• Aucun résultat trouvé

Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW Indian Ocean

N/A
N/A
Protected

Academic year: 2021

Partager "Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW Indian Ocean"

Copied!
10
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 11070

To link to this article : DOI : 10.1016/j.ecoleng.2011.03.027

URL : http://dx.doi.org/10.1016/j.ecoleng.2011.03.027

To cite this version :

Herteman, Mélanie and Fromard, François and

Lambs, Luc Effects of pretreated domestic wastewater supplies on

leaf pigment content, photosynthesis rate and growth of mangrove

trees: A field study from Mayotte Island, SW Indian Ocean. (2011)

Ecological Engineering, vol. 37 (n° 9). pp. 1283-1291. ISSN

0925-8574

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

(2)

Effects

of

pretreated

domestic

wastewater

supplies

on

leaf

pigment

content,

photosynthesis

rate

and

growth

of

mangrove

trees:

A

field

study

from

Mayotte

Island,

SW

Indian

Ocean

Mélanie

Herteman

a,b

,

Franc¸

ois

Fromard

a,b,∗

,

Luc

Lambs

a,b

aUniversitédeToulouse,INP,UPS,EcoLab(LaboratoireEcologieFonctionnelleetEnvironnement),118RoutedeNarbonne,31062Toulouse,France bCNRS,EcoLab,31062Toulouse,France

Keywords: Wastewater Mangroves Photosynthesisrate Chlorophyll Growth Bioremediation

a

b

s

t

r

a

c

t

After12and18monthsofdailywastewaterdischargeintomangroveplotsinMayotteIsland,SWIndian Ocean,leafpigmentcontent,photosynthesisrateandgrowthofRhizophoramucronataandCeriopstagal mangrovetreeswereevaluatedandcomparedwithsimilarindividualsfromcontrolplots.Chlorophylland carotenoidcontents,measuredusinganHPLCanalyser,weresignificantlyhigherinleavesofmangrove treesreceivingwastewaterdischarges.Photosynthesisandtranspirationrates,analysedusinganLCi portablesystem,increasedsignificantlyformangrovetreesinimpactedplots.Measurementsofleafareas, youngbranchlengthandpropagulelengthshowedsignificantincreasesinplotsreceivingwastewater. TheseresultssuggestabeneficialeffectofdomesticwastewateronR.mucronataandC.tagalmangrovetree functioning.Analysesandobservationsonmangroveecosystemsasawhole–takingintoaccountwater andsedimentcompartments,crabpopulationsandnitrogenandphosphoruscycles–arenevertheless necessaryforevaluationofbioremediationcapacitiesofmangroveecosystems.

1. Introduction

1.1. Mangrovesandbioremediation

The utilisation of mangrove swamps as natural systems for wastewatertreatmenthasbeenproposedasanefficientand low-cost solutionfor tropicalcoastalareas. Characterised bya high primaryproductionandbiomassandestablishedasoftenasnot onnutrient-poorsediments,mangroveecosystemsareconsidered abletoabsorbnutrientsinexcesscontainedinsewage,withoutany majorstructuralorfunctionaldisturbance(Saenger,2002).

Nedwell (1975) showed that the discharge of pretreated wastewaterintoamangroveswampinFijicouldbeameansof reducingeutrophicationincoastalwaters,andthereforesuggested thatmangrovesmightbeusedasthefinalstageinsewage treat-ment.Cloughetal.(1983)publishedoneofthefirstreviewarticles dealingwiththeimpactofsewageonmangroveecosystems.These authors established that the capacity of mangroves to remove nutrientsfromsewagewaslargelydeterminedbyhydrodynamic

∗ Correspondingauthorat:EcoLab-LaboratoireEcologieFonctionnelleet Envi-ronnement,Bâtiment4R1,118routedeNarbonne,31062Toulousecedex9,France. Tel.:+33561558920;fax:+33561558901.

E-mailaddress:francois.fromard@cict.fr(F.Fromard).

factorsintheshorttermandthattheefficiencyoftheprocesses waslargelydependentonthesediment propertiesand biologi-calcharacteristicsoftheecosysteminthelongerterm.Corredor andMorell(1994)demonstratedthattheexcessnitrogencoming fromasewagetreatmentplantinPuertoRicocouldbeabsorbedby themangroveecosystemthroughnaturaldenitrificationprocesses, withoutanydamage.

Inanexplorationofthedifferentaspectsoftheroleof man-groveswampsassinksforwastewater-bornepollutantsthrough numerous experimentsconductedin theHongKong and Shen-zenarea(SouthChina),TamandWong(1995,1996)successively showedthatmangrovesoilsaregoodtrapstofixphosphorusand certainheavymetalsfromwastewater;thatnosignificantchange wasobservedintheplantcommunitystructureorinleaf nutri-entcontentofamangrovesitereceivingwastewaterdischarges for 1year(Wongetal.,1995,1997);and thatlitterproduction and decomposition werenot perturbed (Tamet al., 1998).The additionofwastewatertomangrovesoilsalsoseemstostimulate thegrowthofmicrobialpopulations,probablythroughnutrients andcarboncomponentspresentinwastewater(Tam,1998).More recently,theseauthorsshowedthat amangroveplant commu-nitygrowinginconstructedmicrocosmsreceivingwastewaterwas effective in removingorganicmatter, nitrogenand phosphorus (Wuetal.,2008;Tametal.,2009),Analysinganaturalmangrove areainThailand,Wickramasingheetal.(2009)arrivedtosimilar

(3)

conclusions,demonstratingtheefficiencyofmangroveecosystem inwastetreatment,withanenhancementofmangrovegrowthand abundanceofinvertebratepopulations

1.2. Mangrovetreegrowthandnutrientenrichment

Whiletheuseofmangroveecosystemsforremovingpollutants fromsewagedischargesisbecomingratherwelldocumented,the responseofmangroveplantsthemselvesintermsofgrowthshould beanalysedandcontrolled,andresultsinthisdomainarestill con-tradictory.Henley(1978)reportedthatmangrovetreegrowthin theDarwinarea,Australia,wasnotaffectedwhentheyreceived sewagedischarges,andCloughetal.(1983)concludedthatnutrient enrichmentofamangroveecosystemthroughwastewatersupply didnotappearharmfulandinsomecasesmighthaveabeneficial effectongrowthandproductivity.Kelly(1995),investigatingthe impactofsewageeffluentsonmangrovesdominatedbyAvicennia marinainAustralia,foundthattheNandPleafconcentrationswere higher atimpactedsites,but nocleargrowth-enhancingeffects werenoted atthesesamesites.Fromsimilarexperiments con-cerningthetwomangrovespeciesKandeliacandelandAegiceras corniculatum,Wongetal.(1995)didnotfindanysignificant differ-encesinplantgrowthafter1yearofsewagedischarges,butnoted thateffects–positiveoradverse–onvegetationfunctioningcould becomeapparentonlyoveralongerterm.Morerecently,Lovelock etal.(2009)establishedthatnutrientenrichment(NandP)could increasethemortalityofmangrovesinsitescharacterisedbylow annualrainfallandhighsedimentsalinity.Theseauthorsadded thatmortalityratesweresignificantinlandwardscrubforestsand notreedeathsoccurredinfringeforests.Lovelocketal.(2004)and

Martinetal.(2010)specifiedthatNandPenrichmentsignificantly increasedmangrovetreegrowth,butincertainsalinityconditions mightalterthestructureofmangroveforests.

1.3. Mangrovetreefunctioningandenvironmentalstresses

Relationshipsbetweennutrientenrichmentandmetabolic pro-cessesinmangrovesarestilllittledocumented.Peculiarly,dataon photosynthesisrateinmangrovetreesasafunctionalmarkerof theirhealthstatearerare;suchdataaregenerallylinkedto hydro-logical andsalinityparametersandtakeintoaccountpropagule populationsin greenhouseconditions (Ball andFarquhar,1984; YoussefandSaenger,1998;KaoandTsai,1999;Kaoetal.,2001; KraussandAllen,2003).Somestudiesconsideredthelinksbetween mangrovestructure (scrubvs.fringemangrove),mangrovetree heightandphotosynthesischaracteristics(LinandSternberg,1992; Lovelocketal.,2004),andNaidooandChirkoot(2004)established inaspecificcontextthatphotosyntheticperformanceofA.marina wasreducedwhencoaldustwasdepositedontheleafsurfaceof themangrovetrees.

Inotherstudies,pigmentcontentofmangroveleaveshasbeen analysedinrelationtothelightenvironmentofthemangrove for-estcanopy(LovelockandClough,1992;MoorthyandKathiresan, 1997).Rajeshetal.(1998)establishedcorrelationsbetweengrowth rate,photosyntheticandpigmentcharacteristics,andsalinitylevels forCeriopspopulations.MacFarlaneandBurchett(2001)showed thatphotosyntheticpigmentconcentrationdecreasedinA.marina populations impactedby heavy metals, and MacFarlane (2002)

suggested thatphotosyntheticpigmentscouldbeconsideredas biologicalindicatorsofstressformangrovetrees.

1.4. MayotteIslandcontextandbioremediationproject

TheMayotteArchipelago,WestIndianOcean,iscurrently expe-riencing environmentaldegradationlinked toa very important

Fig.1. (a)Thestudysite,aerialphotographyfromultralight.Thetwoimpacted plotsarecharacterisedbyastronggreencolour(whitecirclesmarktheupperlimit ofplots).(b)ColourchangesinCeriopstagalleavesbetweencontrolandimpacted plots.(c)GrowthdifferencesinCeriopstagalbranchesbetweencontrolandimpacted plots.Allpictures:March2009,i.e.after12monthsofdailywastewaterdischarge.

increaseofpopulationandrapideconomicdevelopment.Sewage treatmentislargelydeficientinMayotteandconstitutesamajor problemfor thelocal authorities.Only one sewage plant,built in 2001 and recently renovated (2010), treats wastewater in Mamoudzou,themaintownofMayotte;however,themajorityof effluentflows–directlyorafterhavingcrossedmangroveswamps attheendsofbays–intothevastcoralreeflagoonsurroundingthe island.

In this context, experiments have been launched at Mala-mani,SWMayotte,toevaluatethebioremediationcapacitiesofa mangroveswampreceiving,incontrolledconditions,pretreated domestic wastewater. Water bodies, sediment, vegetation and fauna(crabpopulations)ofmangroveecosystemshavebeentaken into account and analysed (Herteman, 2010; Herteman et al., submittedforpublication)andexperimentsarestillinprogress attheMalamanistudysite.

Wenowreportinvestigationsconcerningmangrovevegetation functioningafter12and18monthsofdailywastewaterdischarge. Anaerialsurveyofthestudysiteclearlyshowedachangeinthe colourofthemangrovecanopy,turningfromlightgreentostrong green, corresponding to mangrove plots receiving wastewater (Fig.1a).Thischangeappeared6 monthsafterthefirstsewage dischargesinthemangrovesandpersisted12monthslater;the changeinleafcolourclearlycorrespondstothedischarge. Obser-vationsinthefieldconfirmedthecolourchangeofthemangrove leaves and also showed obvious differences in branch length betweencontrol andimpactedplots (Fig.1b andc). Toanalyse suchchangesinvegetationandevaluatetheimpactofwastewater, photosyntheticpigmentconcentrations,photosynthesisrateand growthofmangrovetreeswerefollowed inimpactedand non-impactedmangrove plots, in two differentfacies, respectively, dominatedbyCeriopstagal(Perr.)C.B.Robinson andRhizophora mucronataLam.

(4)

Fig.2.Thestudyareaandtheexperimentalsite.(a)MayotteIsland,SWIndianOcean.(b)Thestudysite,SWMayotteIsland,betweenMalamanivillageandthelagoon. (c)Experimentalsetting:decantercollectingdomesticwastewaterfromMalamani;pipenetwork;impactedandcontrolplotsinCeriopstagalandRhizophoramucronata mangrovefacies;piezometernetworkforwateranalyses.

2. Materialsandmethods 2.1. Studyarea

MayotteIslandisadependentFrenchoverseasterritoryinthe Comoro Archipelago, located in the Mozambique Channel, SW IndianOcean(Fig.2).Thelittlevolcanicisland(376km2)is

sur-roundedbyanalmostcontinuousbarrierreefsystemenclosingone ofthelargestlagoonsintheworld(1500km2).Mangroveswamps

aredevelopedattheendsofbaysonaround650ha.Thetiderange ishighforanoceanicisland,reachingupto4minspringtides. Mayotte’sclimateismaritimetropical,withawarmwetseason fromNovembertoApril(meanseasonalrainfallandtemperature: 1200mmand27.2◦C,respectively)andacoolerdryseasonfrom

MaytoOctober(210mmand25.1◦C).

ThestudyareaislocatedinChironguiBay,southwestofMayotte (12◦55S,4509E).Aprimarytreatmentunitsizedfor400-equiv.

inhabitantsdailyreceivesdomesticwastewaterfromMalamani vil-lage.Wastewaterisdecantedandstored,andthencarriedthrough apipenetworktothemangrovearea.Timedeliveryanddischarge volumesareautomaticallycontrolledbyaSOFRELprocessing sys-tem.Wastewater is then deliveredevery secondlow tide onto two mangrove plots respectively dominated by C. tagal and R. mucronataattherateof10m3per24honeach45m×15mplot.

Athird45m×15mplotconnectedtothepipenetwork automati-callyreceiveswastewaterinexcess,particularlyintherainyseason whendischargevolumesexceed20m3perday(Fig.2c).

Photosyntheticpigmentconcentration,photosynthesisrateand growthofmangrovetreeswereanalysed12and18monthsafter commencementof wastewater discharges in thetwo impacted

plots,andintwoequivalentcontrolplots.Theaveragecomposition ofthewastewaterisgiveninTable1,andthevegetationstructure ofthefourplotsispresentedinTable2.

2.2. Photosyntheticpigmentanalyses

Matureandhealthyleavesof12randompatchesineachofthe fourplotswerecollectedinJanuary(wetseason)andApril (begin-ningofdryseason)2009andrapidlystoredinacoldplace(cooler boxduringtransport,then−80◦Cfreezerinlaboratory).Threedisks

18mmindiameterwerecutfromeachleafpatchsample,crushed with50mgFontainebleausand,rinsedwith20mlmethanol,and thenplacedunderultrasoundfor3min.Mixtureswerestoredfor 15minat−20◦C,andthenspin-dried(5minin−1Ccentrifugeat

3500rpm).Samplesofthesupernatentweretaken(1ml),filtered through0.2mmsyringefilters,andthenanalysedusingHPLC. 2.3. Photosynthesisandtranspirationrates

Thenetphotosyntheticratewasmeasuredonintact,mature C.tagaland R.mucronataleaveswitha portablephotosynthesis system(ADCBioscientificLtdportable),equippedwitha6.25cm2

leafchamber.Wemeasured150and120leaves,respectively,in eachC.tagalandR.mucronata45m×15mplot.Threesuccessive measurementsweremadefor eachsampledleafatintervalsof 25s.Allmeasurementsweremadebetween10:00and13:00h, onsunnydaysandunderthefollowingconditions: photosyntheti-callyactiveradiance:1000–2000mmolm−2s−1,relativehumidity:

(5)

Table1

Nutrientcomposition(mgl−1)ofdomesticwastewaterafterpre-treatmentindecanter.AnalysesrealisedonJuly02,2009,SIEAMLaboratory(Mayotte);April01andOctober

10,2009,ARVAMLaboratory(LaRéunionIsland).

NO3 NO2 NO3+NO2 NH4 PO4

July02,2009 1.40 0.17 1.57 – 8.40

April01,2009 1.09 0.01 1.10 1.18 5.61

October10,2009 0.01 0.02 0.03 1.95 12.55

2.4. Growthratemeasurements

Leafmeasurements:Ineachcontrolandimpactedplot(C.tagal andR.mucronatastands),90matureandhealthyleaveswere ran-domlycollected,andtheirlengthsandwidthsmeasured.Freshand dryweightsweremeasured,andleafareaswerecalculatedusing ImageJsoftwareandleafdigitisation.Leafarea–weight relation-shipsweredetermined.Measurementsweremade inApriland October2009.

Branchmeasurements:IneachC.tagalplot,60brancheswere measuredon15trees,i.e.fourbranchespertree,distributedinthe upper,middleandlowerpartsofthecontrolandimpactedplots. IntheR.mucronataplots,39branchesweremeasuredon13trees, i.e.threebranchespertree,distributedthroughoutthecontroland impactedplots.MeasurementsweremadeinAprilandOctober 2009.

Propagulemeasurements:Ineachcontrolandimpactedplot(C. tagalandR.mucronata),90propaguleswererandomlycollected from9trees,i.e.10propagulespertree,distributedintheupper, middleandlowerpartsofplots.Propagulelengthwasmeasuredin October2009.

2.5. Statisticalanalyses

TheShapirotestwasconductedoneachdataset(pigment con-centration, photosynthesis and transpirationrates, growth rate measurements)andshowedthatdatawerenormallydistributed. Meanvaluesandstandarddeviationwerecalculated.

One-wayANOVA(forp≤0.05andp≤0.01)wasemployedto testthesignificanceofdifferencesbetweencontrolandimpacted plots,betweendatesandbetweenspecies,foreachdatasetexcept propagule lengths, which were analysed using Student’s t-test (p≤0.05).

AllanalyseswereperformedusingthePASTsoftware,version 1.94b(Hammeretal.,2001).

3. Results

3.1. Vegetationstructure

Mangroves onthestudysiteare developedover a lengthof about600mwithaclassicalzonationaccordingtoinundationand salinitygradients,i.e.fromlandwardtoseaward:adegraded Her-itieralittoralisDryand.standattheupperlimitoftidalinfluence, followedbyabarrensaltflator“tanne”surroundedbyoldA.marina

(Forssk.)Vierh.trees, adenseanda lowC.tagal stand progres-sivelymixedwithR.mucronataindividuals,ahighandimportant R.mucronatastandincludingscatteredpatchesofBruguiera gym-norhiza(L.)Lam.,andfinallyonthelagoonsideawell-developed SonneratiaalbaJ.Smithzone.

Experimentswereconductedintwomangrovefacies,chosen fortheirrepresentativenessandtheirimportantdevelopmentin mostmangrovestandsinMayotte,namelyC.tagalandR.mucronata facies.StructuresaredescribedinTable2.TheC.tagalfacieswere largelydominatedbytheeponymousspecies,whichrepresented 90%ofthespecificcomposition,with9%forR.mucronataand a fewindividualsofA.marinaintheupperpartofthestandandrare B.gymnorhizainthelowerpart.Totaldensityisveryhighwith 69,500indha−1and62,750indha−1forC.tagal.C.tagal

individu-alsaresmalltreeswith2.2±1.1cmtrunkdiameterand1.7±0.9m inheight.ThesecondfaciesisdominatedbyR.mucronata(79%) withC.tagalindividualsin theupperpart(16%) andpatchesof B.gymnorhiza(5%).Totaldensityislower,with7900indha−1and

6250indha−1forR.mucronata.Themeantrunkdiameterfor

dom-inantindividualsofR.mucronatais16.1±5.2cmwithaheightof 7.1±2.1m.

Itisimportanttonotethatthevegetationstructurewas anal-ysed successively in November 2006, before the first sewage discharges, and in November 2008, 6 months after discharges began.Nosignificantdifferencewasobservedwithintheperiod. Wealsonotedthatthevegetationstructurehadnotchangedafter 12and18monthsofdischargeswhenfunctionalanalyseswere made,intermsofdensityormortalityrates.Regenerationseems tobeenhancedinimpactedplotsanddensityofcanopyaswell. Analysesarecurrentlyunderwaytoquantifytheseprocesses. 3.2. Photosyntheticpigmentconcentration

Table3andFig.3showtheresultsofanalysesofchlorophylla andb,carotene,andxanthophyllpigmentsextractedfromC.tagal andR.mucronataleavessampledincontrol andimpactedplots (January2009,April2009).

Pigmentcontentappearstobesignificantlyhigherinplots hav-ingreceivedwastewaterthanincontrolplots,forallpigmenttypes, forthetwodatesanalysedandforbothC.tagalandR.mucronata stands,exceptforchlorophyllb,forwhichresultsarenotsignificant forR.mucronatainJanuary2009.

Pigment concentration increased around twofold between C. tagal control and impacted stands and for the two dates, i.e. from 1.47 to 2.88mgg−1dw (January 2009) and 1.23 to

Table2

Structuralanalysesofmangroveplots,beforewastewaterdischarge(November2006). Facies Species Specific

dominance(%) Density (nha−1) Dbh (<10cm) Dbh (>10cm) Height(m) (Ø<10cm) Height(m) (Ø>10cm) Basalarea (m2ha−1) Deadind. (nha−1) C.tagal A.marina 0.7 500 5.8 – 2.8 – 2.8 250 B.gymn. 0.3 250 3.2 – 0.6 – 0.4 0 C.tagal 90.0 62,750 2.2 – 1.7 – 31.1 3500 R.mucr. 9.0 6000 4.8 11.1 2.7 3.5 18.2 250 R. B.gymn. 5.0 350 3.9 21.7 2.2 5.8 0.29 50 mucr. C.tagal 16.0 1300 4.1 – 2.6 – 2.04 50 R.mucr. 79.0 6250 6.4 16.1 3.7 7.1 71.5 200

(6)

Table3

Leafpigmentcontent(mgg−1dw)ofC.tagalandR.mucronata,incontrolandimpactedplotsJanuaryandApril2009.

Ceriopstagal Rhizophoramucronata

January2009 April2009 January2009 April2009

Control Impacted Control Impacted Control Impacted Control Impacted

Chlora 1.47±0.59 2.88±0.76** 1.23±0.41 3.28±0.68** 2.08±0.68 2.87±0.68** 3.01±0.67 4.01±0.75 Chlorb 0.43±0.19 0.89±0.26** 0.34±0.12 1.03±0.22* 0.60±0.1 0.88±0.23** 0.9±0.21 1.31±0.29

Chla:b 3.46±0.2 3.25±0.15 3.64±0.15 3.18±0.14 3.46±0.15 3.28±0.15 3.33±0.21 3.09±0.18

b-carotene 0.43±0.16 0.79±0.18** 0.36±0.12 0.87±0.2** 0.58±0.08 0.76±0.2** 0.82±0.20 1.04±0.18 Xanth. 0.07±0.02 0.13±0.03** 0.06±0.02 0.15±0.03** 0.1±0.01 0.14±0.03** 0.14±0.03 0.19±0.03 Significantdifferencesbetweencontrolandimpactedplotswith*p≤0.05and**p≤0.01.n=12foreachmodality.

3.28mgg−1dw(April2009)forchlorophylla.Incomparison,the

increaseinR.mucronataissignificantbutmoderate,i.e.from2.08 to2.87mgg−1dw(January2009)andfrom3.01to4.01mgg−1dw

(April2009)forchlorophylla.

InC.tagalplots,wenotethatdifferencesbetweenthetwo con-trolplotsandbetweenthetwoimpactedplotsarenotsignificant betweenJanuaryandApril,forallpigments.Forinstance,changes werefrom1.47to1.23(controlplots)and2.88to3.28mgg−1dw

(impactedplots)forchlorophylla,0.43to0.36(control)and0.79 to0.87(impacted)forb-carotene,and0.07to0.06(control)and 0.13to0.15(impacted)forxanthophylls.Similarcomparisonsfor R.mucronata,however,showsignificantincreasesbetweendates, with2.08–3.01(control)and2.87–4.01(impacted)forchlorophyll a,0.58–0.82(control)and0.76–1.04(impacted)forb-carotene,and 0.1–0.14(control)and0.14–0.19(impacted)forxanthophylls. 3.3. Photosynthesisandtranspirationrates

Table4andFig.4summariseresultsforbothparameters,for measurementsmadeinApril2009(endofwetseason)andOctober 2009(endofdryseason).

Photosynthesis rate appears significantly higher in plots receiving wastewater than in control plots, in April (6.14 vs. 9.86mmolm−2s−1)andOctober(5.82vs.9.53mmolm−2s−1)forC.

tagalplotsandinOctober2009only(8.68vs.10.66mmolm−2s−1)

forR.mucronataplots.

Comparisons between species show that the photosynthe-sis rateis significantly higher in R. mucronata than in C.tagal, in both control (12.52 vs. 6.14mmolm−2s−1 in April, 8.68 vs.

5.82mmolm−2s−1 in October,respectively) and impactedplots

(12.62vs.9.86and10.66vs.9.53)andforeachofthedates consid-ered.Thephotosyntheticratealsoappearsslightlybutsignificantly higherforbothspeciesattheendofthewetseason(April)thanat theendofthedryseason(October).

If we compare transpiration rates between control and impacted plots, measurements indicate significant differences for both species in April with higher values in plots receiving wastewater (3.95vs.2.47mmolm−2s−1 for C.tagal,and 4.1vs.

3.53mmolm−2s−1forR.mucronata,respectively),whilethe

dif-ferencesarenotsignificantlydifferentinOctober(3.64vs.3.65for C.tagaland3.27vs.3.64forR.mucronata).

3.4. Growthratemeasurements

Resultsforleaf(length,width,weight,surfacearea),branchand propagule(length)measurementsafter12and18months(April 2009andOctober2009)arepresentedinTable5andFig.5.

ExceptforR.mucronatameasurementsinApril,leaflengthand widthandconsequentlyleafareaaresignificantlyhigherfor sam-plescollectedinimpactedplotsforbothspeciesanddates,i.e.for leafareas,respectively15.9(controlplots)and37.9cm2(impacted

Fig.3.PigmentconcentrationinCeriopstagalandRhizophoramucronataleaves,collectedincontrolandimpactedplots,Malamanistudysite,JanuaryandApril2009.(a) Chlorophylla.(b)Chlorophyllb.(c)b-Carotene.(d)Xantophyll.Unit:mgg−1dw.

(7)

Table4

Photosynthesisrate(mmolm−2s−1)andtranspirationrate(mmolm−2s−1)inleavesofC.tagal(n:150)andR.mucronata(n:120),incontrolandimpactedplots,Apriland

October2009(mean±Sd).

Ceriopstagal Rhizophoramucronata

April2009 October2009 April2009 October2009

Control Impacted Control Impacted Control Impacted Control Impacted

Photosynthesisrate 6.14±1.9 9.86±1.52 5.82±1.3 9.53±1.35 12.5±2.7 12.62±2.39 8.68±4.02 10.66±2.98 Transpirationrate 2.47±0.94 3.95±0.82 3.65±0.89 3.64±0.89 3.53±1.11 4.1±1.18 3.64±1.11 3.27±0.75

plots)forC.tagaland63.2(control)and89.5(impacted)inOctober forR.mucronata.

Theleavesofbothspeciesareslightlyheavier(dryweight)for bothspecies,andleafarea-to-weightratiosaresignificantlyhigher inimpactedconditionsthanincontrolledones.

Concerningbranchlength,allresultsaresignificantwith impor-tantincreases,i.e.4.68–13.38cmforC.tagaland16.04–20.06cmfor R.mucronatainOctober.Nosignificantseasonalchangeappeared inbranchlengthfromApriltoOctoberforeitherspeciesorplot conditions.

Finally, theimpact ofwastewater supply in mangroveplots significantly increased propagule length in both species, i.e. 16.4–32.1cmforC.tagaland32.1–39.1cmforR.mucronata. 4. Discussion

4.1. Leafpigmentconcentrationinmangrovetreesand wastewatereffects

InnaturalconditionsinMayotteIsland,weestablishedthat pig-mentconcentrationwassignificantlyhigherinR.mucronatathanin C.tagalleaves,particularlyforchlorophylla,thetriggerelementof photochemicalprocesses.Chlorophylla:bratios,consideredtobea significantindexofphotosyntheticfunctioning,exhibitverystable andsimilarvaluesforbothspeciesanddates,correspondingto

val-uesgivenbyDasetal.(2002)forR.apiculataandB.gymnorhiza,and byBasaketal.(1996)forR.mucronataandC.decandra.Asnotedby theseauthors,carotenoidcontentisverylowintheRhizophoraceae family,asweobservedinMayotteIslandinnaturalconditions.

Thesupplyofwastewatertomangroveplotsenhancespigment concentrationinmangroveleaves,withclearincreasesfor chloro-phylls,b-caroteneandxanthophyllsinbothspecies.Whilenodata werefoundintheliteraturedirectlyconcerningtherelationships betweenpigmentconcentrationinmangroveleavesand wastewa-tersupplies,manyauthorshaveconsideredpigmentconcentration inrelationtoenvironmentalfactors.MedinaandFrancisco(1997)

establishedthatchlorophyllcontentappearedtobehigherin man-groveleavesofriverinemangrovestandsandlowerinleavesof mangrovesfromdrysites,andaddedthat NandPleaf concen-trationsandleafareasvariedinthesamewaybetweendryand wetsites.Authorsinterpretedsuchresultsasinteractionsbetween salinityand waterstresses, inrelationtonutrient supplies and photosyntheticproductivity.MacFarlaneandBurchett(2001)and

MacFarlane(2002)showedlinksbetweenleafchlorophylls(a+b) andcarotenoidcontentofA.marinaandheavymetal concentra-tioninmangrovesediment.Yeetal.(2003)examiningtheeffects ofwaterloggingongrowthandphysiologicalcharacteristicsofB. gymnorhiza and Kandelia candel(Rhizophoraceae), showed that chlorophyllandcarotenoidconcentrationsincreasedwhen water-loggingdurationandintensityincreased.

Fig.4.PhotosynthesisrateandtranspirationratemeasuredonCeriopstagalandRhizophoramucronataleaves,incontrolandimpactedplots,Malamanistudysite,Apriland October2009.Unit:mmolm−2s−1.

(8)

Table5

Shootlength(cm),internodenumberandleafnumberpershootforC.tagalandR.mucronata,incontrolandimpactedplots,AprilandOctober2009(mean±Sd,n=60).

Ceriopstagal Rhizophoramucronata

April October April October

Control Impacted Control Impacted Control Impacted Control Impacted

Shootlength 4.68±2.5 13.38±4.26 5.01±3.44 12.82±1.5 16.04±2.11 20.06±2.63 9.16±6.19 8.88±6.02

Internodesnumber 1.3±0.5 3.3±0.9 2.1±0.7 3.3±0.9 3.7±1.4 2.8±0.5 17.3±1.2 21.2±2.0

Leafnumberpershoot 8.6±5.5 9.6±7.3 – 5.2±1.3 5.9±1.5 5.3±1.0 4.7±1.7 4.2±1.1

WastewatersupplytoimpactedmangroveplotsinMalamani contributesbothtolowersalinitylevel–freshwaterisaddedto theecosystem–andtoincreasedNandPlevels.Theaverage com-positionofsewage(Table1)indicatestheamountandthenatureof nitrogenandphosphoruscompoundsdelivereddailytomangrove plots.Moreover,weestablishedthatwastewaterdeliveredto man-grovesatlowtiderapidlyseepsintosedimentandisprogressively absorbedbyvegetation,andthatNandPcompoundsareatleast partiallyusedbymangrovetrees(Herteman,2010;Hertemanetal., submittedforpublication).Thechangeinthecolourofthe vege-tationofimpactedplots(Fig.1)alsoreflectstheseprocessesand correspondstotheincreaseinleafpigmentconcentration.As pro-posedbytheauthorscitedabove,pigmentconcentrationmaythus beconsideredamarkerofstressconditionsformangrovetrees,or amarkerofchangeinmangrovefunctioning,revealingpollution withheavymetals(MacFarlaneandBurchett,2001;MacFarlane, 2002)oranexcessofnutrient,aswedemonstratedinour Mala-maniexperiments.Fromamoregeneralpointofview,studiesof pigmentcontentinhigherplantsasbiomarkersarerare,and essen-tiallyconcernedmicro-algae,wherepigmentcontentis directly linkedtobiomass(Wilhelmetal.,1995).Brainand Cedergreen (2009),inarecentreviewonbiomarkersinaquaticplants, indi-catedadvantagesforconsideringpigmentcontentasabiomarker: itisaneasy-to-measureandrobustparameterand,furthermore, visualobservation,asinourMalamaniexperiments,maypreclude

thenecessityofmeasuringpigmentcontent.Theseauthorsadded thatchlorophyllsandcarotenoidsweretheprimarylight-capturing pigmentsinhigherplants,absorbinglightenergyfor photosynthe-sis.Nutrientstatus,withlightintensityortemperature,isoneof thefactorsaffectingthecontentofphotosyntheticpigments.At highnutrientavailability,andparticularlywithexcessN,pigment contentincreasesandenhancescarbonfixation.

4.2. Photosyntheticprocesses

Pigment concentration is directly linked to photosynthetic activity,andphotosyntheticratesandpigmentcontent,i.e. chloro-phylla:bratio,havebeenfoundtobecorrelated(Andersonetal., 1988;Dasetal.,2002).

Measurementsofphotosynthesisrateincontrolplotsin Mala-maniclearlyindicatedifferencesbetweenspecies,withthehighest valuesobtainedinR.mucronata,wherethehighestpigment con-centrationswerealsofound.Theurietal.(1999)obtainedsimilar resultswithhighervaluesforR.mucronatathanforC.tagalin man-grovestandsinKenya.Nevertheless,theseauthorsgloballyfound lowervaluesinKenyanmangrovesthaninMayotte(around1.5 and1.2mmolm−2s−1 forR.mucronataandC.tagal,respectively)

andimportantseasonalvariation,withtwofoldvaluesinthewet season(around4.0and3.0mmolm−2s−1,respectively)while

sea-sonalchangesinMalamaniwerenotsignificant.Transpirationrate

Fig.5.Changesinleafarea(a),branchlength(b)andpropagulelength(c)ofCeriopstagalandRhizophoramucronataincontrolandimpactedplots,Malamanistudysite, AprilandOctober2009.Units:cm2andcm.

(9)

levelsarealsogreaterinMayotte(2.45–3.65mmm−2s−1)thanin

Kenyanmangrove(0.78–0.94mmm−2s−1).

Clough et al. (1997) and Clough (1998) found high values of photosynthetic rates for R. apiculata (average rate for the whole canopy:9.0mmolm−2s−1)and different Rhizophoraceae

(6.13–12.9mmolm−2s−1),withhighervaluesforRhizophoraspp.

andlowervaluesforC.australis.Theseauthorsaddedthatrates ofphotosynthesismaybesubstantiallylowerinmangrovestands characterisedbyhigheraridityandsalinityconditionswithvalues around4–5mmolm−2s−1.

In the mangrove stands of Malamani, wastewater supplies clearlycontributetoincreasedphotosyntheticratesinimpacted mangroveplots astheyleadtoanincrease inpigment concen-trations.Aswenoticedabove,wastewatercontributes tolower salinityrates,enrichesthemangroveecosysteminNandP nutri-ents, and consequently enhances photosynthesis rate. Sobrado (2000)andLietal.(2008)indicatedsimilarrelationshipsbetween salinityconditionsandphotosynthesisprocessesfordifferent man-grovetreesincludingRhizophoraceae,andKaoetal.(2001)showed thatanincreaseinNavailabilityincreasedphotosyntheticratesfor theRhizophoraceaeK.candel.Lietal.(2008)addedthathighlevels ofNaconcentrationinmangrovetreesinhibitedelectrontransport inphotosyntheticprocessesandconsequentlyledtoadecreasein photosyntheticefficiency.

4.3. Mangrovegrowthratesandwastewatersupplies

Increasedmangrovegrowthrates(leafdimensionsandsurface areas,branchlength)observedinimpactedplotsatthestudysite areadirecteffectofenhancementinphotosynthesisrateandof theincreaseinleafpigmentconcentration.Thesupplyof fresh-water andnutrients(Nand P),particularlythroughwastewater discharges,isknowntoinduceanincreaseinmangrovetreegrowth (Cloughetal.,1983)byactingasafertilisersupplyinthe ecosys-tem(BotoandWellington,1983).Onufetal.(1977)alsoobserved thataRhizophoramangrovestandnaturallyenrichedwithguano fromabirdcolonyexhibitedsignificantenhancementofgrowth.

Clough etal. (1983),analysing alltheseresults, concludedthat “nutrient enrichmentfromfertilization orfromsewageeffluent isnotlikelytobedeleterioustomangroves,andmaybe benefi-cialwherethenutrientstatusofthemangrovesislow”.Linand Sternberg(1992),andmore recentlyLovelock andFeller(2003)

andLovelocketal.(2004),whileanalysingfunctionaldifferences betweenscrubandfringemangroves,establishedthatCO2

assimi-lationrateandphotosyntheticefficiencyseemtobelowerinscrub facies,alsocharacterisedbyhighsalinitylevels.Conversely, fertil-isationbyNandPsuppliesmayinducesignificantshootgrowthin dwarfmangrovestands.

Recentpapers,however,haveemphasisedpotentialnegative consequencesofexcessivenutrientenrichmentinmangroves.They established, forinstance, thatexcessive N supplymight induce changes in root-to-shoot ratio (development of shoots at the expenseofroots)andincreasethevulnerabilityofmangrovestands in high-saline environments (Martin et al.,2010), or even lead to the deathof mangrovetrees in high salinity and low rain-fallconditions(Lovelocketal.,2009).Inthislaststudy,nutrient enrichmentseemstohavebeenthrougha single,massive sup-ply annuallyor biannually, i.e.300gof ureaorphosphate into holes cored oneither side ofthe treestems.Notice that these amounts correspond tothetotal amountof N provided toour impacted plots in a wholeyear, but delivereddaily every sec-ondlowtidetoourexperimentalmangrovestands.Thekinetics ofabsorptionandassimilationofnutrientsisthencertainly dif-ferentinthetwocases,andthustheconsequencesonmangrove

treemetabolismwillbedifferentaswell.Whilenonegativeeffect onmangrovevegetationappearedafter18monthsofwastewater suppliesinthemangrovesofMalamani,wewillstillrequire con-tinuingcontrolexperimentstoassessthelong-termefficiencyof bioremediationthroughmangroveecosystem.Inanotherdomain,

Penha-Lopesetal.(2010)indicated,frommesocosmexperiments, thatsewagecontaminationcauseddisturbancestogastropod pop-ulations(Terebraliapalustris)associatedwithmangrovetrees.In theMalamani studysite, preliminaryresultsdidnot showany changeincrabpopulationsimpactedbywastewater(Herteman, 2010),butfurtherexperimentsareplannedtoevaluatepotential effectsoveralongerterm.

5. Conclusions

Thepresentstudyshowedthatdomesticwastewaterdischarges inducedimportantchangesinmangrovevegetation.Inparticular, thewastewater:

increasedleafpigmentcontentinC.tagalandR.mucronatastands impactedwith12–18monthsofdailysupplies;

•enhancedsignificantlyphotosyntheticactivityandtranspiration rate;and

inducedsignificantincreasein leafareaand branchlengthof impactedmangrovestands.

Atthesametime,noevidentmodificationappearedingeneral structureorfunctioningofmangrovevegetation.

Ifourresultsseem todemonstratethatpretreated domestic wastewatermayhavebeneficialeffectsonmangrovefunctioning, asurveyoftheliteratureneverthelessshowsthatNandPexcess, broughtthroughdomesticwastewaterorexperimentalsupplies, couldincertainconditionsandoveralongterminduce dysfunc-tioninginmangrovevegetation.

Furtherexperimentationandanalysesarenecessarybeforewe canclearly definethepossiblerole of mangroveecosystemsin bioremediationofdomesticwastewater.

SuchexperimentationiscurrentlyinprogressintheMalamani studysite,takingintoaccountthedifferentcompartmentsofthe mangroveecosystemand theirinteractions,i.e. saltyand fresh-waterbodies,sediment, crabpopulationsand thestructure and functioningof themangrovevegetation. While thepreliminary resultsinthispapershowthatwastewateriseffectivelyabsorbed bymangrovetrees andinduces enhancementofmangrovetree functioning,globalNandPbalancesmustbeestablishedfor bet-terquantification.Anotheravenueofresearch,alsoinprogress,is toimprovewastewatertreatmentintheprimarytreatmentunit beforeitsdischargeintomangrovestands.

Acknowledgements

Thisworkwaspartofaprogrammeontheroleofthemangrove ecosysteminwastewatertreatmentinMayotteIsland,co-funded bytheWaterSyndicateofMayotte(SIEAM,2006–2010)andthe FrenchNationalResearch Centre(CNRS)through theEcological EngineeringProgramme(2007).

Thefirstauthorisa doctoralresearcherfundedbythe Asso-ciationNationaledelaRechercheTechnique(ANRT)throughthe CIFREGrant250/2006.

References

Anderson,J.M.,Chow,W.S.,Goodchild,D.,1988.Thylakoidmembraneorganization insun/shadeacclimation.Aust.J.PlantPhysiol.1,11–26.

(10)

Ball,M.C.,Farquhar,G.D.,1984.Photosyntheticandstomatalresponsesoftwo man-grovespecies.AegicerascorniculatumandAvicenniamarina,tolongtermsalinity andhumiditycondition.PlantPhysiol.74,1–6.

Basak,U.C.,Das,A.B.,Das,P.,1996.Chlorophylls,carotenoids,proteinsandsecondary metabolitesinleavesof14speciesofmangrove.Bull.Mar.Sci.58,654–659. Boto,K.G.,Wellington,J.T.,1983.Nitrogenandphosphorusnutritionalstatusofa

northernAustralianmangroveforest.MarEcol.Prog.Ser.11,63–69. Brain,R.A.,Cedergreen,N.,2009.Biomarkersinaquaticplants:selectionandutility.

Rev.Environ.Contam.Toxicol.198,49–109.

Clough,B.,1998.Mangroveforestproductivityandbiomassaccumulationin Hinch-inbrookChannel,Australia.MangroveSaltMarshes2,191–198.

Clough,B.F.,Boto,K.G.,Attiwill,P.M.,1983.Mangrovesandsewage—are-evaluation. In:Teas,G.H.(Ed.),Proceedingsofthe2ndInternationalSymposiumonBiology andManagementofMangroves,PapuaNewGuinea.W.JunkPublisher,The Hague,pp.151–161.

Clough,B.F.,Ong,J.E.,Gong,W.K.,1997.Estimatingleafareaindexand photosyn-theticproductionincanopiesofthemangroveRhizophoraapiculata.Mar.Ecol. Prog.Ser.159,285–292.

Corredor,J.E.,Morell,J.M.,1994.Nitratedepurationofsecondarysewageeffluents inmangrovesediments.Estuaries17,295–300.

Das,A.B.,Parida,A.,Basak,U.C.,Das,P.,2002.Studiesonpigments,proteinsand photosyntheticratesinsomemangrovesandmangroveassociatesfrom Bhi-tarkanika,Orissa.Mar.Biol.141,415–422.

Hammer,O.,Harper,D.A.T.,Ryan,P.D.,2001.PAST:palaeontologicalstatistics soft-warepackageforeducationanddataanalysis.Palaeontol.Electron.4,1–9. Henley,D.A.,1978.Aninvestigationofproposedeffluentdischargeintoatropical

mangroveestuary.In:ProceedingofInternationalConferenceonWater Pollu-tionControlinDevelopingCountries.September1978,Thailand,pp.43–64. Herteman,M.,2010.Evaluationdescapacitésbioremédiatricesd’unemangrove

impactéepardeseauxuséesdomestiques.Applicationausite-pilotede Mala-mani,Mayotte.ThèseUniversitédeToulouse.

Herteman,M.,Lambs,L.,Fromard,F.,Sanchez-Perez,J.,Muller,E.Watercirculation andstoragecapacityinamangroveswampofMayotteIsland,submittedfor publication.

Kao,W.Y.,Tsai,H.C.,1999.Thephotosynthesisandchlorophyllafluorescencein seedlingsofKandeliacandel(L.)DrucegrownunderdifferentnitrogenandNaCl controls.Photosynthetica37(3),405–412.

Kao,W.Y.,Tsai,H.C.,Tsai,T.T.,2001.EffectofNaClandnitrogenavailabilityon growthandphotosynthesisofseedlingsofamangrovespecies,Kandeliacandel (L.)Druce.J.PlantPhysiol.158,841–846.

Kelly,T.,1995.Effectsoflong-termdischargesoftreatedsewageonthenutrient statusofadjacentmangrovecommunities.UnpublishedThesis,SouthernCross University,Lismore,Australia.

Krauss,K.W.,Allen,J.A.,2003.Influencesofsalinityandshadeonseedling photosyn-thesisandgrowthoftwomangrovespecies,RhizophoramangleandBruguiera sexangula,introducedtoHawaii.Aquat.Bot.77,311–324.

Li,N.Y.,Chen,S.L.,Zhou,X.Y.,Li,C.Y.,Shao,J.,Wang,R.G.,2008.EffectofNaClon photosynthesis,saltaccumulationandioncompartmentationintwomangrove species,KandeliacandelandBruguieragymnorhiza.Aquat.Bot.88,303–310. Lin,G.,Sternberg,L.daS.L.,1992.Comparativestudyofwateruptakeand

photosyn-theticgasexchangebetweenscrubandfringeredmangrove,Rhizophoramangle L.Oecologia90,399–403.

Lovelock,C.E.,Clough,B.F.,1992.Influenceofsolar-radiationandleafangleonleaf xanthophyllconcentrationsinmangroves.Oecologia91,518–525.

Lovelock,C.E.,Feller,I.C.,2003.Photosyntheticperformanceandresourceutilization oftwomangrovespeciescoexistinginahypersalinescrubforest.Oecologia134, 455–465.

Lovelock,C.E.,Feller,I.C.,McKee,K.L.,Engelbrecht,B.M.,Ball,M.C.,2004.Theeffect ofnutrientenrichmentongrowth,photosynthesisandhydraulicconductance ofdwarfmangrovesinPanama.Funct.Ecol.18,25–33.

Lovelock, C.E., Ball, M.C., Martin, K.C., Feller, I.C., 2009. Nutrient enrich-ment increases mortality of mangroves. PLoS ONE 4 (5), e5600, doi:10.1371/journal.pone.0005600.

MacFarlane,G.R.,2002.LeafbiochemicalparametersinAvicenniamarina(Forsk.) Vierhaspotentialbiomarkersofheavymetalstressinestuarineecosystems. Mar.Pollut.Bull.44,244–256.

MacFarlane,G.R.,Burchett,M.D.,2001.Photosyntheticpigmentsandperoxidase activityasindicatorsofheavymetalstressinthegreymangrove,Avicennia marina(Forsk.)Vierh.Mar.Pollut.Bull.42,233–240.

Martin,K.C.,DanBruhn,Lovelock,C.E.,Feller,I.C.,Evans,J.R.,Ball,M.C.,2010. Nitro-genfertilizationenhanceswater-useefficiencyinasalineenvironment.Plant Cell.Environ.33(3),344–357.

Medina,E.,Francisco,M.,1997.OsmolalityanddeltaC-13ofleaftissuesofmangrove speciesfromenvironmentsofcontrastingrainfallandsalinity.Estuar.Coast. ShelfSci.45,337–344.

Moorthy,P.,Kathiresan,K.,1997.Influenceofultraviolet-Bradiationon photo-syntheticandbiochemicalcharacteristicsofamangroveRhizophoraapiculata. Photosynthetica34,465–471.

Naidoo,G.,Chirkoot,D.,2004.Theeffectsofcoaldustonphotosynthetic perfor-manceofthemangrove,AvicenniamarinainRichardsBay,SouthAfrica.Environ. Pollut.127,359–366.

Nedwell,D.B.,1975.Inorganicnitrogen-metabolisminaeutrophicatedtropical mangroveestuary.WaterRes.9,221–231.

Onuf,C.P.,John,M.,Teal,J.M.,Valiela,I.,1977.Interactionsofnutrients,plantgrowth andHerbivoryinamangroveecosystem.Ecology58(3),514–526.

Penha-Lopes,G.,Bartolini,F.,Limbu,S.,Cannicci,S.,Mgaya,Y.,Kristensen,E.,Paula, J.,2010.EcosystemengineeringpotentialofthegastropodTerebraliapalustris (Linnaeus1767)inmangrovewastewaterwetlands:acontrolledmesocosm experiment.Environ.Pollut.158(1),258–266.

Rajesh, A., Arumugam, R., Venkatesalu, V., 1998. Growth andphotosynthetic characteristicsofCeriopsroxburghianaunderNaClstress.Photosynthetica35, 285–287.

Saenger,P.,2002.MangroveEcologySilvicultureandConservation.Kluwer Aca-demicPublishers,Dordrecht.

Sobrado,M.A.,2000.Relationofwatertransporttoleafgasexchangepropertiesin threemangrovespecies.TreesStruct.Funct.14,258–262.

Tam, N.F.Y.,1998. Effects of wastewater discharge on microbialpopulations andenzyme activitiesinmangrove soils.Environ.Pollut.102 (2–3),233– 242.

Tam,N.F.Y.,Wong,Y.S.,1995.Mangrovesoilsassinksforwastewater-borne pollu-tants.Hydrobiologia295,231–241.

Tam,N.F.Y.,Wong,Y.S.,1996.Retentionanddistributionofheavymetalsin man-grovesoilsreceivingwastewater.Environ.Pollut.94,283–291.

Tam,N.F.Y.,Wong,Y.S.,Lan,C.Y.,Wang,L.N.,1998.Litterproductionand decompo-sitioninasubtropicalmangroveswampreceivingwastewater.J.Exp.Mar.Biol. Ecol.226,1–18.

Tam,N.F.Y.,Wong,A.H.Y.,Wong,M.H.,Wong,Y.S.,2009.Massbalanceofnitrogenin constructedmangrovewetlandsreceivingammonium-richwastewater:effects oftidalregimeandcarbonsupply.Ecol.Eng.35,453–462.

Theuri,M.M.,Kinyamario,J.I.,VanSpeybroeck,D.,1999.Photosynthesisandrelated physiologicalprocessesintwomangrovespecies,Rhizophoramucronataand Ceriopstagal,atGaziBay,Kenya.Afr.J.Ecol.37,180–193.

Wickramasinghe,S.,Borin,M.,Kotagama,S.W.,Cochard,R.,Anceno,A.J.,Shipin, O.V.,2009.Multi-functionalpollutionmitigationinarehabilitatedmangrove conservationarea.Ecol.Eng.35,898–907.

Wilhelm,C.,Volkmar,P.,Lohmann,C.,Becker,A.,Meyer,M.,1995.TheHPLC-aided pigmentanalysisofphytoplanktoncellsasapowerfultoolinwater-quality control.J.WaterSupplyRes.Technol.Aqua44,132–141.

Wong,Y.S.,Tam,N.F.Y.,Lan,C.Y.,1997.Mangrovewetlandsaswastewatertreatment facility:afieldtrial.Hydrobiologia352,49–59.

Wong,Y.S.,Lan,C.Y.,Chen,G.Z.,Li,S.H.,Chen,X.R.,Liu,Z.P.,1995.Effectofwastewater dischargeonnutrientcontaminationofmangrovesoilsandplants. Hydrobiolo-gia295,243–254.

Wu,Y.,Chung,A.,Tam,N.F.Y.,Pi,N.,Wong,M.H.,2008.Constructedmangrove wet-landassecondarytreatmentsystemformunicipalwastewater.Ecol.Eng.34, 137–146.

Ye,Y.,Tam,N.F.Y.,Wong,Y.S.,Lu,C.Y.,2003.Growthandphysiologicalresponsesof twomangrovespecies(BruguieragymnorhizaandKandeliacandel)to waterlog-ging.Environ.Exp.Bot.49(3),209–221.

Youssef,T.,Saenger,P.,1998.Photosyntheticgasexchangeandaccumulationof phytotoxinsinmangroveseedlingsinresponsetosoilphysico-chemical char-acteristicsassociatedwithwaterlogging.TreePhysiol.18,317–324.

Figure

Fig. 1. (a) The study site, aerial photography from ultralight. The two impacted plots are characterised by a strong green colour (white circles mark the upper limit of plots)
Fig. 2. The study area and the experimental site. (a) Mayotte Island, SW Indian Ocean
Table 3 and Fig. 3 show the results of analyses of chlorophyll a and b, carotene, and xanthophyll pigments extracted from C
Table 4 and Fig. 4 summarise results for both parameters, for measurements made in April 2009 (end of wet season) and October 2009 (end of dry season).
+3

Références

Documents relatifs

Indeed, the analysis of growth parameters showed an increase of all parameter values (DBH, height, basal area, biomass, leaf area, vegetation productivity) in IA compared

After 12 and 18 months of daily wastewater discharge into mangrove plots in Mayotte Island, SW Indian Ocean, leaf pigment content, photosynthesis rate and growth of Rhizophora

In this work, a system for recognizing activities in the home setting that uses a set of small and simple state-change sensors, machine learning algorithms, and

The multi-variate confrontation of all wood types suggests that: (i) species diversity is the biggest source of variation in specific gravity and Young’s modulus (with

To derive an expression for phase lag and amplitude gain of the turbulent fluxes that is in response to incoming radiation forcing and includes physical parameters, we need a model

Whereas human settlement on Mascarene islands occurred only recently during the 17th century, the native insular biota experienced a drastic extinction of the vertebrate fauna mainly

ed with data collected during the monitoring and fur- ther data from the collections of MNHN (Muséum National d’Histoire Naturelle) Paris, CIRAD Réunion (French

Next, we used quantitative polymerase chain reaction (qPCR) to study the prevalence of renal in- fection at the time of sampling in 12 animal species. To our knowledge, this is the