• Aucun résultat trouvé

Modelling and simulations of a Monolith Reactor for three-phase hydrogenation reactions – Rules and recommendations for mass transfer analysis

N/A
N/A
Protected

Academic year: 2021

Partager "Modelling and simulations of a Monolith Reactor for three-phase hydrogenation reactions – Rules and recommendations for mass transfer analysis"

Copied!
11
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 16517

To link to this article : DOI : 10.1016/j.cattod.2016.04.009

URL :

http://dx.doi.org/10.1016/j.cattod.2016.04.009

To cite this version :

Duran-Martinez, Freddy and Julcour-Lebigue,

Carine and Billet, Anne-Marie and Larachi, Faïçal Modelling and

simulations of a Monolith Reactor for three-phase hydrogenation

reactions – Rules and recommendations for mass transfer analysis.

(2016) Catalysis Today, vol. 273. pp. 121-130. ISSN 0920-5861

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Modelling

and

simulations

of

a

monolith

reactor

for

three-phase

hydrogenation

reactions

Rules

and

recommendations

for

mass

transfer

analysis

Freddy

L.

Durán

Martínez

a

,

Carine

Julcour

a

,

Anne-Marie

Billet

a,∗

,

Faïc¸

al

Larachi

b

aLaboratoiredeGénieChimique,UniversitédeToulouse,CNRS,INPT,UPS,4AlléeEmileMonso,CS84234,F-31432Toulouse,France bLavalUniversity,ChemicalEngineeringDepartment,2325Ruedel’Université,Québec,QCG1V0A6,Canada

Keywords: Monoliths Catalysis Taylorflow Masstransfer Simulation

a

b

s

t

r

a

c

t

Astrategyforthescale-upofamonolithreactordedicatedtogas-liquidcatalyticreactionsisworked out;focusismadeonthecrucialstepofgas-liquidmasstransfermodellingviaasteady-statenumerical studybasedonasinglechannelandsingleunitcellrepresentation,usingaframemovingwiththe bubbleandsolvingtheliquidphaseonly.Therelevanceofthissimplifiedapproachisassessedthrough aspecificcase(givenbubbleshape,channeldiameterandfluidflowrates),andhydrodynamicsaswell asmasstransferresultsaresuccessfullycomparedtopreviouslypublishednumerical,semi-analytical andexperimentalworks.Influenceofunitcelllengthandofcatalyticsurfacereactionrateisthoroughly investigated.Inferredoverallmasstransfercoefficientsarefoundtoincreasewithbubblefrequency, duetohigherinterfacialareainunitcellandintensifiedrecirculationinslug.Filmcontributiontomass transferisusuallyfounddominantinthecaseofshortbubbleswithreactivewall,andhardlyvarieswith reactionrate.However,thiscontributionisstronglylinkedtobubblefrequency,andareliableevaluation oflocalmasstransferbycorrelationsdemandsaccurateknowledgeontheprecisedimensionsofbubble, slugandfilmentities.

1. Introduction

Chemicals and fuels are produced through catalytic gas-liquid-solid reactions in a wide range of industries, including petrochemicals,finechemicals,pharmaceuticalsandbiochemicals. Conventionaltechnologiestohostsuchgas-liquid-solidreactions are fixed-bed,slurrybubble columnand fluidized-bed reactors. Slurrybubblecolumnreactors,andfluidizedbedstoalesserextent, combinethreemajoradvantages:thepossibilityforcontinuous cat-alystreplacement,amuchreducedintra-particulardiffusionpath length (dueto thesmall size of catalyst particles),and a good heat transferefficiency.However,theysuffer fromsome draw-backssuchasliquidback-mixing,significantattritionofthecatalyst andneedforcatalystseparationandrecycling.Ontheotherhand, despite fixed-bed reactors can beoperated closer to plug flow withnegligible attrition of catalyst,restrictions quicklyemerge regardingsoaringpressuredropswhichultimatelyforceauseof large(millimetric)particleswhichunavoidablyimplysignificant

∗ CorrespondingAuthor.

E-mailaddress:annemarie.billet@ensiacet.fr(A.-M.Billet).

internaldiffusionallimitations.Inaddition,thetraditional cocur-rentdownwardconfiguration(trickle-bedreactors)cangiverise tomaldistributionoftheliquidresultingincatalystpartialwetting atlowflowrateswhichrendersuchreactorspronetohotspots inception,thus catalystdeactivationandeven thermalrunaway [1].Anotherdifficultyencounteredwithconventionalmultiphase reactorsistheirscale-uptoindustrialsizeunits.Althoughthese conventionalreactorsstillplayamajorroleinindustrialprocesses, researchersstrivelookingforadvantageousalternative technolo-gies.

Structuredreactors have beenclaimed over thepastseveral years to offer interesting possibilities; among them, Monolith Reactors(MRs),alsocalled‘honeycombreactors’,havebeen con-siderably studied for almost four decades as they represent a promisingcutting-edgetechnologytocircumventtheabove men-tionedproblemsenumeratedinthecaseofconventionalreactors. MRs were initially developed as catalytic converters for the automotiveindustry;theyhave beenextended toinclude other environmentalapplicationssuchasselectivereductions(DeNOx catalysts)usedinpowerplantsandincinerators[2].Morerecently, MRs have emerged as promising candidates competing with conventionalgas-liquid-solidreactors,astheyofferseveral

(3)

Nomenclature

a Bubbleinterfacialarea;(m2

Bm−3UC)

c Concentrationofdissolvedgas;(molm−3L)

coverall Volumeaveragedconcentration,asdefinedinEq.

(6);(molm−3L)

cs,mean Averageslugconcentration;(molm−3L)

cwall Wallconcentration;(molm−3L)

c* Dissolvedconcentrationatsaturation;(molm−3L)

D Moleculardiffusionof dissolvedgasintheliquid phase;(m2s−1)

dB Bubblediameter;(m)

dc Channeldiameter;(m)

dS Elementarybubblesurface;(m2 B)

dV Elementaryvolume;(m3)

g Gravityaccelerationvector;(ms−2)

KC Rate constant of first order surface reaction;

(m3

Lm−2walls−1)

kLa Volumetric mass transfer coefficient;

(m3

Lm−3UCs−1)

LUC Unitcelllength;(m)

Lf Liquidfilmlength;(m)

MR Monolithreactor

N Gasmolarflux,asdefinedinEq.(5);(mols−1)

n Normalvector;(−)

P Pressure;(Pa)

1P Pressuredrop;(Pa)

QL Volumetricflowrate;(m3s−1)

r Radialcoordinate;(m)

RB Bubbleradius;(m)

UB Velocityofbubblecenterofmass;(ms−1)

UTP Two-phasevelocity,uGs+uLs;(ms−1)

u Velocityvector;(ms−1)

uGs Superficialgasvelocity;(ms−1)

uLs Superficialliquidvelocity;(ms−1)

uzG Axialcomponentofgasvelocity;(ms−1)

uzL Axialcomponentofliquidvelocity;(ms−1)

VL Liquidvolume;(m3L)

VUC Unitcellvolume;(m3UC)

z Axialcoordinate;(m)

Greeksymbols

«G Gashold-up;(−)

df Filmthickness;(m)

mG Gasdynamicviscosity;(Pas)

mL Liquiddynamicviscosity;(Pas)

rL Liquiddensity;(kgm−3) s Surfacetension;(Nm−1) DimensionlessGroups Ca Capillarynumber, mLUB  ;(−) Re Reynoldsnumber,LUBdc mL ;(−)

ReG SuperficialgasReynoldsnumber, GumGsdc

G ;(−)

ReL SuperficialliquidReynoldsnumber,LumLsdc

L ;(−)

ScL LiquidSchmidtnumber,mL

LD;(−)

ShL LiquidSherwoodnumber,kLDdc;(−)

tages,e.g.,thecatalyticlayerdepositedonthewallofthenumerous MRchannelsisthinenough(ca.10mm)tominimizeinternal diffu-sionalresistances;thechannelshostspecificallytunablegas-liquid flowregimes(chiefamongthemtheso-calledTaylorortrain bub-bleorslugflow),whichcanproveparticularlyconvenientinterms

ofmasstransferinterfacialarea;pressuredropinMRislow; flu-idsflowfreelyavoidingreactorfoulingandcloggingandlimiting theoccurrenceofhotspots;MRsoffertheopportunitytoperform efficientreaction heat removalthrough themonolith backbone providedthatitisbuiltinhighlyheat-conductingmaterial.

ManyworkshavebeendedicatedtothestudyofMRoperation wheretheliteraturereportsexperimentalstudiesoffluid distri-butionintothechannelsofmonolithblocks[3–6],flowregimes inside thechannels[7–10],andmass transferbetweengasand liquidphasesovertheentireapparatus[11,12].Theoverall volu-metricgas-liquidmasstransfercoefficient,kLa,wasreportedtobe

muchlargerinMRoperatingintheTaylorflowregime(0.1–1s−1)

[11,13,14] than in stirred tanks (0.03-0.4s−1), bubble columns

(0.005–0.25s−1)orpackedbeds(0.004–1s−1)[15].Thisenhanced

masstransferwasattributedtotheexistenceofathinliquidfilm(a fewtensofmm)betweenthebubbleandthechannelwall,aswell astotheefficientconvectivemixingwithintheliquidslugs pro-videdtheyareshortenough[16].Ofpracticalinterest,itwasshown thatkLavaluesmeasuredinMRcorrelateratherwellwiththose

predictedfromsingle-channelmodels[11,14].Indeed,mostofthe experimentalandtheoretical worksongas-liquidmasstransfer havebeendevotedtosinglemillimetriccapillaries[12,16–23].The relativecontributionsofbubblecapsandlubricatingfilmtothe gas-liquidmasstransferwerediscussedmorespecifically,thoughthe conclusionsweremainlydrawnfornon-reactivesystemswhere likelihoodoffilmsaturationwiththetransferringspecies drasti-callyjeopardizessuchlevelofdiscrimination.Insuchasituation, transferthroughbubblecapsbecomestheonlyeffectivepathway turningkLa insensitivetobubblelengthorchannel diameteras

observedbyBerˇciˇcandPintar[18].Conversely,forshortunitcells (bubble+sluglengths<50mm)andbubblevelocities>0.15ms−1,

simulationsfromvanBatenandKrishna[19]showedthatscalar transportthroughthefilmaccountsfor60–80%oftheoverallkLa

values.Experimental resultsofVanduetal. [12]alsoconfirmed a dominantfilm contribution for unit cells lower than 25mm. Thislatterscenariobecomesespeciallycrucialwhena heteroge-neousreactionoccursatthecatalystcoatedwallduethegenerated concentrationgradient, and in this case theproposedchemical engineeringmodelsoftenneglect(withvaryingdegreesofsuccess) thepossibleinteractionbetweenthedifferenttransferpathways [24–26].

Oneoftherareandcompleteexamplesofadevelopment strat-egyofaMRwasillustratedbyHaakanaetal.[27]whotooklactose oxidation as a study case. They used severaldifferent mockup experimentstostudyseparatelydifferentphenomena,e.g., hydro-dynamics,masstransferandintrinsickinetics,andultimately,the differentsub-modelswerecombinedforacompletemathematical description.Exceptthisrelativelydetailedstudy,amethodology for scale-up or design of a MR apparatus accounting for local inter-channeldisparitiesofthehydrodynamicsandconcentrations stemmingfromunequalflowdistributionintheparallelchannels israrelyproposed.

Inthepresentwork,astrategyformodellingaMRasawhole is described. The objective is to develop a pre-design tool for industrial-scalereactorsappliedtohighlyexothermalreactions. AscendingTaylorflow isassumedinthechannels,andamodel reactionrateisconsideredtooccuratchannelwalls.Thechosen strategyallowsfocusingongas-liquidmasstransferaspartand parceloftheentiremasstransportmechanismsintheunitcellsas akey-pointforMRperformance.Thusthesephenomenaare specif-icallymodelledandsimulatedbymeansofComputationalFluid Dynamics.Foragivensetofoperatingparameters(i.e.,fixedgas andliquidflowrates),theoverallandlocalmasstransferratesare quantifiedanddiscussedforvariousvaluesofunitcelllengthand reactionrate.

(4)

2. ProposedmethodforMRmodelling 2.1. Principles

In the present work, a pre-design tool for industrial-scale monolithreactorsisbuiltthankstosimplifyingassumptionsand numericalsimulations.Thestudiedtechnologyconsistsina mono-lithicmetalstructureofferingthincircularchannelsdedicatedto reactionandacoolingfluidcirculatinginthehollowstructure.The reactingcircularchannelsare0.2–1mlong–dependingon reac-tionyieldtobeachieved-,andhaveaninternaldiameterofafew millimetres.Thechannelscanbefedingasandliquidbymeansof standardfluiddistributionsystems(spraynozzleandshowerhead tonameafew)althoughtheirinherentimperfectionsareknown toimpactthedistributionoffluidsamongtheMRchannels.The channelsarecoatedwithafewmicronthincatalyticlayersin addi-tiontohostagas-liquidsegmentedflow(theso-calledTaylorflow) resultinginthefullproblemtobethree-dimensional,locally non-stationaryand stronglyintermingledwithcoupledmultiphysics phenomena(complexhydrodynamics,massandheattransfer, cat-alytic reaction)which necessitatedescriptionsaltogetherat the film/catalyticlayer,channelandreactorscales.Themodelling strat-egyconsistsinrepresentingeachphenomenonwiththerequired levelofcomplexitybyprogressingstep-wisefromthelocalscale tothereactorscale;forthatpurpose,theCFDsoftwareCOMSOL Multiphysics®ischosenasitallowstocouplethedifferentphysics

aswellasdifferentscales.Ateachmodellingstage,the simula-tionresultswillbecomparedtotheoreticalresultsfromliterature, ortoexperimentalmeasurementsobtainedfromdedicated set-ups:jacketedsingle-channelreactor,coldtransparentmock-ups forhydrodynamicregimeandmal-distributionpurpose,and com-pleteMR.

Asafirstassumption,aspatiallyuniformtemperatureis con-sidered for themonolith framework owing toits highthermal conductivityandtothefastcoolantcirculation.Ontheotherhand, theeffectofunevenfluiddistributionwillbesimplyaccountedfor bycombiningoutflowsfromchannelsfedwithdifferentgasand liquidflowrates;thewaysinglechannelsarebeingfedisbasedon phase-retentionmappingandresidencetimedistributionstudies developedinthecoldmock-ups.

Thesetworulesaresufficienttouseasingle-channelapproach tomodelthereactor.

2.2. Implementationofcomputationalfluiddynamicsmodel 2.2.1. Generalapproach

Inthiswork,anapproachinspiredfromFukagataetal.[28]and Guptaetal.[29]ischosenfordescribingTaylorflowinmilli-and microchannelsusingtheso-calledunitcell(UC,Fig.1)inwhicha gasbubbleissurroundedbyaliquidfilmandseparatedbytwo liq-uidhalf-slugs.TheUCisrepresentedinareferenceframemoving withthebubble.Thisapproachisrelevantaslongastheconsidered UCisfarenoughfromtheinletandoutletofthechannel.Many com-putationalworks dedicatedtothemodelling offully-developed Taylorflowinmicro-andmilli-channelsusenumericaltrackingof thedeformationandthemotionofgas-liquidinterface[28,30,31]. Here,becauseofthelowcapillarynumber(O(10−3)),thebubble

shapecanbeconsiderednon-deformable[32];itisdescribedby meansoftwohemisphericalcapsandacylindricalbodyofradius RB,asdepictedinFig.1.The channelcross-sectionbeing

circu-lar,a2D-axysimmetricrepresentationofthesystemisused.The filmthicknessdf beweenbubbleandwallisestimatedfromthe

semi-empiricalrelationdevelopedbyAussillousandQuéré[33]: ıf

dc =

0.66Ca2/3

1+3.33Ca2/3 (1)

Fig.1.Unit-cellTaylorflowrepresentation.

Ingas-liquidTaylorflow,thepressuregradientsintheliquid phasearemuchgreaterthanthoseinthegasphase,typicallylinked toviscositydifferences,i.e.,mL»mG.Duetothemuchsmaller

viscos-ityingasphase,viscouseffectsatthebubblesurfaceareneglected. Furthermore,thebubblebeingalsonon-deformable,theinfluence ofgasphasephenomenaonliquidphasebehaviorcanbeneglected inthisproblem.Hence,asassumedbyotherauthors[19–21,23], theliquidflowistheonlycomputedphase,andaslipboundary condition(orzero-shear-stresscondition)issetatbubblesurface. Therelevanceofthisapproachwillbevalidatedinthefollowingby comparisonofhydrodynamicresultstoliterature.

2.2.2. Mathematicalmodelling

Theliquidflowisupward,incompressible,andlaminar(liquid Re<840).Uponenablingmasstransfercalculations,the modifica-tionofliquidphasepropertiescansafelybeneglected(one-way coupling)toconsidertheliquidhydrodynamicsstationaryandthus fullyobtainable inadecoupledmanner.Todoso,theCFD soft-wareCOMSOLMultiphysics®5.1isusedfirsttosolvethefollowing

equations:

Continuityequation:

· (u) =0 (2)

Momentumequation:

(5)

Once hydrodynamics is solved, the velocity field is used to underlie the calculation of mass exchange between bubble interface and liquid phase. Unlike most of the previous works [19–21,23],asteady-stateconvection-diffusionequationissolved. Thetransportofthedissolvedgasisthusdescribedby:

·(−D

cL)+u·

cL=0 (4)

Dis-solvedgascon-sump-tionisac-countedforattheUCwallto pre-ventthetriv-ialso-lu-tionofcom-pleteUCsat-u-ra-tion.The boundaryconditionsofEqs.(2),(3)and(4)aredetailednext. 2.2.3. Boundaryconditionsforhydrodynamicsmodelling

Forhydrodynamicscalculations,periodicboundaryconditions aresetonoppositefrontiersofthedomain:velocityprofilesare forcedtobeidenticaloninletandoutletboundaries,andpressure drop(1P)is imposed.Theotherboundaryconditions are:axial symmetry,movingwallonchannelwall,andperfectslipcondition onthegas-liquidinterface.Apressureconstraintpointischosen inthecomputationaldomaintoestablishareferenceforpressure fieldcalculation.Inthiswork,astheflowofgasphaseisnotsolved, thecomputedpressuredropcorrespondstosingle-phasepressure variationoftheliquidsurroundinganobjectwithwallperfectslip. Thepressuredropovertheunitcelldependsstronglyonviscous shearatthewallinthelubricationfilmandthusonfilmthickness andonviscosity,andcannotbeeasilydetermined;accordingto literature,themostcommonvalueusedinsimilarcomputational worksiszero.However,validityofsuchanassumptioncanbe chal-lengedbythefactthattheenergylossduetotheshearstresson thewallisdifficulttoignore.Toliftsuchaconstraint,numerical evaluation ofpressure dropis carriedout bymeansofanother simulationstrategy,theopenunitcellstrategy,whereavelocity profileisimposedattheinletboundary,whilerelativepressureis settozeroattheoutletboundarywithconditionofnormalflow. AHagen-Poiseuillevelocityprofileisimposedatinletboundary which,accordingtoliterature,insuresveryrelevantvelocityfield infilmandfullydevelopedslug[19,34].Hence,thisopenunitcell strategyallows evaluatingUCpressuredrop,while theperiodic strategycapturestheexactTaylorflowthatdevelopsinthechannel atanyaxialpositionfarfromthephysicalcapillaryinletandoutlet. 2.2.4. Masstransfermodellingandprocessing

At bubble interface, a Dirichlet boundary condition is used, wheredissolvedgasconcentrationissetequaltothe thermody-namicsaturation(c*).Thecatalyticreactionatthewallactingasa sinkinducesalocalconsumptionrateofthedissolvedgas.Asink fluxissetasboundaryconditionatthewall;thevalueofthisflux isequatedwithafirstordersurfacereactionrate,therateconstant (KC)ofwhichis6×10−5ms−1.Thefluxofdissolvedgastransferred

“interfacially”intheUCwascheckedtobe3ordersofmagnitude lowerthanitsadvectedfluxcounterpartsenteringandleavingthe cell.Thisfeatureprovidesprimafacieevidenceforsettingperiodic conditionsforinletandoutletboundariesoftheunitcell(identical radialprofilesindissolvedgasconcentration).Thus,the steady-stateconcentrationfieldisarrivedatbyviewingmasstransferflux atbubbleinterfaceandgasconsumptionatthewallasstrictlyequal. Itallowsevaluationofgas-liquidmasstransferfluxfortheunit cell:thegasmolarfluxleavingthebubble(N)iscalculatedby com-putingthefollowingsurfaceintegraloverthegas-liquidinterface (axisymmetricmode): N=

Z

Z

 −D



c

z.nz+

c

r.nr



dS (5)

wherecorrespondstothebubbleinterface.

A unit cell volumetric mass transfercoefficient can then be definedwithrespecttothevolumeaveragedconcentrationof dis-solvedgasintheunitcell:

coverall=

R R R

VLcdV

R R R

VLdV (6) ThevolumetricmasstransfercoefficientkLaisthencalculated

from: kLa= N (c∗coverall)∗ 1 VUC (7) Thetransferredgasfluxcomponentsarelikewisedissectedfor specificzonesof thebubble interface:frontand backcaps,and cylindricalpart(lubricatingfilmzone),andtheircontributionto theoverallmasstransferevaluated.

2.2.5. Studiedgeometryandoperatingparameters

ThehydrodynamiccharacteristicsoftheTaylorflowin milli-andmicro-channels,astheratioofbubbletosluglength,the bub-bleshapeandthefilmthickness(df),mainlydependonchannel

diameter(dc),fluidpropertiesandsuperficialvelocities.The

rel-evantnon-dimensionalnumberstodescribetheproblemarethe Capillary,ReynoldsandEötvös/Bondnumbers:theycomparethe relativeimportancebetweenviscous,surfacetension,inertiaand gravitationaleffects[29,32,35].Thepresentworkfocusesonthe descriptionofTaylorflow inthereactingcircular channelsofa monolith,andthegeometrydetailsareinspiredfromastudycase developed by van Batenand Krishna [19] which characteristic parametersareshowninTable1(referencecaseofthiswork).

ThedevelopedTaylorflowdependsonthesetofgasand liq-uidflowrateswherebyvariousunitcelllengths,andthusvarious bubblefrequencies,aretooccur.Theunitcelllength(LUC)cannot

beaprioridetermined;inexperimentsthislengthiscontrolledby thefluidpropertiesandbythetechnologyofthefeedingsystem (TorY-junction,forinstance).Tochecktheinfluenceofunitcell length(orbubblefrequency)ontomasstransferefficiency,several unitcelllengthsaretested(Table1).

2.2.6. Meshfeatures,numericalparametersandsensitivitystudy CFDmodellingofTaylorflowneedsspecialcareregardingmesh resolutionespeciallynearbytheinterfaceswheresteepvelocityand concentrationgradientsemerge,inparticularintheverythin lubri-cationliquidfilm.Asdocumentedbyseveralauthors[30,36],poor meshresolutionpreventscaptureoftheexactdetailsoftheflow fieldaroundthebubble.Thus,Guptaetal.[30]recommendeda min-imumoffivemeshelementsacrosstheliquidfilm.Inthepresent work,auser-controlled meshwasused(Seeadditionalfigurein AppendixA):afreetriangularmeshisbuiltonthedomain,and optimizedbyadjustingelementsizeand growthratenear bub-blesurfaceandchannelwall.Aboundarylayermesh(quadrilateral elements)wasalsocreatedclosetotheseboundaries.

Tomakesurethattheimplementedmeshispreciseenough, ameshsensitivity studywasperformedbyvaryingthenumber andsizeofelementsandbycheckingthevariationsofthe calcu-latedpressuredropintheunitcell(UC).FortheUCofreference (samegeometry asvanBaten&Krishna’s case),thenumber of elementswasincreasedfrom33,347to226,789(Table2).Asa com-promisebetweencomputationaltimeandresultsaccuracy,agrid with77,318cellswherethesmallestelementsizeis0.8mm,was chosen.Forcomparison,vanBaten&Krishnaused72,890elements and1mmsmallestcellsize.ForeachUClength,thesamestrategy wasrepeatedtoobtainrelevantamesh.

Furthermore,toachieveresultswithhigheraccuracy,aP2–P1 mixed-order interpolation scheme has been then used with piecewisequadratic approximation ofvelocity componentsand

(6)

Table1

Summaryofinputdataforthenumericalstudy.

Inputparameters Computedparameters

Case dc(mm) LUC(mm) «G(−) Lf(mm) df(mm) UB(ms−1) KC(ms−1) c*(molm−3) D(m2s−1) UTP(ms−1) QL (mls−1)

1:ref 3 40.0 0.17 5.320 48 0.3 6×10−5 1.3 1×10−9 0.28 1.62

2 3 20.0 0.17 1.692 48 0.3 6×10−5 1.3 1×10−9 0.28 1.62

3 3 13.3 0.17 0.483 48 0.3 6×10−5 1.3 1×10−9 0.28 1.62

Table2

MeshdetailsforthesensitivityanalysisforthecaseLUC=0.04m.

Totalmeshelements Smallestelementsize(mm) Biggestelementsize(mm) Elementsinliquidfilm 1POpenUC(Pa)

1 33,347 3.0 155 17 283

2 77,318 0.8 155 19 324

3 151,616 0.2 87 22 331

4 226,798 0.2 67 22 325

Fig.2. Streamlines(a)andliquidvelocityvectors(b)obtainedfromCFDsimulationforthereferencecase(Case1,seeTable1).Zoomedarea(c)correspondstotheentrance ofliquidfilm.

piecewiselinearapproximationofpressure.P3finiteelementsare appliedforconcentrationfield.Intheseconditions,lessthan2% differencehasbeenfoundbetweenMesh2and4forbothpressure gradientandvolumetricmasstransfercoefficient.

3. Resultsanddiscussion 3.1. Velocityfield

WerecallthatMesh2(seeTable2)isused.Boundaryconditions ofperfectslipandnosliparesetonbubbleinterfaceandchannel wall,respectively.TheUCpressuredropisevaluatedinadvanceby meansofanopenunitcellcalculation.

3.1.1. Velocitycontoursandvelocityprofilesinslugandinfilm Forthereferencecase(case1,Table1),Fig.2showsthe veloc-ityfieldobtainedinaframemovingwiththebubblewherethe recirculationstreamlinestakeindeedplaceintheslug(Fig.2a,b). In addition,Fig.2cshows that,inthelubricationfilm,theflow developsrapidlyshowcasingtranslationalinvarianceofthe veloc-ityprofilefromz=0.1mmfromfilmentrance;inthefilmtheliquid appearstomoveoppositetothedirectionofbubblemotion.

Slugvorticesareinducedbyviscouseffectsinitiatedinthe vicin-ityofwallandcanbeobservedinslugsinTaylorflowsforCa<0.5

[37].ThisbehaviorwasfirstreportedbyTaylorin1961[38]andhas beenconfirmedbynumerousexperimentalandnumerical stud-ies[39,40].Theslugrecirculatorymotionisattheoriginofthe notoriousintensemixing,heatandmasstransferobservedin Tay-lorflows.Transposingtheradialvelocityprofilesinthelaboratory frame(stationarywall,risingbubble)providespost-facto confirma-tionthataHagen-Poiseuilleflowisretrievedinthemajorpartof theslug(Fig.3a).Thisbehaviorisexpectedwhenconsideringthat theliquidslugissufficientlylongtoallowafullydevelopedflowto beattainedawayfrombubblenoseandtail[39].Inthestationary frame,themeanvelocityofliquidflow(i.e.,velocityaveragedover channelcrosssection)isequaltoUTP,whereUTPisdefinedasthe

sumofsuperficialvelocitiesofgasandliquid.However,as classi-callyobservedinTaylorflows[41],thebubblemovesslightlyfaster thanUTP and,tosatisfymassconservation,liquidmovesslower

thanthebubbleinthefilmregion,andinsomecasesitmovesin theoppositedirection.Inthepresentdescribedsituation, “down-ward”motionofliquidoccursinthefilm;asaconsequence,inthe frameofreferencemovingwiththebubble,liquidisobservedto movedownwardandslightlyfasterthanthewall.

3.1.2. Influenceofpressuredifferenceoverunitcell

Thevaluetobetakenforunitcellpressuredropinliquidphase 1Pishardlydiscussedinliteraturedescribingcomputational

(7)

stud-(a)

(b)

Fig.3.Comparisonofradialdistributionofliquidvelocityinslug(farfrombubble caps)inlaboratoryframe(a),andliquidfilmvelocityprofileinbubblereference frame(b).Simulationofreferencecase(case1,Table1).

iesbasedontheperiodicunitcellapproach.IntheworkofShao etal.[20]forinstance,gravitationalforcesareneglectedbecause thechannelishorizontal,andpressuredropduetoviscousshear istakento0overtheunitcell(“Pin=Pout”);inthatofvanBaten

andKrishna[19](upflowconfiguration)onlyhydrostaticpressure appearstohavebeenaccountedfor.Tochecktherelevanceofthis choice,the1Pvalueimposedaccrosscomputationaldomainis var-iedinthepresentwork;thevelocityprofileatoutletofthefilmzone isscrutinizedforbothscenarii.AsobservedonFig.3b,thevelocity profileobtainedwhenpressuredropisforcedto0andgravitational forceneglectedinEq.(3)isinexcellentagreementwiththeprofile foundbyvanBatenandKrishna;inparticular,avelocitymagnitude of−0.32ms−1isobservedatbubbleinterface.Whenpressuredrop

overtheunitcellisforcedtothevaluepreviouslycomputedfrom theopenUnitCellapproach,liquidflowsslightlyfasterinthefilm andtheinterfacialvelocityreaches−0.33ms−1.Thistinygap

rep-resentsalowrelativedifferenceof3%formaximumvelocityinfilm regionwhereas,inthemiddleoftheslug,wherePoiseuilleprofile isestablished,thetwoassumptionsleadtoverysimilarvelocity valuesonchannelaxistoo(0.84%ofrelativedifference).

Theseresultsexplainandapprovepracticesfoundinprevious CFDstudies:asfarashydrodynamicsareconcerned,pressuredrop overunitcellcanbeneglected.

3.1.3. Influenceofboundaryconditionusedatbubbleinterface Tocheckfurtherthereliabilityofthepresentcalculations,the velocityprofileinthedevelopedzoneofthelubricationfilmis com-paredtotheanalyticalmodelproposedbyAbiev[41].Thisauthor derived anexact lubricationsolutionofgasand liquid flowsin thechannelcross-sectionwherethefilmisfullydeveloped.

Con-Fig.4. Velocityprofilesinliquidfilmfordifferentboundaryconditionsatbubble surface(case1,seeTable1).

tinuityandmomentumequationsareanalyticallysolvedforboth phases.Atgas-liquidinterface,thecontinuityofthedistributionof thevelocityandshearstressissetasboundarycondition:

uzG|r=RB=uzL|r=RB (8) G

uzG

r |r=RB =L

uzL

r |r=RB (9) Inthelubricationsolution,thepressuredropisanoutputof the model. The velocity profile obtainedfor liquid phase with Abiev’smodelisplottedinFig.4alongwiththeoneobtainedwith COMSOL®usingperfectslipconditionatbubblesurfaceandavalue

ofpressuredropissuedfromopenunitcellcalculation.Ascanbe seen,theperfect slip conditionleadstoresultsclose toAbiev’s model;inparticular,bothmaximumaxialvelocitiesinthefilm(at bubblesurface)differof6%only.Thereforetheperfectslip condi-tionisrelevanttomodelliquidflowintheunitcell.

Theinfluenceonmasstransportoftheslightdifferenceinliquid flowrateinthefilmhasstilltobefurtherinvestigatedtohighlight theimpactofthetwoboundaryconditionsdiscussedabove. 3.2. Concentrationfield

Contourplotsofsimulatedconcentration(Fig.5a)showthatthe liquidphasecontentintheslugisalmostuniformindissolvedgas, showinganaverageconcentrationof85%ofc*.Somethinzonesare closetosaturation(Fig.5b):adiffusionlayernearbubbleinterface, andabandalongchannelaxis,wheredissolvedgasisadvectedby liquidflowrecirculation.Zoomingnearthewall(Fig.5c)instructs onthefactthata concentrationgradienttakesplacecrosswisse throughtheentirefilmthicknessbyvirtueofthewallreaction,and thatthefinitereactioncharacteristictimeallowsatthewallalow (butnon-zero)dissolvedgasconcentration(20%ofc*).

3.3. Masstransfercharacteristics

Themasstransferbehaviorwillbedescribedindetailforthe referencecase(case1,Table1),andforadditional reparameter-izedcaseswherethereactionrateconstantandbubblefrequency arevaried.Thefirstobjectiveoutofthissensitivityexerciseisto understandwhichpartsofthebubbleinterfacearethemain con-tributors totheunitcelloverall masstransfer.Thesecondis to highlightany influenceof bubble frequency onUC mass trans-ferefficiency,inwhich instancethis parametershouldbetaken intoaccountinmonolithreactordesignandscale-up.Thispoint introducesapeculiarcomplexity intotheproblem,asitis diffi-cult,especiallyinindustrialoperations,toeitherpredictorcontrol howgasandliquidsplitandre-agregateintobubblesandslugsat channelinlet.Thedependencyofbubbleandsluglengthson oper-atingparametershasbeenextensivelystudied.However,despitea

(8)

Fig.5.ConcentrationfieldovertheentireUCdomain(a)withzoomedareanearthe bubble(b),andintheliquidfilm(c).Simulationforcase1(Table1).

numberofempiricalcorrelationsthusfarproposed,yetthe hetero-geneousoutcomesoutofthemstillsuggestthatthisaspectrequires morematureunderstandingtobeachievedinthefuture[42]. 3.3.1. Referencecase

Asexplainedearlier,thevolumetricmasstransfercoefficient, kLa, isderivedfromthefieldofdissolvedgasconcentration.An

overallvalueof0.08m3

Lm−3UCs−1(0.09s−1relatedtotheliquid

volume)is obtainedfor the unit cellfor a total bubble surface of7.50×10−5m2tantamounttoaninterfacialareaof265.36m2

perm3ofunitcell.

Itisworthmentioningthatstationarysimulationsofasingle periodicunitcelldonottakeintoaccounttheentrancesectionof channel,whereliquid phaseisoftenalmostfreefromdissolved gasleadingtohighgas-liquidtransferrate.Asaconsequence,the presentapproachprobablyslightlyunder-estimatesthekLa

val-ues, in regard with the correspondingexperimental situations. However,thetubelengthallowingthedevelopmentofastable con-centrationfieldintheunitcellisprobablyveryshort:asdescribed byauthorsperformingdynamicsimulationofmasstranferinaunit cellwithhomogeneousreaction [20],this distancecorresponds roughlytothetimeneededfortheliquidintheslugtoenrichin dissolvedgasinthevicinityofbubblecaps,thatistodescribea completecirculationcyclewithintheslug.Forthepresentcaseof simulation,itrepresentslessthantwotimestheunitcelllength.

Withrespecttothevalidationofthechosenboundary condi-tionsandtotheslightdifferenceinliquidflowratetheyinducefor thefilmregion,itisimportanttonotethatthemeanslug concen-trationandkLavaluesdifferby0.6%and1.1%only,respectively,

whenpressuredropistakenintoaccountornot.Asaconsequence, itcanbestatedthatasmalldifferenceinthetransportofdissolved gasfromfilmtobackhalf-slughasnosignificantinfluenceofmass transfercharacteristics.Thisdefinitivelyvalidatestheconventional choicesfoundinliteratureforunitcellpressuredropandinterface boundaryconditions.

ThecalculatedkLavaluesarecomparedtothosederivedfrom

several literaturecorrelations, given in Table3. Theserelations wereobtainedfor differentconfigurations(regardingfilm satu-ration level)andeitherfromexperimentalornumericalresults. Berˇciˇc&Pintar’scorrelation(Eq.(A))wasbuiltbasedon experimen-talresultsofmethaneabsorptioninwaterobtainedincapillaries of1.5,2.5and3.1mmdiameter.Theauthorsreportedthatmajor partofmasstransferoccuredthroughthebubblecaps,probablyas liquidfilmwasquicklysaturatedintheirconditions[12]. There-fore,kLawasfoundtomostlydependuponliquidsluglengthand

velocity,whilegasbubblelengthandchanneldiameterhada neg-ligibleeffect.VanBaten&Krishna’scorrelation(Eqs.(B)and(C)) wasobtainedfromCFDsimulations.ItsplitskLaintotwoprincipal

contributions:onefromthebubblecapsandtheotherfromthe film.ThefirstoneisbasedonHigbie’spenetrationmodelandthe secondoneonfallingfilmmodel.Eq.(B)usestheexactdimensions of bubble,filmandslug, unlikeEq. (C)where thesedimensions areestimatedfromknowledgeoftheoperatingparameters.Eq.(D) proposedbyVanduetal.[12]considersthefilmcontributiononly, basedonvanBatenandKrishna’swork:theconstantfactorwas verifiedtobe4.5asbestfittingtheirexperimentaldataobtained fromexperimentsofairabsorptioninwaterin1–3mm capillar-ieswithcircularandsquarecross-sections.Thiscorrelationshould thenbevalidforTaylorflowsinwhichfilmcontributionis domi-nant.Eq.(E)fromYueetal.[15]wasderivedfornarrowchannels (<1mm)inadditiontohighgasandliquid superficialvelocities (1ms−1<UTP<12ms−1).Shaoetal.[20]tunedthemultiplicative

constantinEq.(D)tomatchCFDresultsforthecaseofCO2

absorp-tionintoanaqueoussolutionofNaOH.

ComparisonbetweenpresentkLavaluesandthosepredictedby

vanBatenandKrishna’scorrelation(Eq.(B)inTable3)showsa differenceof5.3%.Notethatthepresentsimulationscorrespondto theconditionsusedbyvanBatenandKrishna,i.e.,shortcontact timeoftheliquidfilm(tfilm<0.1df2D−1).Eq.(C)withestimated

parameters leadstolessaccurateresultsthanEq.(B),ascanbe seenonFig.6.

CorrelationsfromVanduetal.[12](Eq.(D))andShaoetal.[20] (Eq.(F))inwhichfilmcontributionispreponderantunderpredict thekLavalue.Incontrast,BerˇciˇcandPintarcorrelation[18](Eq.

(A))wasestablishedforlongbubbleswithalmostsaturatedfilms anddoesnotreflectthepresentsimulatedconditions;itleadsto anoverpredictionofmasstransfercoefficient.Finally,Eq.(E)by Yueetal.[15]underestimatesourcurrentresults,probablybecause itwasderivedforchannelsmuchnarrowerthaninthisstudyin additiontomuchhighergasandliquidsuperficialvelocities.

ThegoodagreementobtainedwithEq.(B)provestherelevance ofthesimplifiedapproachproposedinthepresentworktodescribe masstransferinthinchannels(stationnarymode,gasphasenot modelled).

Table4summarizesthecontributionsofdifferentpartsof bub-blesurfacetomasstransferasobtainedinoursimulation.Aslong asexperimentalstudiesareunabletoachievesuchcontributional dissections,ourapproachcanproveveryusefulingaininginsights in thiscomplextsubject.Table4shows thatfilmsurface repre-sents64%oftotalbubblesurfaceandcontributesto64%ofoverall transferredmolarflux.

Notwithstanding,oursimulation resultis inagreementwith generalobservationsthatlubricationfilmcontributionisthemajor oneinthecaseofwallreaction[12].Eachbubblecaprepresents 18%oftotalbubblesurfaceonly,butfrontcapcontributes4times morethanbackcaptomasstransfer,asthecorrespondingrelative masstransferfluxesare29%and7%,respectively.Thequitelimited contributionofbubblebackcapcanbeexplainedbythemoderate liquidvelocities(Fig.7)observedinthevicinityofbubblebackcap ascomparedtofrontcap,leadingtomoderatedrainageofdissolved gasinthisregion.

(9)

Table3

CorrelationsfromliteratureusedforcomparisonwithkLavalues.

Authors Correlation Equation

Berˇciˇc&Pintar[18] kLa=0.111 U 1.19 TP [(1−εG)LUC]0.57

(A)

vanBaten&Krishna[19] kLa=2 √ 2 

p

DUB dc 4d2 B LUCd2c+ 2 √

q

DUB Lf 4dBLf d2 cLUC (B)

vanBaten&Krishna[19] kLa=2 √ 2 

p

DUB dc 4 LUC+ 2 √

p

εDUB GLUC 4εG dc (C)

Vanduetal.[12] kLa=4.5

p

DuGs LUC

1

dc (D)

Yueetal.[15] ShL·a·dc=0.084Re0.213 G Re

0.912 L Sc

0.5

L (E)

Shaoetal.[20] kLa=3

p

DuGs LUC

1

dc (F)

Fig.6.Comparisonofmasstransfercoefficientscomputedinthisworkagainstthosepredictedfromseveralliteraturecorrelations.

Table4

Comparisonofsurface,molarfluxanddensityfluxfordifferentzonesoftheUC(caseofreference).

Bubblenose Film Bubbletail UnitCell Units

Surface 1.32×10−5 4.85×10−5 1.32×10−5 7.50×10−5 [m2]

18% 64% 18%

Molarflux 1.70×10−9 3.71×10−9 4.07×10−10 5.82×10−9 [mols−1]

29% 64% 7%

kLa 0.02 0.01 0.01 0.08 [m3

Lm−3UCs−1]

Fig.7. Velocityfieldonbubblefrontandbackcapsforcase1(Table1).

Furthermore,oursteady-stateapproachoffersthepossibilityof calculationof“local”volumetricmasstransfercoefficients,related togas-liquidinterfacialareacalculatedfordifferentpartsofthe bubble,andtolocalaverageconcentrationinliquidphase.Ithasto beborneinmindthat,forthefilmarea,thedrivingforceusedin kLacalculationistakenas(c*-cwall).ThevaluesgatheredinTable4

showforthepresentcasewithwallreactionthatkLavalue,unlike

masstransferflux,ismore importantforbubblefront capwith regardtofilmandbackcapvalues.Thisobservationraisesthenthe followingquestion:isfilmcontributiontomasstransferfluxstill

dominantwhenfilmsurfaceissignificantlyreduced?Thispointis checkedinthenextsection.

3.3.2. Influenceofbubblefrequency

Withrespecttothereferencecase,additionalsituationsare sim-ulated,wheregasandliquidflowratesarekeptconstant,aswellas bubblevelocityandgasholdupinunitcell,andwherebubble fre-quencyistheonlyvariedparameter.LUC(referencevalueis40mm,

correspondingto25bubblespermeteronchannel)isdividedby factors2and3(hereinafterreferredtoas“case2”and“case3”, respectively),leadingtosmallerbubbles(Fig.8):bubblesurface reaches56%and41%oftotalreferencebubblesurface,respectively. Ontheotherhand,unitcelllengthdecreaseswithincreasing bub-blefrequencyinalessextentthanbubblesurface,leadingtohigher gas-liquidareapercubicmeterofchannel.Table5summarizesthe consideredcasesandthemainresults.

Asobserved,theoverallkLavalueisimprovedby35%fora

three-foldincreaseofbubblefrequency(fromcaseofreferencetocase 3).ThiskLaenhancementcannotbefullyattributedtotheincrease

ofinterfacialarea,whichisonlyof21%.Aprobableexplanationis thatshorterslugsleadtointensifiedliquidrecirculationandthus tomoreefficienttransportprocesses.

Backbubblecapremainspoorlycontributing,withonly19%of theoveralltransferredgasrateincase3.Bubblesurfaceinthefilm areadecreaseswithbubblefrequency(accountingforonly14%only

(10)

Fig.8.UnitCellcharacteristicsfordifferentstudiedcases.

Table5

ContributionstomasstransferofthedifferentzonesofthebubbleforthreeLUCtested.

Bubblenose Film Bubbletail UnitCell Units

Reference case

Surface 1.32×10−5 4.85×10−5 1.32×10−5 7.50×10−5 [m2]

18% 64% 18%

Molarflux 1.70×10−9 3.71×10−9 4.07×10−10 5.82×10−9 [mols−1]

29% 64% 7%

kLa 0.02 0.01 0.01 0.08 [m3

Lm−3UCs−1] Case2 Surface 1.32×10−5 1.54×10−5 1.32×10−5 4.19×10−5 [m2]

32% 36% 32%

Molarflux 1.31×10−9 1.35×10−9 3.47×10−10 3.01×10−9 [mols−1]

44% 45% 11%

kLa 0.04 0.01 0.01 0.10 [m3

Lm−3UCs−1] Case3 Surface 1.32×10−5 4.40×10−6 1.32×10−5 3.09×10−5 [m2]

43% 14% 43%

Molarflux 1.58×10−9 5.81×10−10 5.14×10−10 2.68×10−9 [mols−1]

59% 22% 19%

kLa 0.06 0.01 0.02 0.11 [m3

Lm−3UCs−1]

oftotalbubblesurfaceforthehighesttestedbubblefrequency), andsodoesitscontributiontooverallunitcellmasstransferrate, reaching22%onlyforcase3;filmcontributiondominancestops inbenefittobubblefrontcapcontribution(59%oftotaltransferred mass,incase3).Tooffsetthisphenomenon,filmcontributioncould beenhancedviaasteeperconcentrationgradientbetweenbubble andwall,i.e.,bythinningthefilmorinotherwordsbyslowingthe flow.However,fasterflowwouldenhancecirculationwithinslugs, asrecommendedintheliterature[42].In situationswherefilm contributiontomasstransferisdominant,lowsuperficialvelocities shouldstillbeprefered,keepinginmindthattotalsuperficialfluid velocitydirectlyimpactstheoverallresidencetimeandchannel reactionyield.

Considering thesteep concentrationgradientsnear thewall whenacatalyticreactionispresent,theinfluenceofreactionrate onfilmandcapcontributionsmaybeofprimaryimportance. 3.3.3. Influenceofreactionrateatthewall

Fromcaseofreference(LUC=0.040mmandKC=6×10−5ms−1),

threenewcasesaredescribed,wherereactionratecoefficientKCis

quenchedbyafactorof50(case(1′)),orinflatedbyafactorof5(case

(2′)),orbroughttoinfinity,i.e.,cwall=0(case(3)).Forthefourcases

examinedhere,bubblesurface,unitcelldimensions,andoperating parameters(fluidflowrates)areidentical.Theresultsinvolume averageconcentrationinslug, wallconcentration,masstransfer flux,andlocalorglobalkLavalues,aresummarizedinTable6.As

expected,theaverageslugconcentration(cs,mean)andwall

concen-trationdecreaseuponignitingfurtherthereactionrate.Itcanbe observedthat,inallcases,themeanconcentrationindissolvedgas isthesameforthefrontandthebackhalf-slugs.Forslow reac-tionrate(case(1′)),theslugaverageconcentrationequals98%of

saturationconcentration,whereasitreaches74.8%forinfinite reac-tionrate(cwall=0).Similarly,theoverallmolartransferredfluxin

theunitcell(i.e.,molarfluxduetoreactionrateatwall)increases

sharplywithincreasingrateconstant.Interestingly,theseincreases arenotproportionalsincecwallalsosimultaneouslydecreasesfora

soaringKCvalue.

Irrespectiveofthestudiedcases,contributionsoffilmandcaps tomasstransferfluxarestrictlythesame.Thisobservationproves that,forshortnon-saturatedfilms,massfluxexchangedbetween bubbleandwallmaydependonoperatingparametersandon bub-bleandslugrelativedimensions,butnotonreactionrateatthe wall.

4. Conclusionsandperspectives

Thismasstransferstudywaspartofawidermodellingstrategy whichaimsatmodellingamonolithreactorasawholeby account-ingonlyfortherequiredlevelofcomplexityforthedescriptionof thephenomenaoccurringatthefilm,channelandreactorscales. Comparisonwithresultsofamultiphaseflowmodelprovedthat atlowcapillarynumbers,thehydrodynamicsofTaylorflowcan beadequatelyapproximatedbycalculationsonliquidphaseonly, neglectingunitcellpressuredropandusingslipconditionsatthe bubbleinterface.

Gas-liquidmasstransferratewasevaluatedforshortfilmsand reactiveconditions,closertothoseofinterest,whichalsoensure that bothfilmand slug regionsremaincontributivethroughout thecapillary;itwasshownthattransferredmassfluxandaverage concentrationvarywithsurfacereactionrate,butnottherelative contributionoffilmandcapstotheoverallmasstransfer.kLa

val-uescloseto0.1m3

Lm−3UCs−1wereobtainedfora3mmdiameter

channelandbubblevelocityof0.3ms−1,ingoodagreementwith

thecorrelationofvanBatenandKrishnawhichwasalsoestablished forsteadystatevalues.Otherliteraturecorrelationseitherincluded theeffectoftheinletdissolvedgas-depletedzonesorwere devel-opedforratherdifferentbubblecontactingtime,leadingtolarger discrepancies.Despitesamehemisphericalshapeappliedforfront

(11)

Table6

Detailsofsimulationresultsforthekineticconstantdependence.

Bubblenose Film Bubbletail Total(UC) Units

Case(1′) MolarFlux 1.59×10−10 3.48×10−10 3.65×10−11 5.44×10−10 [mols−1]

cs,mean 1.27 – 1.27 1.27 [molm−3L]

cwall 1.20 1.20 1.20 1.20 [molm−3L]

kLa 0.02 0.01 0.01 0.08 [m3

Lm−3UCs−1] Case(2′) MolarFlux 2.02×10−9 4.41×10−9 4.84×10−10 6.92×10−9 [mols−1]

cs,mean 0.99 – 0.99 0.99 [molm−3L]

cwall 0.06 0.06 0.06 0.06 [molm−3L]

kLa 0.02 0.01 0.01 0.08 [m3

Lm−3UCs−1] Case(3′) MolarFlux 2.12×10−9 4.63×10−9 5.08×10−10 7.26×10−9 [mols−1]

cs,mean 0.97 – 0.97 0.97 [molm−3L]

cwall 0 0 0 0 [molm−3L]

kLa 0.02 0.01 0.01 0.08 [m3

Lm−3UCs−1]

andrearbubblecaps, thetwozoneswerenotfoundequivalent intermsofgastransferredrates.Therearbubblezoneexhibited, asa consequenceof a lowerlocal liquidvelocity, a moretepid activity,threetofourtimes lesserthanthebubble noseregion. Sucheffectshouldbeaccentuatedforamorerealisticbubbleshape (withelongatednoseandflattened back)duetosignificant dif-ferenceincorrespondingsurfaceareas.Fortherathershortunit cells investigated (withlength 4–14timesthe capillary diame-ter),filmcontributiontomasstransferfluxvariesinawiderrange thanusuallyreported,comingdownfrom64%(intheVanBaten andKrishna’sreferencecase)to20%whenunitcellsizeis signifi-cantlyreduced,andpointingoutthattheapproximationbasedon gasholdupandunitcelllengthforfilmlengthceasestobeavalid approximation.

Furtherworkwillexamineendeffectsbysimulatingseveralunit cellswithopenboundaryconditionsandwillextendthe paramet-ricstudytoshorterslugs,longerbubbles,largercapillarynumbers anddifferentbubblevelocitiestoassesstherelativecontribution ofbubble/filmzonesforawiderrangeofoperatingconditions. Acknowledgements

Authorsthankthe Frenchagency“Agence Nationale pourla Recherche” for financial support (grant number ANR-12-CDII-0011-01), and TOTAL S.A. company for financial and scientific support.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.cattod.2016.04. 009.

References

[1]J.R.VanOmmen,M.-O.Coppens,M.T.Kreutzer,F.Kapteijn,J.A.Moulijn,AIChE AnnualMeetingConferenceProceedings(2004)10457–10466.

[2]T.Boger,A.K.Heibel,C.M.Sorensen,Ind.Eng.Chem.Res.43(2004) 4602–4611.

[3]A.K.Heibel,F.J.Vergeldt,H.vanAs,F.Kapteijn,J.A.Moulijn,T.Boger,AIChEJ. 49(2003)3007–3017.

[4]S.Roy,M.Al-Dahhan,Catal.Today105(2005)396–400.

[5]M.Behl,S.Roy,Chem.Eng.Sci.62(2007)7463–7470.

[6]Y.Zhou,M.Al-Dahhan,M.Dudukovic,H.Liu,Chin.J.Chem.Eng.20(2012) 693–700.

[7]T.Fukano,A.Kariyasaki,Nucl.Eng.Des.141(1993)59–68.

[8]K.Mishima,T.Hibiki,Int.J.MultiphaseFlow22(1996)703–712.

[9]J.W.Coleman,S.Garimella,Int.J.HeatMassTransfer42(1999)2869–2881.

[10]N.Shao,A.Gavriilidis,P.Angeli,Chem.Eng.Sci.64(2009)2749–2761.

[11]J.J.Heiszwolf,M.T.Kreutzer,M.G.vandenEijnden,F.Kapteijn,J.A.Moulijn, Catal.Today69(2001)51–55.

[12]C.O.Vandu,H.Liu,R.Krishna,Chem.Eng.Sci.60(2005)6430–6437.

[13]K.Kawakami,K.Kawasaki,F.Shiraishi,K.Kusunoki,Ind.Eng.Chem.Res.28 (1989)394–400.

[14]C.O.Vandu,J.Ellenberger,R.Krishna,Chem.Eng.Sci.59(2004)4999–5008.

[15]J.Yue,G.Chen,Q.Yuan,L.Luo,Y.Gonthier,Chem.Eng.Sci.62(2007) 2096–2108.

[16]S.Mehdi,A.-M.Billet,I.R.Chughtai,M.H.Inayat,AsiaPac.J.Chem.Eng.8 (2013)931–939.

[17]S.Irandoust,S.Ertlé,B.Andersson,Can.J.Chem.Eng.70(1992)115–119.

[18]G.Berˇciˇc,A.Pintar,Chem.Eng.Sci.52(1997)3709–3719.

[19]J.M.vanBaten,R.Krishna,Chem.Eng.Sci.59(2004)2535–2545.

[20]N.Shao,A.Gavriilidis,P.Angeli,Chem.Eng.J.160(2010)873–881.

[21]D.Liu,S.Wang,Ind.Eng.Chem.Res.50(2011)2323–2330.

[22]A.Hassanvand,S.H.Hashemabadi,Int.J.HeatMassTransfer55(2012) 5959–5971.

[23]Z.Pan,X.Zhang,Y.Xie,W.Cai,Chem.Eng.Technol.37(2014)495–504.

[24]V.Hatziantoniou,B.Andersson,N.H.Schoon,Ind.Eng.Chem.ProcessDes. Dev.25(1986)964–970.

[25]T.Nijhuis,M.T.Kreutzer,A.C.Romijn,F.Kapteijn,J.A.Moulijn,Chem.Eng.Sci. 56(2001)823–829.

[26]M.T.Kreutzer,P.Du,J.J.Heiszwolf,F.Kapteijn,J.A.Moulijn,Chem.Eng.Sci.56 (2001)6015–6023.

[27]T.Haakana,E.Kolehmainen,I.Turunen,J.-P.Mikkola,T.Salmi,Chem.Eng.Sci. 59(2004)5629–5635.

[28]K.Fukagata,N.Kasagi,P.Ua-arayaporn,T.Himeno,Int.J.HeatFluidFlow28 (2007)72–82.

[29]R.Gupta,D.Fletcher,B.Haynes,J.Comput.MultiphaseFlow2(2010)1–32.

[30]R.Gupta,D.F.Fletcher,B.S.Haynes,Chem.Eng.Sci.64(2009)2941–2950.

[31]D.A.Hoang,V.vanSteijn,L.M.Portela,M.T.Kreutzer,C.R.Kleijn,Comput. Fluids86(2013)28–36.

[32]F.P.Bretherton,J.FluidMech.10(1961)166–188.

[33]P.Aussillous,D.Quéré,Phys.Fluids12(2000)2367–2371.

[34]C.Meyer,M.Hoffmann,M.Schlüter,Int.J.MultiphaseFlow67(2014) 140–148.

[35]T.Taha,Z.F.Cui,Chem.Eng.Sci.61(2006)676–687.

[36]D.Qian,A.Lawal,Chem.Eng.Sci.61(2006)7609–7625.

[37]T.C.Thulasidas,M.A.Abraham,R.L.Cerro,Chem.Eng.Sci.50(1995)183–199.

[38]G.I.Taylor,J.FluidMech.10(1961)161–165.

[39]T.C.Thulasidas,M.A.Abraham,R.L.Cerro,Chem.Eng.Sci.52(1997) 2947––2962.

[40]M.T.Kreutzer,F.Kapteijn,J.A.Moulijn,J.J.Heiszwolf,Chem.Eng.Sci.60(2005) 5895–5916.

[41]R.S.Abiev,Theor.Found.Chem.Eng.42(2008)105–117.

Figure

Fig. 1. Unit-cell Taylor flow representation.
Fig. 4. Velocity profiles in liquid film for different boundary conditions at bubble surface (case 1, see Table 1).
Fig. 5. Concentration field over the entire UC domain (a) with zoomed area near the bubble (b), and in the liquid film (c)
Fig. 6. Comparison of mass transfer coefficients computed in this work against those predicted from several literature correlations.
+2

Références

Documents relatifs

allows the inclusion of data in the ∆(1232) resonance region in an extraction of GPs based on the DR approach.. The JLab experiment uses the 4 GeV Continuous Elec- tron Beam

As a quantized response of a transverse spin-polarized current to an electric field in the absence of an external magnetic field, a QAH insulator is featured as chiral gapless

As already mentioned, the complexity of DualizeOnSet is known to be quasi-polynomial while the complexity of DualizeOnPoset is still open in most posets (for example, lattice) [4].

Application (Section 3.2) Given the title of a requested document, we select several ex- cerpts from the candidate vectors returned by the search procedure (1b) to create a

ARC Association pour la Recherche sur le Cancer ; 2001 : Subvention équipement lourd co-financement du microscope confocal: Rôle des canaux potassiques et du calcium dans

The WINdow Diagnostic Expert Knowledge System (WINDEKS) is a classical knowledge based diagnosis system for identifying perceived problems with windows and suggesting..

Tableau 3.6 : Quatre méthodes de prévention « nationales » face aux réalités locales Méthodes de prévention Principe de la méthode et position défendue par l’Etat

Les paramètres mathématique proposés dans ce chapitre peuvent être des paramètres pour une étude statistique d’un signal aléatoire, et comme le signal EEG est un signal