• Aucun résultat trouvé

Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW Indian Ocean

N/A
N/A
Protected

Academic year: 2021

Partager "Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW Indian Ocean"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-00953289

https://hal.archives-ouvertes.fr/hal-00953289

Submitted on 28 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW

Indian Ocean

Mélanie Herteman, François Fromard, Luc Lambs

To cite this version:

Mélanie Herteman, François Fromard, Luc Lambs. Effects of pretreated domestic wastewater sup- plies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW Indian Ocean. Ecological Engineering, Elsevier, 2011, vol. 37, pp. 1283-1291.

�10.1016/j.ecoleng.2011.03.027�. �hal-00953289�

(2)

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 11070

To link to this article : DOI : 10.1016/j.ecoleng.2011.03.027 URL : http://dx.doi.org/10.1016/j.ecoleng.2011.03.027

To cite this version : Herteman, Mélanie and Fromard, François and Lambs, Luc Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW Indian Ocean. (2011) Ecological Engineering, vol. 37 (n° 9). pp. 1283-1291. ISSN 0925- 8574

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

(3)

Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from

Mayotte Island, SW Indian Ocean

Mélanie Herteman

a,b

, Franc¸ ois Fromard

a,b,∗

, Luc Lambs

a,b

aUniversitédeToulouse,INP,UPS,EcoLab(LaboratoireEcologieFonctionnelleetEnvironnement),118RoutedeNarbonne,31062Toulouse,France

bCNRS,EcoLab,31062Toulouse,France

Keywords:

Wastewater Mangroves Photosynthesisrate Chlorophyll Growth Bioremediation

a b s t ra c t

After12and18monthsofdailywastewaterdischargeintomangroveplotsinMayotteIsland,SWIndian Ocean,leafpigmentcontent,photosynthesisrateandgrowthofRhizophoramucronataandCeriopstagal mangrovetreeswereevaluatedandcomparedwithsimilarindividualsfromcontrolplots.Chlorophylland carotenoidcontents,measuredusinganHPLCanalyser,weresignificantlyhigherinleavesofmangrove treesreceivingwastewaterdischarges.Photosynthesisandtranspirationrates,analysedusinganLCi portablesystem,increasedsignificantlyformangrovetreesinimpactedplots.Measurementsofleafareas, youngbranchlengthandpropagulelengthshowedsignificantincreasesinplotsreceivingwastewater.

TheseresultssuggestabeneficialeffectofdomesticwastewateronR.mucronataandC.tagalmangrovetree functioning.Analysesandobservationsonmangroveecosystemsasawhole–takingintoaccountwater andsedimentcompartments,crabpopulationsandnitrogenandphosphoruscycles–arenevertheless necessaryforevaluationofbioremediationcapacitiesofmangroveecosystems.

1. Introduction

1.1. Mangrovesandbioremediation

The utilisation of mangrove swamps as natural systems for wastewatertreatmenthasbeenproposedasanefficientandlow- cost solutionfor tropicalcoastalareas. Characterised bya high primaryproductionandbiomassandestablishedasoftenasnot onnutrient-poorsediments,mangroveecosystemsareconsidered abletoabsorbnutrientsinexcesscontainedinsewage,withoutany majorstructuralorfunctionaldisturbance(Saenger,2002).

Nedwell (1975) showed that the discharge of pretreated wastewaterintoamangroveswampinFijicouldbeameansof reducingeutrophicationincoastalwaters,andthereforesuggested thatmangrovesmightbeusedasthefinalstageinsewagetreat- ment.Cloughetal.(1983)publishedoneofthefirstreviewarticles dealingwiththeimpactofsewageonmangroveecosystems.These authors established that the capacity of mangroves to remove nutrientsfromsewagewaslargelydeterminedbyhydrodynamic

Correspondingauthorat:EcoLab-LaboratoireEcologieFonctionnelleetEnvi- ronnement,Bâtiment4R1,118routedeNarbonne,31062Toulousecedex9,France.

Tel.:+33561558920;fax:+33561558901.

E-mailaddress:francois.fromard@cict.fr(F.Fromard).

factorsintheshorttermandthattheefficiencyoftheprocesses waslargelydependentonthesediment propertiesandbiologi- calcharacteristicsoftheecosysteminthelongerterm.Corredor andMorell(1994)demonstratedthattheexcessnitrogencoming fromasewagetreatmentplantinPuertoRicocouldbeabsorbedby themangroveecosystemthroughnaturaldenitrificationprocesses, withoutanydamage.

Inanexplorationofthedifferentaspectsoftheroleofman- groveswampsassinksforwastewater-bornepollutantsthrough numerous experimentsconductedin theHongKong andShen- zenarea(SouthChina),TamandWong(1995,1996)successively showedthatmangrovesoilsaregoodtrapstofixphosphorusand certainheavymetalsfromwastewater;thatnosignificantchange wasobservedintheplantcommunitystructureorinleafnutri- entcontentofamangrovesitereceivingwastewaterdischarges for 1year(Wongetal.,1995,1997);and thatlitterproduction and decomposition werenot perturbed (Tamet al., 1998).The additionofwastewatertomangrovesoilsalsoseemstostimulate thegrowthofmicrobialpopulations,probablythroughnutrients andcarboncomponentspresentinwastewater(Tam,1998).More recently,theseauthorsshowedthat amangroveplantcommu- nitygrowinginconstructedmicrocosmsreceivingwastewaterwas effective in removingorganicmatter, nitrogenand phosphorus (Wuetal.,2008;Tametal.,2009),Analysinganaturalmangrove areainThailand,Wickramasingheetal.(2009)arrivedtosimilar

doi:10.1016/j.ecoleng.2011.03.027

(4)

conclusions,demonstratingtheefficiencyofmangroveecosystem inwastetreatment,withanenhancementofmangrovegrowthand abundanceofinvertebratepopulations

1.2. Mangrovetreegrowthandnutrientenrichment

Whiletheuseofmangroveecosystemsforremovingpollutants fromsewagedischargesisbecomingratherwelldocumented,the responseofmangroveplantsthemselvesintermsofgrowthshould beanalysedandcontrolled,andresultsinthisdomainarestillcon- tradictory.Henley(1978)reportedthatmangrovetreegrowthin theDarwinarea,Australia,wasnotaffectedwhentheyreceived sewagedischarges,andCloughetal.(1983)concludedthatnutrient enrichmentofamangroveecosystemthroughwastewatersupply didnotappearharmfulandinsomecasesmighthaveabeneficial effectongrowthandproductivity.Kelly(1995),investigatingthe impactofsewageeffluentsonmangrovesdominatedbyAvicennia marinainAustralia,foundthattheNandPleafconcentrationswere higher atimpactedsites,but nocleargrowth-enhancingeffects werenoted atthesesamesites.Fromsimilarexperimentscon- cerningthetwomangrovespeciesKandeliacandelandAegiceras corniculatum,Wongetal.(1995)didnotfindanysignificantdiffer- encesinplantgrowthafter1yearofsewagedischarges,butnoted thateffects–positiveoradverse–onvegetationfunctioningcould becomeapparentonlyoveralongerterm.Morerecently,Lovelock etal.(2009)establishedthatnutrientenrichment(NandP)could increasethemortalityofmangrovesinsitescharacterisedbylow annualrainfallandhighsedimentsalinity.Theseauthorsadded thatmortalityratesweresignificantinlandwardscrubforestsand notreedeathsoccurredinfringeforests.Lovelocketal.(2004)and Martinetal.(2010)specifiedthatNandPenrichmentsignificantly increasedmangrovetreegrowth,butincertainsalinityconditions mightalterthestructureofmangroveforests.

1.3. Mangrovetreefunctioningandenvironmentalstresses

Relationshipsbetweennutrientenrichmentandmetabolicpro- cessesinmangrovesarestilllittledocumented.Peculiarly,dataon photosynthesisrateinmangrovetreesasafunctionalmarkerof theirhealthstatearerare;suchdataaregenerallylinkedtohydro- logical andsalinityparametersandtakeintoaccountpropagule populationsin greenhouseconditions (Ball andFarquhar,1984;

YoussefandSaenger,1998;KaoandTsai,1999;Kaoetal.,2001;

KraussandAllen,2003).Somestudiesconsideredthelinksbetween mangrovestructure (scrubvs.fringemangrove),mangrovetree heightandphotosynthesischaracteristics(LinandSternberg,1992;

Lovelocketal.,2004),andNaidooandChirkoot(2004)established inaspecificcontextthatphotosyntheticperformanceofA.marina wasreducedwhencoaldustwasdepositedontheleafsurfaceof themangrovetrees.

Inotherstudies,pigmentcontentofmangroveleaveshasbeen analysedinrelationtothelightenvironmentofthemangrovefor- estcanopy(LovelockandClough,1992;MoorthyandKathiresan, 1997).Rajeshetal.(1998)establishedcorrelationsbetweengrowth rate,photosyntheticandpigmentcharacteristics,andsalinitylevels forCeriopspopulations.MacFarlaneandBurchett(2001)showed thatphotosyntheticpigmentconcentrationdecreasedinA.marina populations impactedby heavy metals, and MacFarlane (2002) suggested thatphotosyntheticpigmentscouldbeconsideredas biologicalindicatorsofstressformangrovetrees.

1.4. MayotteIslandcontextandbioremediationproject

TheMayotteArchipelago,WestIndianOcean,iscurrentlyexpe- riencing environmentaldegradationlinked toa very important

Fig.1. (a)Thestudysite,aerialphotographyfromultralight.Thetwoimpacted plotsarecharacterisedbyastronggreencolour(whitecirclesmarktheupperlimit ofplots).(b)ColourchangesinCeriopstagalleavesbetweencontrolandimpacted plots.(c)GrowthdifferencesinCeriopstagalbranchesbetweencontrolandimpacted plots.Allpictures:March2009,i.e.after12monthsofdailywastewaterdischarge.

increaseofpopulationandrapideconomicdevelopment.Sewage treatmentislargelydeficientinMayotteandconstitutesamajor problemfor thelocal authorities.Only one sewage plant,built in 2001 and recently renovated (2010), treats wastewater in Mamoudzou,themaintownofMayotte;however,themajorityof effluentflows–directlyorafterhavingcrossedmangroveswamps attheendsofbays–intothevastcoralreeflagoonsurroundingthe island.

In this context, experiments have been launched at Mala- mani,SWMayotte,toevaluatethebioremediationcapacitiesofa mangroveswampreceiving,incontrolledconditions,pretreated domestic wastewater. Water bodies, sediment, vegetation and fauna(crabpopulations)ofmangroveecosystemshavebeentaken into account and analysed (Herteman, 2010; Herteman et al., submittedforpublication)andexperimentsarestillinprogress attheMalamanistudysite.

Wenowreportinvestigationsconcerningmangrovevegetation functioningafter12and18monthsofdailywastewaterdischarge.

Anaerialsurveyofthestudysiteclearlyshowedachangeinthe colourofthemangrovecanopy,turningfromlightgreentostrong green, corresponding to mangrove plots receiving wastewater (Fig.1a).Thischangeappeared6 monthsafterthefirstsewage dischargesinthemangrovesandpersisted12monthslater;the changeinleafcolourclearlycorrespondstothedischarge.Obser- vationsinthefieldconfirmedthecolourchangeofthemangrove leaves and also showed obvious differences in branch length betweencontrol andimpactedplots (Fig.1b andc). Toanalyse suchchangesinvegetationandevaluatetheimpactofwastewater, photosyntheticpigmentconcentrations,photosynthesisrateand growthofmangrovetreeswerefollowed inimpactedand non- impactedmangrove plots, in two differentfacies, respectively, dominatedbyCeriopstagal(Perr.)C.B.Robinson andRhizophora mucronataLam.

(5)

Fig.2.Thestudyareaandtheexperimentalsite.(a)MayotteIsland,SWIndianOcean.(b)Thestudysite,SWMayotteIsland,betweenMalamanivillageandthelagoon.

(c)Experimentalsetting:decantercollectingdomesticwastewaterfromMalamani;pipenetwork;impactedandcontrolplotsinCeriopstagalandRhizophoramucronata mangrovefacies;piezometernetworkforwateranalyses.

2. Materialsandmethods

2.1. Studyarea

MayotteIslandisadependentFrenchoverseasterritoryinthe Comoro Archipelago, located in the Mozambique Channel, SW IndianOcean(Fig.2).Thelittlevolcanicisland(376km2)issur- roundedbyanalmostcontinuousbarrierreefsystemenclosingone ofthelargestlagoonsintheworld(1500km2).Mangroveswamps aredevelopedattheendsofbaysonaround650ha.Thetiderange ishighforanoceanicisland,reachingupto4minspringtides.

Mayotte’sclimateismaritimetropical,withawarmwetseason fromNovembertoApril(meanseasonalrainfallandtemperature:

1200mmand27.2C,respectively)andacoolerdryseasonfrom MaytoOctober(210mmand25.1C).

ThestudyareaislocatedinChironguiBay,southwestofMayotte (1255S,4509E).Aprimarytreatmentunitsizedfor400-equiv.

inhabitantsdailyreceivesdomesticwastewaterfromMalamanivil- lage.Wastewaterisdecantedandstored,andthencarriedthrough apipenetworktothemangrovearea.Timedeliveryanddischarge volumesareautomaticallycontrolledbyaSOFRELprocessingsys- tem.Wastewater is then deliveredevery secondlow tide onto two mangrove plots respectively dominated by C. tagal and R.

mucronataattherateof10m3per24honeach45m×15mplot.

Athird45m×15mplotconnectedtothepipenetworkautomati- callyreceiveswastewaterinexcess,particularlyintherainyseason whendischargevolumesexceed20m3perday(Fig.2c).

Photosyntheticpigmentconcentration,photosynthesisrateand growthofmangrovetreeswereanalysed12and18monthsafter commencementof wastewater discharges in thetwo impacted

plots,andintwoequivalentcontrolplots.Theaveragecomposition ofthewastewaterisgiveninTable1,andthevegetationstructure ofthefourplotsispresentedinTable2.

2.2. Photosyntheticpigmentanalyses

Matureandhealthyleavesof12randompatchesineachofthe fourplotswerecollectedinJanuary(wetseason)andApril(begin- ningofdryseason)2009andrapidlystoredinacoldplace(cooler boxduringtransport,then−80Cfreezerinlaboratory).Threedisks 18mmindiameterwerecutfromeachleafpatchsample,crushed with50mgFontainebleausand,rinsedwith20mlmethanol,and thenplacedunderultrasoundfor3min.Mixtureswerestoredfor 15minat−20C,andthenspin-dried(5minin−1Ccentrifugeat 3500rpm).Samplesofthesupernatentweretaken(1ml),filtered through0.2mmsyringefilters,andthenanalysedusingHPLC.

2.3. Photosynthesisandtranspirationrates

Thenetphotosyntheticratewasmeasuredonintact,mature C.tagaland R.mucronataleaveswitha portablephotosynthesis system(ADCBioscientificLtdportable),equippedwitha6.25cm2 leafchamber.Wemeasured150and120leaves,respectively,in eachC.tagalandR.mucronata45m×15mplot.Threesuccessive measurementsweremadefor eachsampledleafatintervalsof 25s.Allmeasurementsweremadebetween10:00and13:00h, onsunnydaysandunderthefollowingconditions:photosyntheti- callyactiveradiance:1000–2000mmolm−2s−1,relativehumidity:

65±5%,temperature:30±2C.

(6)

Table1

Nutrientcomposition(mgl−1)ofdomesticwastewaterafterpre-treatmentindecanter.AnalysesrealisedonJuly02,2009,SIEAMLaboratory(Mayotte);April01andOctober 10,2009,ARVAMLaboratory(LaRéunionIsland).

NO3 NO2 NO3+NO2 NH4 PO4

July02,2009 1.40 0.17 1.57 8.40

April01,2009 1.09 0.01 1.10 1.18 5.61

October10,2009 0.01 0.02 0.03 1.95 12.55

2.4. Growthratemeasurements

Leafmeasurements:Ineachcontrolandimpactedplot(C.tagal andR.mucronatastands),90matureandhealthyleaveswereran- domlycollected,andtheirlengthsandwidthsmeasured.Freshand dryweightsweremeasured,andleafareaswerecalculatedusing ImageJsoftwareandleafdigitisation.Leafarea–weightrelation- shipsweredetermined.Measurementsweremade inApriland October2009.

Branchmeasurements:IneachC.tagalplot,60brancheswere measuredon15trees,i.e.fourbranchespertree,distributedinthe upper,middleandlowerpartsofthecontrolandimpactedplots.

IntheR.mucronataplots,39branchesweremeasuredon13trees, i.e.threebranchespertree,distributedthroughoutthecontroland impactedplots.MeasurementsweremadeinAprilandOctober 2009.

Propagulemeasurements:Ineachcontrolandimpactedplot(C.

tagalandR.mucronata),90propaguleswererandomlycollected from9trees,i.e.10propagulespertree,distributedintheupper, middleandlowerpartsofplots.Propagulelengthwasmeasuredin October2009.

2.5. Statisticalanalyses

TheShapirotestwasconductedoneachdataset(pigmentcon- centration, photosynthesis and transpirationrates, growth rate measurements)andshowedthatdatawerenormallydistributed.

Meanvaluesandstandarddeviationwerecalculated.

One-wayANOVA(forp≤0.05andp≤0.01)wasemployedto testthesignificanceofdifferencesbetweencontrolandimpacted plots,betweendatesandbetweenspecies,foreachdatasetexcept propagule lengths, which were analysed using Student’s t-test (p≤0.05).

AllanalyseswereperformedusingthePASTsoftware,version 1.94b(Hammeretal.,2001).

3. Results

3.1. Vegetationstructure

Mangroves onthestudysiteare developedover a lengthof about600mwithaclassicalzonationaccordingtoinundationand salinitygradients,i.e.fromlandwardtoseaward:adegradedHer- itieralittoralisDryand.standattheupperlimitoftidalinfluence, followedbyabarrensaltflator“tanne”surroundedbyoldA.marina

(Forssk.)Vierh.trees, adenseanda lowC.tagal standprogres- sivelymixedwithR.mucronataindividuals,ahighandimportant R.mucronatastandincludingscatteredpatchesofBruguieragym- norhiza(L.)Lam.,andfinallyonthelagoonsideawell-developed SonneratiaalbaJ.Smithzone.

Experimentswereconductedintwomangrovefacies,chosen fortheirrepresentativenessandtheirimportantdevelopmentin mostmangrovestandsinMayotte,namelyC.tagalandR.mucronata facies.StructuresaredescribedinTable2.TheC.tagalfacieswere largelydominatedbytheeponymousspecies,whichrepresented 90%ofthespecificcomposition,with9%forR.mucronataand a fewindividualsofA.marinaintheupperpartofthestandandrare B.gymnorhizainthelowerpart.Totaldensityisveryhighwith 69,500indha−1and62,750indha−1forC.tagal.C.tagalindividu- alsaresmalltreeswith2.2±1.1cmtrunkdiameterand1.7±0.9m inheight.ThesecondfaciesisdominatedbyR.mucronata(79%) withC.tagalindividualsin theupperpart(16%) andpatchesof B.gymnorhiza(5%).Totaldensityislower,with7900indha−1and 6250indha−1forR.mucronata.Themeantrunkdiameterfordom- inantindividualsofR.mucronatais16.1±5.2cmwithaheightof 7.1±2.1m.

Itisimportanttonotethatthevegetationstructurewasanal- ysed successively in November 2006, before the first sewage discharges, and in November 2008, 6 months after discharges began.Nosignificantdifferencewasobservedwithintheperiod.

Wealsonotedthatthevegetationstructurehadnotchangedafter 12and18monthsofdischargeswhenfunctionalanalyseswere made,intermsofdensityormortalityrates.Regenerationseems tobeenhancedinimpactedplotsanddensityofcanopyaswell.

Analysesarecurrentlyunderwaytoquantifytheseprocesses.

3.2. Photosyntheticpigmentconcentration

Table3andFig.3showtheresultsofanalysesofchlorophylla andb,carotene,andxanthophyllpigmentsextractedfromC.tagal andR.mucronataleavessampledincontrol andimpactedplots (January2009,April2009).

Pigmentcontentappearstobesignificantlyhigherinplotshav- ingreceivedwastewaterthanincontrolplots,forallpigmenttypes, forthetwodatesanalysedandforbothC.tagalandR.mucronata stands,exceptforchlorophyllb,forwhichresultsarenotsignificant forR.mucronatainJanuary2009.

Pigment concentration increased around twofold between C. tagal control and impacted stands and for the two dates, i.e. from 1.47 to 2.88mgg−1dw (January 2009) and 1.23 to

Table2

Structuralanalysesofmangroveplots,beforewastewaterdischarge(November2006).

Facies Species Specific dominance(%)

Density (nha−1)

Dbh (<10cm)

Dbh (>10cm)

Height(m) <10cm)

Height(m) >10cm)

Basalarea (m2ha−1)

Deadind.

(nha−1)

C.tagal A.marina 0.7 500 5.8 2.8 2.8 250

B.gymn. 0.3 250 3.2 0.6 0.4 0

C.tagal 90.0 62,750 2.2 1.7 31.1 3500

R.mucr. 9.0 6000 4.8 11.1 2.7 3.5 18.2 250

R. B.gymn. 5.0 350 3.9 21.7 2.2 5.8 0.29 50

mucr. C.tagal 16.0 1300 4.1 2.6 2.04 50

R.mucr. 79.0 6250 6.4 16.1 3.7 7.1 71.5 200

(7)

Table3

Leafpigmentcontent(mgg−1dw)ofC.tagalandR.mucronata,incontrolandimpactedplotsJanuaryandApril2009.

Ceriopstagal Rhizophoramucronata

January2009 April2009 January2009 April2009

Control Impacted Control Impacted Control Impacted Control Impacted

Chlora 1.47±0.59 2.88±0.76** 1.23±0.41 3.28±0.68** 2.08±0.68 2.87±0.68** 3.01±0.67 4.01±0.75 Chlorb 0.43±0.19 0.89±0.26** 0.34±0.12 1.03±0.22* 0.60±0.1 0.88±0.23** 0.9±0.21 1.31±0.29 Chla:b 3.46±0.2 3.25±0.15 3.64±0.15 3.18±0.14 3.46±0.15 3.28±0.15 3.33±0.21 3.09±0.18 b-carotene 0.43±0.16 0.79±0.18** 0.36±0.12 0.87±0.2** 0.58±0.08 0.76±0.2** 0.82±0.20 1.04±0.18 Xanth. 0.07±0.02 0.13±0.03** 0.06±0.02 0.15±0.03** 0.1±0.01 0.14±0.03** 0.14±0.03 0.19±0.03 Significantdifferencesbetweencontrolandimpactedplotswith*p0.05and**p0.01.n=12foreachmodality.

3.28mgg−1dw(April2009)forchlorophylla.Incomparison,the increaseinR.mucronataissignificantbutmoderate,i.e.from2.08 to2.87mgg−1dw(January2009)andfrom3.01to4.01mgg−1dw (April2009)forchlorophylla.

InC.tagalplots,wenotethatdifferencesbetweenthetwocon- trolplotsandbetweenthetwoimpactedplotsarenotsignificant betweenJanuaryandApril,forallpigments.Forinstance,changes werefrom1.47to1.23(controlplots)and2.88to3.28mgg−1dw (impactedplots)forchlorophylla,0.43to0.36(control)and0.79 to0.87(impacted)forb-carotene,and0.07to0.06(control)and 0.13to0.15(impacted)forxanthophylls.Similarcomparisonsfor R.mucronata,however,showsignificantincreasesbetweendates, with2.08–3.01(control)and2.87–4.01(impacted)forchlorophyll a,0.58–0.82(control)and0.76–1.04(impacted)forb-carotene,and 0.1–0.14(control)and0.14–0.19(impacted)forxanthophylls.

3.3. Photosynthesisandtranspirationrates

Table4andFig.4summariseresultsforbothparameters,for measurementsmadeinApril2009(endofwetseason)andOctober 2009(endofdryseason).

Photosynthesis rate appears significantly higher in plots receiving wastewater than in control plots, in April (6.14 vs.

9.86mmolm−2s−1)andOctober(5.82vs.9.53mmolm−2s−1)forC.

tagalplotsandinOctober2009only(8.68vs.10.66mmolm−2s−1) forR.mucronataplots.

Comparisons between species show that the photosynthe- sis rateis significantly higher in R. mucronata than in C.tagal, in both control (12.52 vs. 6.14mmolm−2s−1 in April, 8.68 vs.

5.82mmolm−2s−1 in October,respectively) and impactedplots (12.62vs.9.86and10.66vs.9.53)andforeachofthedatesconsid- ered.Thephotosyntheticratealsoappearsslightlybutsignificantly higherforbothspeciesattheendofthewetseason(April)thanat theendofthedryseason(October).

If we compare transpiration rates between control and impacted plots, measurements indicate significant differences for both species in April with higher values in plots receiving wastewater (3.95vs.2.47mmolm−2s−1 for C.tagal,and 4.1vs.

3.53mmolm−2s−1forR.mucronata,respectively),whilethedif- ferencesarenotsignificantlydifferentinOctober(3.64vs.3.65for C.tagaland3.27vs.3.64forR.mucronata).

3.4. Growthratemeasurements

Resultsforleaf(length,width,weight,surfacearea),branchand propagule(length)measurementsafter12and18months(April 2009andOctober2009)arepresentedinTable5andFig.5.

ExceptforR.mucronatameasurementsinApril,leaflengthand widthandconsequentlyleafareaaresignificantlyhigherforsam- plescollectedinimpactedplotsforbothspeciesanddates,i.e.for leafareas,respectively15.9(controlplots)and37.9cm2(impacted

Fig.3.PigmentconcentrationinCeriopstagalandRhizophoramucronataleaves,collectedincontrolandimpactedplots,Malamanistudysite,JanuaryandApril2009.(a) Chlorophylla.(b)Chlorophyllb.(c)b-Carotene.(d)Xantophyll.Unit:mgg−1dw.

(8)

Table4

Photosynthesisrate(mmolm−2s−1)andtranspirationrate(mmolm−2s−1)inleavesofC.tagal(n:150)andR.mucronata(n:120),incontrolandimpactedplots,Apriland October2009(mean±Sd).

Ceriopstagal Rhizophoramucronata

April2009 October2009 April2009 October2009

Control Impacted Control Impacted Control Impacted Control Impacted

Photosynthesisrate 6.14±1.9 9.86±1.52 5.82±1.3 9.53±1.35 12.5±2.7 12.62±2.39 8.68±4.02 10.66±2.98 Transpirationrate 2.47±0.94 3.95±0.82 3.65±0.89 3.64±0.89 3.53±1.11 4.1±1.18 3.64±1.11 3.27±0.75

plots)forC.tagaland63.2(control)and89.5(impacted)inOctober forR.mucronata.

Theleavesofbothspeciesareslightlyheavier(dryweight)for bothspecies,andleafarea-to-weightratiosaresignificantlyhigher inimpactedconditionsthanincontrolledones.

Concerningbranchlength,allresultsaresignificantwithimpor- tantincreases,i.e.4.68–13.38cmforC.tagaland16.04–20.06cmfor R.mucronatainOctober.Nosignificantseasonalchangeappeared inbranchlengthfromApriltoOctoberforeitherspeciesorplot conditions.

Finally, theimpact ofwastewater supply in mangroveplots significantly increased propagule length in both species, i.e.

16.4–32.1cmforC.tagaland32.1–39.1cmforR.mucronata.

4. Discussion

4.1. Leafpigmentconcentrationinmangrovetreesand wastewatereffects

InnaturalconditionsinMayotteIsland,weestablishedthatpig- mentconcentrationwassignificantlyhigherinR.mucronatathanin C.tagalleaves,particularlyforchlorophylla,thetriggerelementof photochemicalprocesses.Chlorophylla:bratios,consideredtobea significantindexofphotosyntheticfunctioning,exhibitverystable andsimilarvaluesforbothspeciesanddates,correspondingtoval-

uesgivenbyDasetal.(2002)forR.apiculataandB.gymnorhiza,and byBasaketal.(1996)forR.mucronataandC.decandra.Asnotedby theseauthors,carotenoidcontentisverylowintheRhizophoraceae family,asweobservedinMayotteIslandinnaturalconditions.

Thesupplyofwastewatertomangroveplotsenhancespigment concentrationinmangroveleaves,withclearincreasesforchloro- phylls,b-caroteneandxanthophyllsinbothspecies.Whilenodata werefoundintheliteraturedirectlyconcerningtherelationships betweenpigmentconcentrationinmangroveleavesandwastewa- tersupplies,manyauthorshaveconsideredpigmentconcentration inrelationtoenvironmentalfactors.MedinaandFrancisco(1997) establishedthatchlorophyllcontentappearedtobehigherinman- groveleavesofriverinemangrovestandsandlowerinleavesof mangrovesfromdrysites,andaddedthat NandPleafconcen- trationsandleafareasvariedinthesamewaybetweendryand wetsites.Authorsinterpretedsuchresultsasinteractionsbetween salinityand waterstresses, inrelationtonutrient supplies and photosyntheticproductivity.MacFarlaneandBurchett(2001)and MacFarlane(2002)showedlinksbetweenleafchlorophylls(a+b) andcarotenoidcontentofA.marinaandheavymetalconcentra- tioninmangrovesediment.Yeetal.(2003)examiningtheeffects ofwaterloggingongrowthandphysiologicalcharacteristicsofB.

gymnorhiza and Kandelia candel(Rhizophoraceae), showed that chlorophyllandcarotenoidconcentrationsincreasedwhenwater- loggingdurationandintensityincreased.

Fig.4.PhotosynthesisrateandtranspirationratemeasuredonCeriopstagalandRhizophoramucronataleaves,incontrolandimpactedplots,Malamanistudysite,Apriland October2009.Unit:mmolm−2s−1.

(9)

Table5

Shootlength(cm),internodenumberandleafnumberpershootforC.tagalandR.mucronata,incontrolandimpactedplots,AprilandOctober2009(mean±Sd,n=60).

Ceriopstagal Rhizophoramucronata

April October April October

Control Impacted Control Impacted Control Impacted Control Impacted

Shootlength 4.68±2.5 13.38±4.26 5.01±3.44 12.82±1.5 16.04±2.11 20.06±2.63 9.16±6.19 8.88±6.02

Internodesnumber 1.3±0.5 3.3±0.9 2.1±0.7 3.3±0.9 3.7±1.4 2.8±0.5 17.3±1.2 21.2±2.0

Leafnumberpershoot 8.6±5.5 9.6±7.3 5.2±1.3 5.9±1.5 5.3±1.0 4.7±1.7 4.2±1.1

WastewatersupplytoimpactedmangroveplotsinMalamani contributesbothtolowersalinitylevel–freshwaterisaddedto theecosystem–andtoincreasedNandPlevels.Theaveragecom- positionofsewage(Table1)indicatestheamountandthenatureof nitrogenandphosphoruscompoundsdelivereddailytomangrove plots.Moreover,weestablishedthatwastewaterdeliveredtoman- grovesatlowtiderapidlyseepsintosedimentandisprogressively absorbedbyvegetation,andthatNandPcompoundsareatleast partiallyusedbymangrovetrees(Herteman,2010;Hertemanetal., submittedforpublication).Thechangeinthecolourofthevege- tationofimpactedplots(Fig.1)alsoreflectstheseprocessesand correspondstotheincreaseinleafpigmentconcentration.Aspro- posedbytheauthorscitedabove,pigmentconcentrationmaythus beconsideredamarkerofstressconditionsformangrovetrees,or amarkerofchangeinmangrovefunctioning,revealingpollution withheavymetals(MacFarlaneandBurchett,2001;MacFarlane, 2002)oranexcessofnutrient,aswedemonstratedinourMala- maniexperiments.Fromamoregeneralpointofview,studiesof pigmentcontentinhigherplantsasbiomarkersarerare,andessen- tiallyconcernedmicro-algae,wherepigmentcontentis directly linkedtobiomass(Wilhelmetal.,1995).Brainand Cedergreen (2009),inarecentreviewonbiomarkersinaquaticplants,indi- catedadvantagesforconsideringpigmentcontentasabiomarker:

itisaneasy-to-measureandrobustparameterand,furthermore, visualobservation,asinourMalamaniexperiments,maypreclude

thenecessityofmeasuringpigmentcontent.Theseauthorsadded thatchlorophyllsandcarotenoidsweretheprimarylight-capturing pigmentsinhigherplants,absorbinglightenergyforphotosynthe- sis.Nutrientstatus,withlightintensityortemperature,isoneof thefactorsaffectingthecontentofphotosyntheticpigments.At highnutrientavailability,andparticularlywithexcessN,pigment contentincreasesandenhancescarbonfixation.

4.2. Photosyntheticprocesses

Pigment concentration is directly linked to photosynthetic activity,andphotosyntheticratesandpigmentcontent,i.e.chloro- phylla:bratio,havebeenfoundtobecorrelated(Andersonetal., 1988;Dasetal.,2002).

MeasurementsofphotosynthesisrateincontrolplotsinMala- maniclearlyindicatedifferencesbetweenspecies,withthehighest valuesobtainedinR.mucronata,wherethehighestpigmentcon- centrationswerealsofound.Theurietal.(1999)obtainedsimilar resultswithhighervaluesforR.mucronatathanforC.tagalinman- grovestandsinKenya.Nevertheless,theseauthorsgloballyfound lowervaluesinKenyanmangrovesthaninMayotte(around1.5 and1.2mmolm−2s−1 forR.mucronataandC.tagal,respectively) andimportantseasonalvariation,withtwofoldvaluesinthewet season(around4.0and3.0mmolm−2s−1,respectively)whilesea- sonalchangesinMalamaniwerenotsignificant.Transpirationrate

Fig.5.Changesinleafarea(a),branchlength(b)andpropagulelength(c)ofCeriopstagalandRhizophoramucronataincontrolandimpactedplots,Malamanistudysite, AprilandOctober2009.Units:cm2andcm.

(10)

levelsarealsogreaterinMayotte(2.45–3.65mmm−2s−1)thanin Kenyanmangrove(0.78–0.94mmm−2s−1).

Clough et al. (1997) and Clough (1998) found high values of photosynthetic rates for R. apiculata (average rate for the whole canopy:9.0mmolm−2s−1)and different Rhizophoraceae (6.13–12.9mmolm−2s−1),withhighervaluesforRhizophoraspp.

andlowervaluesforC.australis.Theseauthorsaddedthatrates ofphotosynthesismaybesubstantiallylowerinmangrovestands characterisedbyhigheraridityandsalinityconditionswithvalues around4–5mmolm−2s−1.

In the mangrove stands of Malamani, wastewater supplies clearlycontributetoincreasedphotosyntheticratesinimpacted mangroveplots astheyleadtoanincrease inpigmentconcen- trations.Aswenoticedabove,wastewatercontributes tolower salinityrates,enrichesthemangroveecosysteminNandPnutri- ents, and consequently enhances photosynthesis rate. Sobrado (2000)andLietal.(2008)indicatedsimilarrelationshipsbetween salinityconditionsandphotosynthesisprocessesfordifferentman- grovetreesincludingRhizophoraceae,andKaoetal.(2001)showed thatanincreaseinNavailabilityincreasedphotosyntheticratesfor theRhizophoraceaeK.candel.Lietal.(2008)addedthathighlevels ofNaconcentrationinmangrovetreesinhibitedelectrontransport inphotosyntheticprocessesandconsequentlyledtoadecreasein photosyntheticefficiency.

4.3. Mangrovegrowthratesandwastewatersupplies

Increasedmangrovegrowthrates(leafdimensionsandsurface areas,branchlength)observedinimpactedplotsatthestudysite areadirecteffectofenhancementinphotosynthesisrateandof theincreaseinleafpigmentconcentration.Thesupplyoffresh- water andnutrients(Nand P),particularlythroughwastewater discharges,isknowntoinduceanincreaseinmangrovetreegrowth (Cloughetal.,1983)byactingasafertilisersupplyintheecosys- tem(BotoandWellington,1983).Onufetal.(1977)alsoobserved thataRhizophoramangrovestandnaturallyenrichedwithguano fromabirdcolonyexhibitedsignificantenhancementofgrowth.

Clough etal. (1983),analysing alltheseresults, concludedthat

“nutrient enrichmentfromfertilization orfromsewageeffluent isnotlikelytobedeleterioustomangroves,andmaybebenefi- cialwherethenutrientstatusofthemangrovesislow”.Linand Sternberg(1992),andmore recentlyLovelock andFeller(2003) andLovelocketal.(2004),whileanalysingfunctionaldifferences betweenscrubandfringemangroves,establishedthatCO2assimi- lationrateandphotosyntheticefficiencyseemtobelowerinscrub facies,alsocharacterisedbyhighsalinitylevels.Conversely,fertil- isationbyNandPsuppliesmayinducesignificantshootgrowthin dwarfmangrovestands.

Recentpapers,however,haveemphasisedpotentialnegative consequencesofexcessivenutrientenrichmentinmangroves.They established, forinstance, thatexcessive N supplymight induce changes in root-to-shoot ratio (development of shoots at the expenseofroots)andincreasethevulnerabilityofmangrovestands in high-saline environments (Martin et al.,2010), or even lead to the deathof mangrovetrees in high salinity and low rain- fallconditions(Lovelocketal.,2009).Inthislaststudy,nutrient enrichmentseemstohavebeenthrougha single,massivesup- ply annuallyor biannually, i.e.300gof ureaorphosphate into holes cored oneither side ofthe treestems.Notice that these amounts correspond tothetotal amountof N provided toour impacted plots in a wholeyear, but delivereddaily every sec- ondlowtidetoourexperimentalmangrovestands.Thekinetics ofabsorptionandassimilationofnutrientsisthencertainlydif- ferentinthetwocases,andthustheconsequencesonmangrove

treemetabolismwillbedifferentaswell.Whilenonegativeeffect onmangrovevegetationappearedafter18monthsofwastewater suppliesinthemangrovesofMalamani,wewillstillrequirecon- tinuingcontrolexperimentstoassessthelong-termefficiencyof bioremediationthroughmangroveecosystem.Inanotherdomain, Penha-Lopesetal.(2010)indicated,frommesocosmexperiments, thatsewagecontaminationcauseddisturbancestogastropodpop- ulations(Terebraliapalustris)associatedwithmangrovetrees.In theMalamani studysite, preliminaryresultsdidnot showany changeincrabpopulationsimpactedbywastewater(Herteman, 2010),butfurtherexperimentsareplannedtoevaluatepotential effectsoveralongerterm.

5. Conclusions

Thepresentstudyshowedthatdomesticwastewaterdischarges inducedimportantchangesinmangrovevegetation.Inparticular, thewastewater:

•increasedleafpigmentcontentinC.tagalandR.mucronatastands impactedwith12–18monthsofdailysupplies;

•enhancedsignificantlyphotosyntheticactivityandtranspiration rate;and

•inducedsignificantincreasein leafareaand branchlengthof impactedmangrovestands.

Atthesametime,noevidentmodificationappearedingeneral structureorfunctioningofmangrovevegetation.

Ifourresultsseem todemonstratethatpretreated domestic wastewatermayhavebeneficialeffectsonmangrovefunctioning, asurveyoftheliteratureneverthelessshowsthatNandPexcess, broughtthroughdomesticwastewaterorexperimentalsupplies, couldincertainconditionsandoveralongterminducedysfunc- tioninginmangrovevegetation.

Furtherexperimentationandanalysesarenecessarybeforewe canclearly definethepossiblerole of mangroveecosystemsin bioremediationofdomesticwastewater.

SuchexperimentationiscurrentlyinprogressintheMalamani studysite,takingintoaccountthedifferentcompartmentsofthe mangroveecosystemand theirinteractions,i.e. saltyandfresh- waterbodies,sediment, crabpopulationsand thestructure and functioningof themangrovevegetation. While thepreliminary resultsinthispapershowthatwastewateriseffectivelyabsorbed bymangrovetrees andinduces enhancementofmangrovetree functioning,globalNandPbalancesmustbeestablishedforbet- terquantification.Anotheravenueofresearch,alsoinprogress,is toimprovewastewatertreatmentintheprimarytreatmentunit beforeitsdischargeintomangrovestands.

Acknowledgements

Thisworkwaspartofaprogrammeontheroleofthemangrove ecosysteminwastewatertreatmentinMayotteIsland,co-funded bytheWaterSyndicateofMayotte(SIEAM,2006–2010)andthe FrenchNationalResearch Centre(CNRS)through theEcological EngineeringProgramme(2007).

Thefirstauthorisa doctoralresearcherfundedbytheAsso- ciationNationaledelaRechercheTechnique(ANRT)throughthe CIFREGrant250/2006.

References

Anderson,J.M.,Chow,W.S.,Goodchild,D.,1988.Thylakoidmembraneorganization insun/shadeacclimation.Aust.J.PlantPhysiol.1,11–26.

Références

Documents relatifs

Indeed, the analysis of growth parameters showed an increase of all parameter values (DBH, height, basal area, biomass, leaf area, vegetation productivity) in IA compared

Chacune des suspensions de spores des souches CA28, CA30 et CA36 a été ensemencée dans trois erlenmeyers dont deux contenant du bouillon MGA sans rouge phénol pour

In this work, a system for recognizing activities in the home setting that uses a set of small and simple state-change sensors, machine learning algorithms, and

The multi-variate confrontation of all wood types suggests that: (i) species diversity is the biggest source of variation in specific gravity and Young’s modulus (with

To derive an expression for phase lag and amplitude gain of the turbulent fluxes that is in response to incoming radiation forcing and includes physical parameters, we need a model

Whereas human settlement on Mascarene islands occurred only recently during the 17th century, the native insular biota experienced a drastic extinction of the vertebrate fauna mainly

ed with data collected during the monitoring and fur- ther data from the collections of MNHN (Muséum National d’Histoire Naturelle) Paris, CIRAD Réunion (French

Next, we used quantitative polymerase chain reaction (qPCR) to study the prevalence of renal in- fection at the time of sampling in 12 animal species. To our knowledge, this is the