ[§XZcGdG_cGsX'è<y=z6te[§XZwuYjXZauabXZc=a¶d6XBwbXZ]PtvXZw<]vX\©y8z~_c=autPabg\¼ÄȚ6wuz6abX\uÉBrCz ÄÈcGXZauabX\|ÉIU k=1. 12. ]_^;]. •—– @E˜‰hj™ – @šBEDœ›ˆ™KM_žJDGBEDœK – žEK Ÿ›ˆodf?

(20) ›Mh™;hj™ – @. æ _¼œ/rCcGsZautvrCc·d6X¦wutv\Iy=zGXAd6XA\brCzG\u{}wbgZ[~_wuautPautvrCc¾ç|V%UPV'èÇê [§rCz6wm]}fhgZiFgZcGXZYjXZc=a d6X¦a@Œ8[§X¯V%ê§[§XZz6al\bXAd6gÇ»Gc6tPw _zG\b\btEsrCYAYjX Pr{t ≤ T ≤ t + h, ε = 1|T ≥ t ∪ (T ≤ t ∩ ε 6= 1)} çžT3UpºFè , α (t) = lim h sXmy8z6tEsrCwuwbX\u[§rCcGdMø¦]`_ œžrCcGsZautvrCcMd6Xmwutv\by8zGXxtPcG\uaI_c=aI_cGg d6Xx]`_¦[G\bXZzGd6r{}i%_wut`_š6]vX _]vg_abrCtPwbX çžT3UPV”Fè T =1 ×T +1 × ∞. æ X\’wbXZ]`_autvrCcG\ ç|V%UPV'èðXZaÞçžT3UpTFè†cGrCzG\ðœžrCz6wuc6tv\b\bXZc=a^]vXl\uŒ3\uab‚ZYjXm\uz6tPi%_c=a 1. h→0. ∗. d fhrCé–ò. [ε=1]. [ε6=1].    λ1 (t) =.   α1 (t) = λ1 (t) =. 1 dF1 (t) S(t) dt dF1 (t) 1 1−F1 (t) dt. 1 − F1 (t) α1 (t). S(t). . çžT3UPV%V'è.

(21) æ X9wI_[6[§rCwuaê g ê†d6X9]`_·œ/rCcGsZautvrCckd6XBwutv\by8zGX9s_zG\IXÇ{È\u[gsZt»~y8zGXRXZa¯d6X9]`_–œžrCcGsZautvrCcÐd6XMwutv\by8zGXRd6X9\IrCzG\|{ wbgZ[~_wuautPautvrCcBX\ua’z6cGXeœ/rCcGsZautvrCcBsZwbrCtv\b\I_c8abX%U æ _Þ[6wbXZz6iFX X\uaƒd6rCc6cGgXm[~_wnò h R i ê6d6Xl[6]PzG\ h R i ê6d fhrCé 1 − F (t) = exp − α (u)du S(t) = exp − λ (u) + λ (u)du t 0. 1. t 0. 1. g(t) = exp. Z. 1. 2. t. . λ1 (u) + λ2 (u) − α1 (u)du ,. 6d rCcGs g (t) = [λ (t) + λ (t) − α (t)] exp hR λ (u) + λ (u) − α (u)dui U§™ˆw abXZwb\brCcEê VºFC«FèÇê)sXmy=z6t tPYA[6]Ptvy8zGX λ (t) ≥ α (t) êG[~_w^\uz6tPabX g ≥ 0 U 0. 0. 1. 2. t 0. 1. 1. 1. 2. 1. S(t) ≤ 1 − F1 (t). ç#"$XÇ{. 0. 1. ¢£– BJIL=DLK¤BED¦¥ –c§ D¨hlBJD • ™@JDG© ª«›ˆ?c¬. ]_^¡. Cr zG\K[6wbg\IXZc=abrCcG\†]`_xi.wI_tv\bXZYnš6]`_cGsXe[~_wuautvXZ]P]vXˆ[6wbriFXZc~_c=a’d3z¼Yjr8d6‚Z]vXˆd6Xƒq"tPcGX^XZaðŠxwI_ŒFê3_tPcG\ut~y8zGXƒ]vX srCYA[§rCwuabXZYjXZc=am_C\uŒ.YA[6abrCautvy=zGX d6Xm]}fhX\uautPY?_abXZz6wxd3z¶[~_wI_Yj‚ZauwbX d6XnwbgZ¨%wbX\b\utvrCcMXZcR_šG\bXZcGsXnd6XnsXZcG\uz6wbX%ê [6z6tv\’XZc<[6wbg\bXZcGsXmd f z6cGXmsXZcG\uz6wbXmøÞd3wbrCtPabX%U~„†X\ð[6wbrC[6wutvgZabg\ƒ\bXZwbrCc8a’z6autP]Ptv\bgX\’]vrCwb\’d6X\ƒ„OŸ~_[6tPauwbX\ˆ€ÞXZaðGU N rCzG\‘tPc8auwbr8d3z6tv\brCcG\¸]vX\‘cGrCaI_autvrCcG\¸XZaKrCš3›uXZab\¸y8z6tG\bXZwbrCc8aKz6autP]vX\KdG_cG\K]`_x\bz6tPabX%U ÷ cGXðwbXZi.zGX’XLJ3Ÿ~_zG\uautPiFX d6X\[6wbr.sX\b\uzG\‘d6X’srCYA[6aI_¨FXˆXZad6Xð]}fp_c~_]PŒ3\bXƒd6Xð\uz6wui.tvXð[§XZz6aKñZauwbXðauwbrCz6iFgXƒdG_cG\KňcGd6XZwb\bXZcjXZa¸_]}UGç|Vº%º%€Fè XZanq"]vXZYAtPc6¨—_cGd·Îx_wuwutPc6¨%abrCc ç|Vº%º3V'èÇU™ˆcsrCcG\utvd6‚ZwbX n tPcGd3tPi.tvd3zG\ê;\brCz6YAtv\Þø K s_zG\bX\ d fhgZiFgZcGXZYjXZc=a XLJ6sZ]PzG\utPiFX\U £.rCtPa Y (t) = I(T ≥ t) ê§]`_©iC_wut`_š6]vXAy8z6t‘tPcGd3tvy=zGXA\bt"]}f tPcGd3tPi.tvd3z i X\ba^Ä ø©wutv\Iy=zGXÇÉA_i%_c=al]}f tPcG\uaI_c8a t XZa Y (t) = P Y (t) U™ˆc9tPc=auwbr.d3z6tPaˆ]vXn[6wbr8sX\I\uzG\^y8z6t;srCYA[6abX ]`_A\uz6wuiFXZc=zGXÞd fhgZiFgZcGXZYjXZc=amd6XnaȌ.[X 1 ê XZa N (t) = P N (t) U N (t) = I(T ≤ t, ε = 1) N. i. i. n i=1. i. i. i. n i=1. i. i. ­R®†{}j‹Ž¯%}±°c}>¯%}M‹Ž{-yŽŒ„}. K c¶]}fp_šG\bXZcGsXld6XlsXZcG\bz6wbX%êG]`_Þi.wI_tv\bXZYnš6]`_cGsX [~_wuautvXZ]P]vXl[§rCz6wƒ]}fhgsbŸ~_c8autP]P]vrCcBd6XlaI_tP]P]vX n [rCwuabXl\bz6wƒ]vX auwutP[6]vXZa (T , ε , Z ) U æ fhXZcG\bXZY š6]vXnd6X\’tPcGd3tPi.tvd3zG\ˆøÞwutv\Iy=zGX?ç10,.&³²9´p&µv¶/bè†\fhXLJ3[6wutPYjXlsrCYAYjX çžT3UPVTFè R = {j : (T > T ) ∪ (T ≤ T ∩ ε 6= 1)}. æ _ˆi.wI_tv\bXZYnš6]`_cGsXð[~_wuautvXZ]P]vXð[§rCz6w"]`_ƒœžrCcGsZautvrCcAd f tPcGsZtvd6XZcGsXƒsZz6Ynz6]vgX’d6X†]}fhgZiFgZcGXZYjXZc8a¸d6X¸a@Œ8[§XxVmç ε = 1è X\ua " # i. i. i i=1,...,n. i. j. i. j. i. i. æ Xm\IsrCwbXl\fhXLJ3[6wutPYjXn_]vrCwb\. L(β) =. U(β) =. n X i=1. n Y i=1. exp(βZj ) P j∈Ri exp(βZj ) ". P. j∈Ri. I(εi = 1) Zi − P. Ž. I(εi =1). .. Zj exp(βZj ). j∈Ri. exp(βZj ). #. ,.

(22) rCzEê6XZc¶z6autP]Ptv\ö_c=aƒ]vX\’[6wbr.sX\b\uzG\^d6XlsrCYA[6aI_¨FX%ê. žç T3UPV€Fè æ fhX\bautPY?_abXZz6wxd6X β iFgZwut»~X U(β)ˆ = 0 U§£.rCtPa β ]`_?iC_]vXZz6wxauŸGgrCwutvy8zGX d6X β U æ f z6autP]Ptv\I_autvrCc—sZ]`_C\b\utvy8zGXÞd6X\ [6wbr.sX\b\uzG\ðd6XesrCYA[6aI_¨FXmXZaðd3z<auŸGgrCwb‚ZYjXmd6Xˆ]PtPYAtPabXmsXZc=auwI_]vXx[§rCz6wO]vX\ðY?_wuautPc6¨=_]vX\ ç#·^XZš§r8d6XZ]P]vr6êVºFCŽFè [§XZwuYjXZa‘d fhgZaI_š6]PtPw‘]vX†srCYA[§rCwuabXZYjXZc=að_C\uŒ.YA[6abrCautvy=zGXðd6X βˆ ò √n(βˆ−β ) X\ua¨=_zG\b\utvXZcAsXZc8auwbg%êFd6X†Y?_auwutvsX d6Xxi%_wut`_cGsXÇ{Èsri%_wut`_cGsX Ω rCé Ω X\uaƒX\uautPYjgXm[~_w U(β) =. n Z X i=1. ∞. 0. ". Zi (s) − 0. Pn. j=1 Yj (s)Zj exp βZj P n j=1 Yj (s) exp βZj. #. dNi (s).. 0. −1. " # n (2) ˆ X S ( β, T ) 1 i ⊗2 1 ˆ Ti ) ˆ= ¯ β, Ω − Z( (0) ˆ n i=1 S1 (β, Ti ). rCém[§rCz6w z6cliFXsZabXZz6w v ê v = 1 ê v = 1 XZa v = vv ê S (β, u) = P Y (t)Z exp(βZ ) (p = XZa Z(β, U ¯ u) = 0, 1, 2) ™ˆc9srCcG\uaI_abXny8zGX%êGŸGrCwuYAtv\ˆ]`_ޜžrCwuYnz6]`_autvrCcRd6X\ƒtPcGd3tPi.tvd3zG\eø¦wutv\Iy=zGX%ê~]vX\ƒYjgZauŸGr.d6X\^d fhX\uautPY?_autvrCcR\bX d6gd3z6tv\bXZc8a^d6XlsXZ]P]vX\ƒXZYA[6]vr'ŒFgX\^[§rCz6wƒ]vXxYjr.d6‚Z]vXld6X „†r‡§U ⊗0. ⊗1. ⊗2. 0. (p) 1. n i=1. 1 n. ⊗p i. i. i. (1). S1 (β,u) (0). S1 (β,u). w}j‹Ž{-ycŒ„}±¸’°ŽŒ„‰ƒu‚-}. mù _cG\"]vX†s_C\‘rCé ]vX\d6rCc6cGgX\‘\brCc8a\IrCz6YAtv\bX\‘ø^z6cGX†sXZcG\uz6wbX’øed3wbrCtPabX%ê]`_ƒYjgZauŸGr.d6Xðd6XO[§rCcGd6gZwI_autvrCcjd6X ]`_?[6wbrCš~_š6tP]PtPabg¦tPc=iFXZwb\bXAd6X¦sXZcG\uz6wbX¯ç`ÄÈtPc8iFXZwb\bXÞ[6wbrCš~_š6tP]PtPaȌ—rœOsXZcG\brCwutPc6¨<ÏOXZtP¨%Ÿ8autPc6¨¶abXsbŸ6c6tvy8zGXÇÉöç#·^rCš6tPcG\ _cGd ·ˆrCauc6tPau¥ª8ŒFêGVº%º%TFèuè"X\ba‘z6autP]Ptv\bgX%U8„†XZauabX’YjgZauŸGr.d6X’[§XZwuYjXZaKd fhrCš6abXZc6tPw¸z6cjX\uautPY?_abXZz6w¸d3z¼\bsrCwbXlçžT3UPV€Fè XZc©[6wbg\bXZcGsXmd6XesXZcG\uz6wbXmø d3wbrCtPabX%UG£8t G(t) X\uað]`_n[6wbrCš~_š6tP]PtPabgmd6XecGXˆ[~_C\ðñZauwbXxsXZcG\uz6wbgmø ]}f tPcG\uaI_c=a t ê.rCc d6gÇ»Gc6tPaƒ]`_Þ[§rCcGd6gZwI_autvrCc9\bz6tPiC_c8abX   \ut N (t) X\uaƒrCšG\bXZwuiFg   , w (t) =   0, \utPcGrCc rCé Gˆ X\uax]}fhX\uautPY?_abXZz6wld6fX ¹l_[6]`_c3{ȁ9XZtvXZwld6X G ê y8z6tX\uamsrCc=iFXZwu¨FXZc=aÞy=z~_cGdB]`_©sXZcG\uz6wbX¦X\uaxtPcGd6gZ[§XZc3{ dG_c8abX%U æ Xm\bsrCwbXm[§rCcGd6gZwbgl\fhgsZwutPa " # P XZ w (t)Y (s)Z exp βZ çžT3UPVZ8è ˜ Z (s) − P w (t)dN (s). U(β) = w (t)Y (s) exp βZ ÷ c¶X\uautPY?_abXZz6w^srCcG\utv\baI_c=aˆd6X β X\ba^rCš6abXZc=zMXZcMwbX\brC]PiC_c8a U(β) U ˜ =0 ÷ cRd6gZiFXZ]vrC[6[XZYjXZc8alXZcR\IgZwutvX d6XÞW$_Œ8]vrCwn_zBiFrCtv\utPc~_¨FX¦d6XÞ]`_?\brC]Pz6autvrCcRauŸGgrCwutvy8zGX%ê β cGrCzG\ˆœžrCz6wuc6tPa ]}fp_[6[6wbr‡.tPY?_autvrCcR_z¶[6wbXZYAtvXZw^rCwbd3wbX ˆ G(t) ˆ G(t∧T i). i. n. ∞. i. i=1. 0. i. n j=1 j n j=1 j. j. j. j. j. j. i. i. 0. √ √ ˜ 0 )/ n}. n(βˆ − β0 ) ≡ I −1 {U(β. º.

(23) ÷ c¶X\uautPY?_abXZz6w^srCcG\utPabXZc8aˆd6X I XZc¯[6wbg\IXZcGsXld6XlsXZcG\uz6wbXnø¦d3wbrCtPabXnX\ua^d6rCc6cGgm[~_w # " n (2) ˆ X S ( β, T ) 1 i 2 ˆ Ti )⊗2 − E(β, Iˆ = (0) ˆ n S ( β, T ) i i=1 2. rCé. (1). E(β, Ti ) =. XZa (p). S2 (β, u) (0). S2 (β, u). n. 1X wi (t)Yi (t)Zi⊗p exp(βZi ), n i=1 √ ˜ 0 )/ n U(β. S2 (β, u) =. p = 0, 1, 2. ˆ™ c YjrCc=auwbXÀXZcG\bz6tPabX y8zGX s rCc=iFXZwu¨FX­iFXZwb\9z6cGXµ]vrCt¦¨=_zG\b\btvXZc6cGX sXZc8auwbgX%êld6X Y?_auwutvsXÀd6X i%_wut`_cGsXÇ{Èsri%_wut`_cGsX Σ U æ _¦œ/rCwuYjXld6X Σˆ X \uaƒd6rCc6cGgXndG_cG\nç/q"tPcGXn_cGdBŠewI_Œ§ê Vº%º%º3êG[~_¨FXlo%”%”FèÇU » hjžJBJDœBJo¨hj?r™³==oLDGBJ?r@EK¤žJ@¼˜¨?rBE›Dœdf?

(24) ›ˆ?Abso¨hM›ˆ™_žED. ]_^pº. ^Å »GcAd f tP]P]PzG\uabXZw]vX\‘d3tó§gZwbXZcGsX\¸XZc=auwbXð]vX\$œ/rCcGsZautvrCcG\¸d6XOwutv\Iy=zGXO[6wbg\bXZc=abgX\'ê%cGrCzG\K_iFrCcG\‘srCcG\utvd6gZwbg’y8zGX ]vX\†d3tv\uauwutPš6z6autvrCcG\’d6X\†abXZYA[G\†]`_abXZc=ab\’\brCc8a†\u[§gsZt»~gX\ðd6X^Y?_c6tv‚ZwbXe[~_wI_YjgZauwutvy8zGX%U N rCzG\’_iFrCcG\ðXLJ3[6]PtvsZtPabg ]vX\ewbXZ]`_autvrCcG\ly8z6t‘XLJ.tv\uabXZc8amXZc=auwbXAsX\eœžrCcGsZautvrCcG\md6X wutv\Iy=zGX\m\ut"]}fhrCc—srCcG\utvd6‚ZwbXjT©s_zG\bX\md fhgZiFgZcGXZYjXZc=ab\'U ™ˆc5d3tv\u[r%\IX9_]vrCwb\©d f z6c¾srCz6[6]vXBd6XMabXZYA[G\¼]`_abXZc=ab\ (T , T ) d6rCc8a¯rCc¾rCšG\bXZwuiFX T = min(T , T ) XZa ]}f tPcGd3tvs_abXZz6wed3z¯aȌ.[Xld fhgZiFgZcGXZYjXZc8a ε = 2 − 1 U £8z6[6[§r%\brCcG\jy8zGX (T , T ) \uz6tPiFX<z6cGX¯]vrCtƒÅ^„†ï†ìx çu½¾(&µ3-¿À'/pv0¿ÀÁÃÂL3-4j/#,.4)' 3-'Ä&ÆÅr,µÇ 7-1,27/pvnÈLÉÊ%34v04)´ /#,27-¿/èltPc=auwbr.d3z6tPabX©[~_wÞï†]vr.sbª_cGdµï’_C\uz ç|VºF:8ènXZaÞcGrCabgX (T , T ) ∼ Å^„†ï†ìe (a , a , a ) U£.rCtPa T = êG_]vrCwb\ T ∼ Exp(a) rCé a = a + a + a ê6XZaƒWkX\ua’tPcGd6gZ[§XZcGdG_c=abXnd6X T − T U æ _ޜžrCcGsÇ{ min(T , T ) autvrCc d6X?\brCzG\|{}wbgZ[~_wuautPautvrCcµd6Xj]}fhgZiFgZcGXZYjXZc8aAd6XAaȌ.[X9V%ê F ê ]vX\nœ/rCcGsZautvrCcG\Þd6Xjwutv\by8zGXjs_zG\bXÇ{È\b[gsZt»~y8zGX%ê ê3Y?_wu¨%tPc~_]vX%ê λ ê6XZaƒd6Xl\brCzG\|{}wbgZ[~_wuautPautvrCcEê α ê6\fhXLJ3[6wutPYjXZc=ax_]vrCwb\’wbX\u[§XsZautPiFXZYjXZc=aˆ[~_wnò λ 1. 2. 1. 2. (T1 ≤T2 ). 1. 2. 1. 1. 2. 1. 2. 2. 1. 12. 2. 12. 1. 2. 1. 1. 1 1. 1. F1 (t) = P (T ≤ t, T1 ≤ T2 ) = P (T ≤ t)P (T1 − T2 ≤ 0) = λ1 (t) = λ11 (t). a1 [1 − exp(−at)], a1 + a 2. aa1 , a1 + a 2. .  a1 + a12 − a12 exp(−a2 t) =a , a − a12 exp(−a2 t) aa1 α1 (t) = . a1 + a2 exp(at). @í ]^_[6[~_wI_Ëva¼sZ]`_tPwbXZYjXZc8a©y8zGX¯]`_BœžrCcGsZautvrCc λ X\ua?gZ¨=_]vXMø λ \brCzG\?]}f Ÿ=Œ.[rCauŸG‚\bXMd f tPcGd6gZ[XZcGdG_cGsXBd6X\ abXZYA[G\Þ]`_abXZc=ab\¶ç a = 0èÇU æ _Mœ/rCcGsZautvrCcÀd6X¼wutv\by8zGX¼s_zG\bXÇ{È\b[gsZt»~y8zGX¼X\ba z6cGX?œ/rCcGsZautvrCcÀsrCcG\uaI_c8abX¯d3z abXZYA[G\ê;y=zGX¦]vX\ d6XZz3‡RabXZYA[G\n]`_abXZc=ab\Þ\brCtvXZc=antPcGd6gZ[XZcGdG_c8ab\ÞrCz·cGrCcEê;_]vrCwb\ny8zGXA]`_©œžrCcGsZautvrCc·d6XAwutv\by8zGX Y?_wu¨%tPc~_]vXmcGXl]}fhX\uaƒy=zGXndG_cG\’]vXms_C\ƒtPcGd6gZ[§XZcGdG_c=aU V” 1 1. 12. 1.

(25) λ1. mù _cG\mcGrCauwbXAs_Cd3wbXj[~_wI_YjgZauwutvy=zGX%ê$rCc–rCš6autvXZc=an]`_¼œžrCwuYjXj\uz6tPi%_c=abX¦[§rCz6wl]vX¦wI_[6[§rCwuand6X\eœžrCcGsZautvrCcG\ XZa α ò 1. g(t) =. a2 a1 + exp(at). a1 + a 2 a1 + a 2. æ XmsrCYA[§rCwuabXZYjXZc=aed6X\^_z6auwbX\ðœžrCcGsZautvrCcG\’[6wbg\bXZc8abgX\ƒ[6]PzG\’Ÿ~_z6aƒXZc<œžrCcGsZautvrCcMd3z¯[~_wI_Yj‚ZauwbXld6Xmd6gZ[§XZc3{ dG_cGsXÞXZc=auwbXÞ]vX\xd6XZz3‡MabXZYA[G\e]`_abXZc=ab\ T XZa T ê a ê)X\uaewbXZ[6wbg\bXZc8abgÞ\bz6wˆ]`_j»G¨%z6wbXAT3UPV%U æ XÞ¨%wI_[6ŸGX¯çž_Fè 1. 2. 12. 0.0010. α1(t) 1000. 1500. 0. 500. t. t. (c). (d). 1500. 1000. 1500. 15 5. 10. g(t). 20. 25. 30. 1000. 0. F1(t). 500. 0.0 0.1 0.2 0.3 0.4 0.5 0.6. 0. 0.0000. a12=0 a12=0.0005 a12=0.001. 0.0000. λ1(t). 0.0010. 0.0020. (b). 0.0020. (a). 0. 500. 1000. 1500. 0. 500. t. t. ûðü(ý†þ T3UPVlÿÍ̄9Î    9ÎÆ„.  ÀŠ ³Ï9Ð Ñ   ³ ÒÄŠ —ÓpÔÄÕ¶Ö  Î    ÎÆ ÀŠ A   Ð  Ñ ³ Ï9     ÎaÓu×zÕµÖ   Î    Î   Ø  Î    ³Î      À³ —ÓuÙ-Õ|  ;Ï „ c  „ ÚE 9Î    9Î   ÀŠ ÛÓuÜzÕ. d6XA]`_<»G¨%z6wbX¼T3UPVAtP]P]PzG\uauwbX?sXZauabX?gZ¨=_]PtPabg?dG_cG\n]vXjs_C\ltPcGd6gZ[§XZcGdG_c=aê$abrCz6abX\nd6XZz3‡–\brCc8a gZ¨=_]vX\Þø a ê T gZaI_c8ald3tv\uauwutPš6zGgA\bXZ]vrCc—z6cGX¦]vrCt‘XLJ.[§rCcGXZc=autvXZ]P]vX?d6X¦[~_wI_Yj‚ZauwbX a U æ X\m¨%wI_[6ŸGX\¼ç(š)èÇêKç/s'è^XZa?ç/d~è^auwI_CsXZc8a wbX\u[§XsZautPiFXZYjXZc=a†]vX\¸œ/rCcGsZautvrCcG\ α ê F XZa g dG_cG\¸]vX\OYjñZYjX\†srCcGd3tPautvrCcG\U8í@]_[6[~_wI_ Ëvaðy8zGXƒ]}f tP%c ÝGzGXZcGsXxd6X ]`_©d6gZ[§XZcGdG_cGsXAy=z6t‘\bXZY š6]vX¦tPYA[rCwuaI_c8abXj\uz6wx]vX\eœ/rCcGsZautvrCcG\md6X¦wutv\Iy=zGX¯ç(¨%wI_[6ŸGXj_Fè^cEfp_¼»Gc~_]vXZYjXZc=any8zGX [§XZz¶d f tP%c ÝGzGXZcGsXn\uz6w’]`_ œžrCcGsZautvrCc9d f tPcGsZtvd6XZcGsX sZz6Ynz6]vgX©ç(¨%wI_[6ŸGXls'èÇU 1. 1. 1. 1. V%V. 1.

(26) Þ ŒÐƒp{Š}ß}j‹«¯%Z~à Ž‚}ఎ}±¯%jáˆxŒÄƒuxˆ®|p}M{. K c¦srCcG\btvd6gZwI_c=aKz6cGX’sr'iC_wut`_š6]vX’š6tPc~_tPwbX Z dG_cG\]vX’s_Cd3wbX†d3zAYjr.d6‚Z]vX’d6Xƒ„†r‡ êC]`_^œ/rCcGsZautvrCcjd6X†wutv\by8zGX s_zG\bXÇ{È\b[gsZt»~y8zGXmd fhgZiFgZcGXZYjXZc=axd6XmaȌ.[§XAVlX\ualò λ1 (t; Z) =. aa1 exp(β1 Z), a1 + a 2. XZa’]`_ œžrCcGsZautvrCc9d6Xm\brCzG\u{}wbgZ[~_wuautPautvrCc9d6Xm]}fhgZiFgZcGXZYjXZc8aˆd6Xma@Œ8[§XAVmX\ua^d6rCc6cGgXm[~_w F1 (t; Z) =. a1 exp(β1 Z) [1 − exp[−Ψ(Z)t]], a1 exp(β1 Z) + a2 exp(β2 Z). Cr é Ψ(Z) = λ exp(β Z) + λ exp(β Z) XZa X\ua^_]vrCwb\ 1. 1. 2. α1 (t; Z) =. 2. λi =. aai a1 +a2. U æ _AœžrCcGsZautvrCc—d6Xnwutv\Iy=zGX d6X \brCzG\u{}wbgZ[~_wuautPautvrCc. a1 exp(β1 Z)Ψ(Z) exp{−Ψ(Z)t} . a2 exp(β2 Z) + a1 exp(β1 Z) exp{−Ψ(Z)t}. mù _cG\ƒsXlsrCc8abXLJ.abX%ê~tP];X\ua’[§r%\b\utPš6]vXmd6Xld6rCc6cGXZwˆz6cGXxœžrCwuYjXlXLJ.[6]PtvsZtPabX ø¦]`_ޜžrCcGsZautvrCc YjXZc8aˆø Z = 1 U~‘cMXÇó XZa . γ(.). srCcGd3tPautvrCc6cGXZ]P]vXÇ{.    α1 (t; 1) Ψ(1) a2 + a1 exp(−at) × γ(t) = log = β1 + [a − Ψ(1)]t + log . α10 (t) a a2 exp(β2 ) + a1 exp(β1 ) exp[−Ψ(1)t]. žç T3UPVoFè æ X\ d3tó§gZwbXZc8ab\n[6wbr»G]v\Þd6XA]`_©œžrCcGsZautvrCc γ(t) \IrCc=anwbXZ[6wbg\IXZc=abg\Þ\uz6wl]`_<»G¨%z6wbX©T3UpT3U$„†XZauabXA»G¨%z6wbX?YjrCc=auwbX sZ]`_tPwbXZYjXZc8aˆy8zGX γ(0) X\ua’š6tvXZcMgZ¨=_]"ø β ê3Y?_tv\ƒy8zGXldG_cG\^_zGsZz6c9d6XlsX\ƒs_C\ γ(t) cEfhX\uaƒsrCcG\uaI_c8abX æ _—»G¨%z6wbX—T3Up€·wbXZ[6wbg\bXZc=abX—d3tó gZwbXZc=abX\©œžrCcGsZautvrCcG\<d f tPcGsZtvd6XZcGsX—sZz6Ynz6]vgX—rCš6abXZc=zGX\<[§rCz6w©]vX\©d6XZz3‡ i%_]vXZz6wb\?d6XM]`_—sri%_wut`_š6]vX Z UO£8z6w©sX\?y8z~_auwbX¶¨%wI_[6ŸGX\ê¸]vX¶[~_wI_Yj‚ZauwbX β X\uaj»6‡3gMø”3Upo3ê¸XZa?\IXZz6]^]vX [~_wI_Yj‚ZauwbX β i%_wutvX%UEù¦f z6c·[§rCtPc=a d6Xji8zGXA[6wI_autvy8zGX%ê;sXZauabXj»G¨%z6wbXjtP]P]PzG\uauwbX?]vX\lwbg\uz6]PaI_ab\ d6g ›uø¶gZcGrCcGsg\ [~_wlŠewI_Œ ç|Vº%Ž%ŽFèÇêø¼\I_iFrCtPwmy8zGXl]}fhXÇó XZaed6X ]`_¼sri%_wut`_š6]vXÞ\bz6w λ [§XZz6aeñZauwbX auwb‚\xd3tó§gZwbXZc8amd6X sXZ]Pz6t\uz6w êGXZc<œ/rCcGsZautvrCc9d6Xm]}fhXÇó§XZaƒd6X Z \uz6w λ U F í@];_[6[~_wI_tPaxd6rCcGsny8zGXm]vX\ƒwbXZ]`_autvrCcG\eXZc=auwbX\esX\^d6XZz3‡¯Yjr.d6‚Z]vX\ˆ\brCc8aƒcGrCc3{}auwutPi.t`_]vX\eXZaˆy=zGXm]vX\ˆsri%_:{ wut`_š6]vX\l_¨%tv\b\IXZc=ald6XÞY?_c6tv‚ZwbXjd3tó gZwbXZc=abXA\uz6wx]vX\eœžrCcGsZautvrCcG\ld6XÞwutv\by=zGX¦s_zG\bXÇ{È\b[gsZt»~y8zGXAXZamd f tPcGsZtvd6XZcGsX sZz6Y z6]vgX%U 1. 1. 2. 1. 1. 2. VT.

(27) β1=0.5, β2=−0.5 0.75. 0.5. β1=0.5, β2=0.5. 0.65 γ(t) 0.45. −2.5. 0.55. −1.5. γ(t). −0.5. a12=0 a12=0.0005 a12=0.001. 500. 1000. 1500. 2000. 0. 1000. β1=−1, β2=−0.9. β1=−1, β2=0.1. 1.0. γ(t) −0.8 −1.0 500. 1000. 1500. 2000. 0. 500. 1000. t. γ(.).  Ï  ³ÎŠ Aä a å ³    9Î   ÀŠ 12. 2. 1.0 0.8 0.6. F1(t). 0.2 0.0 500. 1000. 1500. 2000. 0. 500. 1000. β1=0.5, β2=−0.5. β1=0.5, β2=1 1.0. t. 2000. 1500. 2000. 0.6. 0.8. Z=0 Z=1. 0.0. 0.0. 0.2. 0.4. F1(t). 0.6. 0.8. Z=0 Z=1. 1500. 0.4. 1.0. t. 0.2. F1(t). Z=0 Z=1. 0.4. 1.0 0.8 0.6 0.4 0.0. 0.2. F1(t). β1=0.5, β2=0.5. Z=0 Z=1. 0. 0. 500. 1000. 1500. 2000. 0. t. β2. 2000.    Ï: ;Ï _

(28)  A„³ ³ÎÐ Ï Î  r„   ³_  ³é  Îk  _ Ž„ |êZ Ú  „ À “  9Î. β1=0.5, β2=0. ûðü(ý†þ T3Up€nÿ. 1500. t.  Ð „ Ðp Ð ãµÏ À Ð   „   æ  ³ÎŠ “ 9Aç  Î Ï9À 9Î   Z - è  ³ÎŠ   Ï:Ð Ñ   ³ Ò β  β ë 1. 2000. −0.6. 0.5 0.0 −1.0 0. ûðü(ý†þ T3UpT ÿaâ ;Ï9 r. 1500. t. −0.5. γ(t). 500. t. −0.4. 0. 500. 1000 t. ³  F (.; Z = 1)  „   æ  ³ÎŠ c Aç  Î Ï: 9Î   Ž  - è  ³ Ί   é p 9Î   _ r kêZ Ú  Ð    9Î    9Î  „ Š ³Ï9Ð Ñ   ³ ÒÄŠ ë F1 (.; Z = 0). 1. V€. β1. ³.

(29) Ô Õ×ÖµØÚÙ.ÛnÜÞÝ ì. à

(30)  X ‘‘åÐ â á ä á ‘  X ‘ á ZY åÐ ·â á í¤î¾ï DL˜“h™ðµK. ¡Û^`. K cgZ[6tvd6gZYAtvrC]vrC¨%tvX<sZ]PtPc6tvy=zGX%ê$]`_¯[6]`_c6t»~s_autvrCcÀd f z6cGX©gZauzGd6X?cGgsX\I\utPabXj]`_A› zG\uaut»~s_autvrCcµd6Xj]`_¶aI_tP]P]vX d6X©]}fhgsbŸ~_c8autP]P]vrCc¾øBsrCcG\uautPauzGXZwU¸£8z6w¦z6cµ[6]`_c­\uaI_autv\uautvy8zGX%ê"sXZauabX ›|zG\uaut»~s_autvrCcÀwbXZ[§r%\bX<\uz6w ]vX<srCc8auwbõC]vX d6X\xwutv\by8zGX\md fhXZwuwbXZz6wld6X¦aȌ.[§XAíƒXZalíbíÇU§„efhX\uamz6cGXAgZi.tvd6XZcGsXAdG_cG\x]vXAs_Cd3wbXAd6X\mX\b\I_tv\xauŸGgZwI_[§XZz6autvy8zGX\ wI_cGd6rCYAtv\bg\xçž_[6[6wbr.sbŸGXxsrCcG\bXZcG\uzGXZ]P]vXˆtPc=abXZwuc~_autvrCc~_]vXx\uz6wO]}fhgZiC_]Pz~_autvrCc<d f z6cGX^cGrCz6iFXZ]P]vXe\uauwI_abgZ¨%tvXˆauŸGgZwI_:{ [§XZz6autvy=zGX'èÇU.„efhX\ua¸YjrCtPcG\O\brCz6iFXZc=aO]vXƒs_C\¸dG_cG\¸]vX^s_Cd3wbXƒd6X\OgZauzGd6X\Od6XƒsrCŸGrCwuabXeømd6X\‘»GcG\¸[6wbrCcGr%\uautvy8zGX\U æ fhrCš3›uXsZautœ$d6XˆsXˆsIŸ~_[6tPauwbXeX\baOd6Xƒ[§XZwuYjXZauauwbXˆ]vXˆs_]vsZz6]§d3z?cGrCY š6wbXed6Xe\uzC›uXZab\KcGgsX\b\ö_tPwbXe_z<srCc=auwbõC]vXxd6X sX\’wutv\Iy=zGX\ƒd fhXZwuwbXZz6wˆdG_cG\^sX\ƒd6XZz3‡¯srCc=abXLJ3abX\ê~XZc¶\btPauz~_autvrCcMd6XlsrCYA[§gZautPautvrCcEU ¢ o¨hjH – BEDLK. ¡Û^;]. æ _<\uz6wbX\uautPY?_autvrCc·d6XA]`_©[6wbrCš~_š6tP]PtPabg?š6wuz6abXjd fhgZiFgZcGXZYjXZc=aÞd f tPc=abgZwbñZaÞXZc–\utPauz~_autvrCc·d6XjsrCYA[§gZautPautvrCc [~_w’]}fhX\uautPY?_abXZz6wˆd6X¾¹l_[6]`_c3{ȁ9XZtvXZw^X\ba†wbXsrCc6c8zGXl[~_w’abrCzG\U ""rCz6wƒabX\uabXZw’]}f tPc%ÝGzGXZcGsXnd f z6cGXmsri%_wut`_š6]vX š6tPc~_tPwbXm\uz6w†]}fhgZiFgZcGXZYjXZc=aˆd f tPc=abgZwbñZaƒXZc¯\utPauz~_autvrCc¯d6XxsrCYA[gZautPautvrCcEê3]vX\’_i.tv\ƒ_[6[~_wI_tv\b\bXZc8a’[6]PzG\ðd3tPiFXZw|{ Z ¨FXZc8ab\U Kc?[6wI_autvy8zGX%ê8dG_cG\O]vX^s_]vsZz6]§d6Xƒ]}fhXÇó XsZautœ$ømtPcGsZ]Pz6wbX%ê8]}fp_[6[6wbr8sIŸGX^]`_l[6]PzG\Kœ/wbgy8zGXZc=abXeX\uaOd f z6autP]Ptv\bXZw†z6c Yjr.d6‚Z]vX¦d6X?„†r‡R[rCz6wx]`_¼œžrCcGsZautvrCc–d6X wutv\Iy=zGX¦tPcG\uaI_c8aI_cGgjs_zG\bXÇ{È\u[§gsZt»~y8zGXAd6X ]}fhgZiFgZcGXZYjXZc8a d f tPc8abgZwbñZaU æ X?cGrCYnš6wbX©abrCaI_]Od fhgZiFgZcGXZYjXZc8ab\Ad f tPc=abgZwbñZa¦cGgsX\b\I_tPwbX©X\uanrCš6abXZc8zÀd3tPwbXsZabXZYjXZc=ajø¯[~_wuautPw¦d3z·wI_[6[§rCwua \u[§gsZt»~g θ d6X\’œžrCcGsZautvrCcG\ƒd6Xmwutv\by8zGXxtPcG\uaI_c8aI_cGgns_zG\bXÇ{È\u[§gsZt»~y8zGX?ç}£.sbŸGr.XZc3œ/XZ]vd ê$Vº%Ž%€Fèxò  u +u 瞀3UPV'è e = (log θ) p(1 − p) rCé u X\uaO]vX 100 × (1 − x)ñuòLó [§XZwbsXZc=autP]vXmd f z6cGXxd3tv\uauwutPš6z6autvrCcMŠm_zG\I\utvXZc6cGXxsXZc=auwbgXxwbgd3z6tPabX%ê3XZa p X\ua†]`_ VZ θ. x. α/2 2. β. 2.

(31) [6wbrC[§rCwuautvrCcMd6Xm[~_autvXZc8ab\ˆ_iFXs Z = 1 U ňzjsrCc=auwI_tPwbX%ê8d fp_z6auwbX\O_z6abXZz6wb\¸[6wbrC[r%\bXZc8aOd f z6autP]Ptv\bXZw¸z6cGXƒ\uaI_autv\uautvy8zGX’d6X’abX\uaKsrCYA[~_wI_c8aO]vX\œžrCcGsÇ{ autvrCcG\ed f tPcGsZtvd6XZcGsX¦sZz6Ynz6]vgX<ç}ŠewI_Œ§ê$Vº%Ž%%Ž $""XZ[X¦_cGdMBrCwut}ê$Vº%º%€FèÇU £8t;]}fhrCcB\uz6[6[§r%\bXny8zGXl]`_?sri%_wut`_š6]vX _¨%tPam\uz6we]`_?œ/rCcGsZautvrCc—d f tPcGsZtvd6XZcGsXjsZz6Y z6]vgXA\bXZ]vrCcR]vXÞYjr8d6‚Z]vX¦d6X¦q"tPcGX¦‰ŠewI_ŒFê§sXÞy8z6twbXZi8tvXZc8ax[6wI_:{ Z autvy8zGXZYjXZc=amø¦z6autP]Ptv\bXZwˆ]vXmabX\uaˆd6X¦ŠewI_Œ–ç|Vº%Ž%ŽFè^dG_cG\ƒ]vX s_C\^d6Xnd f z6cGX sri%_wut`_š6]vXnš6tPc~_tPwbX%ê)sXZ]Pz6t{ÈsZt$[§XZz6a \bXZwui.tPwOd6X^š~_C\bXˆ_z<s_]vsZz6]§d3z?cGrCYnš6wbXxd fhgZiFgZcGXZYjXZc8ab\’d f tPc=abgZwbñZaðcGgsX\b\I_tPwbX%U N rCzG\ð_iFrCcG\†YjrCc8auwbgˆy8zEf z6cGX œžrCwuYnz6]`_autvrCc©\utPYAtP]`_tPwbX^d3z¼cGrCYnš6wbX^d fhgZiFgZcGXZYjXZc8ab\’d f tPc=abgZwbñZaO[rCz6i%_tPaOñZauwbXƒrCš6abXZc8zGXeøm[~_wuautPwOd3zjwI_[6[§rCwua d6X\’œ/rCcGsZautvrCcG\ˆd6Xxwutv\by=zGX α _C\b\br.sZtvgX\^_z3‡©œ/rCcGsZautvrCcG\ˆd f tPcGsZtvd6XZcGsXnsZz6Y z6]vgX%U™ˆc¶rCš6autvXZc=aÞò γ  u +u 瞀3UpTFè e = (log γ) p(1 − p) ùm_cG\ð]vX\ƒd6XZz3‡¯s_C\ê3]vXxcGrCYnš6wbX n abrCaI_]Ed6Xm\bzC›|XZab\^øÞtPcGsZ]Pz6wbXmsrCwuwbX\b[rCcGdG_c8ae_z¯cGrCYnš6wbX d fhgZiFgZcGXZYjXZc=ab\ d f tPc8abgZwbñZa^cGgsX\b\I_tPwbXn\bXmd6gd3z6tPaˆ_]vrCwb\ƒd3tPwbXsZabXZYjXZc8aed6X e \bXZ]vrCc–ò e 瞀3Up€Fè n = P (ε = 1) ""rCz6wl]vXjs_]vsZz6]¸d6X n ê§z6cGXjX\bautPY?_autvrCcd6X P (ε = 1) ø©[~_wuautPw d6X¦]}fhX\bautPY?_autvrCcd6X\xœžrCcGsZautvrCcG\nd f tPcGsZt{ d6XZcGsX\msZz6Y z6]vgX\n_©gZabg¦[6wbrC[r%\bgXÞ[~_¾w "‘tPc8autP]PtvXMçžT%”%”%TFèÇê \brCzG\e]}f Ÿ=Œ.[rCauŸG‚\IXAd6X wutv\Iy=zGX\mXLJ3[rCcGXZc8autvXZ]v\lXZa tPcGd6gZ[§XZcGdG_c=ab\ˆXZa^XZc¶\uz6[6[§r%\I_c=a^d6X\^tPcGsZ]PzG\utvrCcG\’z6c6tœžrCwuYjX\U ""rCz6wÞ]vX¼s_]vsZz6]ðd6X n êEcGrCzG\¦_iFrCcG\Þz6autP]Ptv\bg¼]}fhX\uautPY?_autvrCcµd6X?]`_¯œ/rCcGsZautvrCcµd f tPcGsZtvd6XZcGsX<sZz6Ynz6]vgX<d6X ]}fhgZiFgZcGXZYjXZc8a†d f tPc8abgZwbñZaO[§rCz6w¸X\uautPYjXZw P (ε = 1) ê=dG_cG\¸]`_xYjX\uz6wbXƒrCé¼]vX’Yjr8d6‚Z]vX^d6Xƒq"tPcGXˆ‰ÆŠewI_Œ¦cGXðœž_tPa [~_C\OtPc=abXZwuiFXZc6tPwð]vX\¸œ/rCcGsZautvrCcG\ðd6Xˆwutv\by=zGX^tPcG\uaI_c=aI_cGgxs_zG\bXÇ{È\b[gsZt»~y8zGX%U8í@])X\baOd6Xˆ[6]PzG\¸[§r%\b\utPš6]vXˆd f z6autP]Ptv\bXZw ]vX\ˆwbg\uz6]PaI_ab\xd6X æ _CsIŸ6tPc·_cGd9q~rCz6]PªFX\¦ç|Vº%Ž%«Fèƒ[§rCz6wˆ[6wbXZcGd3wbX¦XZc9srCYA[6abXÞz6cGX tPcGsZ]PzG\utvrCcBcGrCc9z6c6tœžrCwuYjX d6X\†[~_autvXZc=ab\’dG_cG\†]}fhX\b\ö_t}U8‘c3»GcEê3dG_cG\ð]vXesrCc=abXLJ3abXxd f z6cGXegZauzGd6Xxd6XesrCŸGrCwuabXe[6wbrCcGr%\uautvy=zGX%ê3tP]cEfhX\ua†[~_C\ wI_wbXƒy8zEf tP]~XLJ3tv\uabXðz6cGXƒsrCwuwbgZ]`_autvrCc<XZc=auwbX Z ê%]`_msr'iC_wut`_š6]vXˆd6rCc=a†rCcjiFXZz6aKYjrCc=auwbXZwO]`_xi%_]vXZz6wK[6wbrCcGr%\uautvy8zGX \uz6we]}fhgZiFgZcGXZYjXZc=ald f tPc8abgZwbñZaêEXZaez6cGX¦_z6auwbX¦sr'iC_wut`_š6]vXÞYjX\uz6wbgX Y U N rCzG\m_iFrCcG\md6rCcGsÞ\bXsrCcGdG_tPwbXZYjXZc=a gZabXZcGd3z¶]`_ œžrCwuYnz6]vX©çž€3UpTFè’ø¦sXZauabXl\utPauz~_autvrCcò  u +u 瞀3U 8è e = (log γ) p(1 − p)(1 − ρ ) rCé ρ X\ua$]vX†sr.0X ô?sZtvXZc=aKd6X†srCwuwbgZ]`_autvrCcjXZc=auwbX Z XZa Y U%„†X¸wbg\bz6]PaI_asrCcGd3z6tPaKø^z6cGXOXLJ3[6wbX\b\utvrCcA\uŒ.YjgZauwutvy8zGX d6XmsXZ]P]vXlrCš6abXZc8zGXl[§rCz6w’]vXmYjr.d6‚Z]vXld6Xn„†r‡¶XZc9_šG\bXZcGsXnd6XmsrCYA[gZautPautvrCcµç}£.sbŸ6Yjr.rCwˆXZa^_]}UPê~T%”%”%”FèÇU æ X\¼[§XZw|œžrCwuY?_cGsX\¯d6X\?œžrCwuYnz6]vX\¯d6gZiFXZ]vrC[6[§gX\¶rCc8a<gZabgRgZauzGd3tvgX\<[~_w<\utPYnz6]`_autvrCckc8z6YjgZwutvy=zGX%êðŒ srCYA[6wutv\ˆdG_cG\’]vXms_C\^d f z6cGXlsr'iC_wut`_š6]vX Y srCc8autPc=zGX%U Kc3»GcEêGd6XZz3‡¶XLJ3XZYA[6]vX\ƒrCc8aƒtP]P]PzG\uauwbglsX\ˆs_]vsZz6]v\ê3cGrCaI_YAYjXZc=ae[§rCz6w’z6cMs_]vsZz6];d6Xm[6z6tv\b\ö_cGsX%U Vo i. β. α/2 2. γ. 2. .. .. .. θ. γ. γ. α/2. 2. β. 2. 2.

(32) ¡Û^¡. õcö³÷ ?Abedf=DøKj™ù¨D¦ð – ›zbGžJ=?úð – ›ûdJ› – d – ›jhj™ – @J?r=RHE?AùZ?

(33) ›ˆBJKüb – BJDL==™³@Eý – ð ˜ – bedD¨hj™³@Eýe›ˆ™K)þ¾K õ m. „†XZa^_wuautvsZ]vXÞ_¦gZabgm[6z6š6]PtvgldG_cG\_ÿ/u7/#,!&¶/#, ¶&_, 4 . Rv+*-, ¶, 4vnT%”%”Gê *~•. . . V«. òp€%T%«%€:{@€%TF:.

(34) STATISTICS IN MEDICINE Statist. Med. 2004; 23:3263–3274 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.1915. Sample size formula for proportional hazards modelling of competing risks Aurelien Latouche∗; † , Raphael Porcher and Sylvie Chevret Departement de Biostatistique et Informatique Medicale; Hˆopital Saint-Louis; Universite Paris 7; Inserm Erm 321; Paris; France. SUMMARY To test the eect of a therapeutic or prognostic factor on the occurrence of a particular cause of failure in the presence of other causes, the interest has shifted in some studies from the modelling of the causespecic hazard to that of the subdistribution hazard. We present approximate sample size formulas for the proportional hazards modelling of competing risk subdistribution, considering either independent or correlated covariates. The validity of these approximate formulas is investigated through numerical simulations. Two illustrations are provided, a randomized clinical trial, and a prospective prognostic study. Copyright ? 2004 John Wiley & Sons, Ltd. KEY WORDS:. competing risks; sample size; subdistribution hazard; cumulative incidence. 1. INTRODUCTION In cohort studies, patients are often observed to fail from several distinct causes, the eventual failure being attributed to one cause exclusively to the others, which denes a competing risks situation [1]. In this setting, we are often interested in testing the eect of some covariate on the risk of a specic cause. For example in cancer studies, one could wish to assess the eect of a new treatment or age on delaying relapse, while some patients will die before relapse. The eect of such a covariate on specic failure types is usually analysed through the modelling of the cause-specic hazard function [2]. However, the interpretation of the eects of the covariate on the specic types of failure is restricted to actual study conditions, and there is no implication that the same eect would be observed under a new set of conditions, notably when certain causes of failure would have been eliminated. Except in circumstances of complete biologic independence among the biological mechanisms giving rise of the various failure types, it is unrealistic to suppose that general statistical methods can be put forward that will encompass all possible mechanisms for cause removal [2]. Notably, the instantaneous ∗ Correspondence. to: A. Latouche, Departement de Biostatistique et Informatique Medicale, Hˆopital Saint-Louis, 1 avenue Claude Vellefaux, 75475 Paris Cedex 10, France. † E-mail: aurelien.latouche@chu-stlouis.fr. Copyright ? 2004 John Wiley & Sons, Ltd.. Received December 2003 Accepted May 2004.

(35) 3264. A. LATOUCHE, R. PORCHER AND S. CHEVRET. risk of specic failure type is sometimes of less interest than the overall probability of this specic failure. Such a probability could be formulated as either the marginal distribution of the specic failure type, or the cumulative incidence function, i.e. the overall probability of the specic type of failure in the presence of competing causes [3–6]. In some situations, the marginal distribution could be the relevant target of estimation. However, this marginal distribution is not identiable from available data without additional assumptions, such as statistical independence between competing failure types (in which case the marginal hazard equals the cause-specic hazard). In the situation where the competing risks arise from the underlying biology of the disease, and not from the observation process, such an assumption is not clinically relevant. This will be exemplied below on real data (see Section 5). Moreover, it has been proven that this assumption cannot be veried [7]. Therefore, the cumulative incidence functions may appear more relevant than marginal probabilities. However, no oneto-one relationship exists between the cause-specic hazard and the cumulative incidence function. Therefore, in such cases, the emphasis has shifted from the conventional modelling of the cause-specic hazard function to the modelling of quantities directly tractable to the cumulative incidence function [8–10]. Let T be the time of failure,  the cause of failure ( = 1, denoting the failure cause of interest) and F1 (:) the cumulative incidence function for failure from cause of interest, i.e. F1 (t) = Pr (T 6t;  = 1). Gray [8] dened the subdistribution hazard for cause 1 as: 1 (t) = lim. dt→0. 1 Pr{t 6T 6t + d t;  = 1|T ¿t ∪ (T 6t ∩  = 1)} dt. by contrast to the cause-specic hazard: 1 (t) = lim. dt→0. 1 dt. Pr{t 6T 6t + d t;  = 1|T ¿t }. By construction, the subdistribution hazard 1 (t) is explicitely related to the cumulative incidence function for failure from cause 1, F1 (t), through 1 (t) = − d log{1 − F1 (t)}= d t. (1). while the relation between the cause-specic hazard 1 (t) and F1 (t) involves the cause-specic hazards of all failures types [11]. A semi-parametric proportional hazards model was proposed to test covariate eects on the subdistribution hazard [9]. Using the partial likelihood principle and weighted estimated equations, consistent estimators of the covariate eects were derived, either in the absence of censoring (referred as ‘complete data’), or in the presence of administrative censoring, i.e. when the potential censoring time is observed on all individuals (‘censoring complete data’). A weighted estimator for right-censored data (‘incomplete data’) was also proposed, properties of which were investigated through numerical simulations. This paper focuses on computing sample size for the Fine and Gray’s model [9], with two main goals. First, we provide a sample size formula to design a parallel arm randomized clinical trial with a right-censored competing endpoint, contrasting this computation with the standard Cox modelling of the cause-specic hazard [12]. Secondly, we compute the required sample size (or statistical power) to detect a relevant eect in a prognostic study, when dealing with a competing risks outcome. Copyright ? 2004 John Wiley & Sons, Ltd.. Statist. Med. 2004; 23:3263–3274.

(36) SAMPLE SIZES IN THE COMPETING RISKS SETTING. 3265. Section 2 of this paper describes the sample size formula for evaluation of a therapeutical eect. In Section 3, we extend this sample size formula to the prognostic situation, where the prognostic factor of interest is possibly correlated with another factor. The validity of the resulting approximate asymptotic formulas is investigated with respect to their nite sample behaviour by numerical simulations in Section 4. Our approach is illustrated by two examples, one is the randomized clinical trial, and the other is a prognostic study. We close the paper with some discussion.. 2. SAMPLE SIZES FOR EVALUATION OF THERAPEUTIC EFFECT IN THE COMPETING RISK SETTING Assume a randomized clinical trial is designed to compare two treatments with respect to a competing risks endpoint. Usually, one treatment is a standard treatment or a placebo, whereas the other treatment is an experimental treatment. Let X be a binary covariate representing the treatment group (with X = 1 denoting the experimental group, and X = 0 the standard group) and Y , any additional covariate, independent of X . Let p, be the proportion of patients randomly allocated to the experimental treatment group, and n the required sample size of the trial. We wish to test the benet of the experimental group over the standard group with regards to the occurrence of the failure of interest, either roughly or adjusted on Y . We extend Schoenfeld’s sample size formula [13], developed in the conventional survival case, to the competing risks setting. We assume the Fine and Gray’s model [9] for the subdistribution hazard of failure times of interest, 1 (t; X; Y ) = 0 (t) exp(aX + bY ) In the case of ‘complete data’, the partial likelihood of the model is: L() =. n  i. . exp(axi + byi )  j∈Ri exp(axj + byj ). I (i = 1). which, besides the denition of the risk-set Ri = { j : (Ti 6Tj ) ∪ (Tj 6Ti ∩ j = 1)}, is similar to the Cox partial likelihood. Fine and√Gray [9] have shown that the Wald (partial) statistic to test the null hypothesis {a = 0} is naˆ where aˆ is the maximum partial likelihood estimate (MPLE) of a, which is asymptotically Gaussian with zero mean and estimated variance V0 . Using the same terminology as in Reference [13, p. 502], this variance expresses: V0 =. n  ˆ ˆ ˆ ˆ ˆ 2  Mi (y; b) ˆ {1−Mi (y; b) ˆ } i∈E Mi (x; b){1−Mi (x; b)}−{ i∈E Mi (xy; b)−Mi (x; b)×Mi (y; b)} = i∈E. . with Mi (x; b) = of b.. . j∈Ri xj. exp(byj )=. . Copyright ? 2004 John Wiley & Sons, Ltd.. j∈Ri. exp(byj ) and E = {i : i = 1} and bˆ is the MPLE Statist. Med. 2004; 23:3263–3274.

(37) 3266. A. LATOUCHE, R. PORCHER AND S. CHEVRET. Assuming that the variance of the Wald statistic under the alternative hypothesis is approximately equal to V0 , as in Reference [14, p. 442], it is straightforward that: V0 ≈. n ep(1 − p). (2). where e is the number of failures of interest. Of note, the subdistribution hazard ratio,  = exp(a), can be expressed as =. log{1 − F1 (t; X = 0; Y)} log{1 − F1 (t; X = 1; Y)}. To determine the sample size for this trial, we rst calculate the number e of failures of interest required to control for both type I and type II error rates of  and , respectively, as follows: e=. (u=2 + u )2 (log )2 p(1 − p). (3). where u denotes the (1 − )-quantile of the standard Gaussian distribution. Since the ‘censoring complete data’ analysis relies on a proper partial likelihood, previous results are readily inherited from classical Cox model with censoring [9, p. 499]. Formula (3) thus holds in the cases of ‘complete data’ and ‘censoring complete data’. The total required sample size is, n=. (u=2 + u )2 (log )2 p(1 − p). (4). where is the proportion of failures of interest at the time of analysis, Ta . Formula (4) looks similar to that derived by Schoenfeld [13] for the survival Cox regression model, with , the subdistribution hazard ratio instead of the hazard ratio. Nevertheless, since the eect of a covariate on the cause-specic hazard for a particular failure can be quite dierent than its eect on the subdistribution function [8, 15], actually, formulas are dierent. Finally, note that, in the absence of any censoring, the proportion of failures of interest (that is identical to the proportion of non-censored observations in the Schoenfeld’s formula [13]) reduces to the value at the time of analysis of the subdistribution function for the failure of interest in the whole cohort, F1 (Ta ). In the case of ‘censoring complete data’, can be estimated roughly by (1 − c)F1 (Ta ), where c is the expected proportion of censored observations.. 3. SAMPLE SIZES FOR THE EVALUATION OF PROGNOSTIC FACTORS FOR COMPETING RISKS OUTCOMES We now consider the planning of a prospective cohort study aiming at assessing whether or not a particular exposure is associated with the subsequent occurrence of the failure of interest. Let X be a binary covariate representing the exposure (with X = 1 if exposed and X = 0 otherwise), and Y another prognostic covariate. For simplicity, we assume that Y is Copyright ? 2004 John Wiley & Sons, Ltd.. Statist. Med. 2004; 23:3263–3274.

Références

Documents relatifs

Thus, our results clearly show that the texture of the fibrosis has a substantial effect on the propagation veloc- ity and makes propagation anisotropic by decreasing the

Among a total of 17,791 COVID-19 patients requiring hospital admission and recorded in the hospital clinical surveillance database during the study period, 13,612 had both admission

Sgra'i bstan bcos Mkhas pa'i kha rgyan 56 (henceforth KKG), 'Gramma- tical treatise [entitled] Head-ornament of the wise', is a treatise describing the

Take Singapore, which has the highest life expectancy in the world (Institute for Health Metrics and Evaluation. GBD results tool. Global Health Data Exchange 2020).. The mortality

The overall conclusion from the studies is that patients with the least severe knee osteoarthritis (i.e., those with the largest joint space width early disease or with a low KL

In a study using data from the OsteoArthritis Initiative progression cohort, glucosamine plus chondroitin treatment significantly reduced the cartilage volume loss, predominantly

Recycling
programs
in
St.
John’s
are
inefficient,
and
are
having
a
negative
impact
upon
the


Objectives for the three years were : to construct Nonstandard Models of Buss Arithmetic to establish some bounds on the class NP inter co-NP ; to solve the problem of existence of