• Aucun résultat trouvé

Existence and Born-Oppenheimer asymptotics of the total scattering cross-section in ion-atom collisions.

N/A
N/A
Protected

Academic year: 2021

Partager "Existence and Born-Oppenheimer asymptotics of the total scattering cross-section in ion-atom collisions."

Copied!
19
0
0

Texte intégral

(1)

HAL Id: hal-03213428

https://hal-cnrs.archives-ouvertes.fr/hal-03213428

Submitted on 30 Apr 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

Existence and Born-Oppenheimer asymptotics of the

total scattering cross-section in ion-atom collisions.

Thierry Jecko, Markus Klein, Xue Ping Wang

To cite this version:

Thierry Jecko, Markus Klein, Xue Ping Wang. Existence and Born-Oppenheimer asymptotics of the

total scattering cross-section in ion-atom collisions.. Long Time Behaviour of Classical and Quantum

Systems: Proceedings of the Bologna Aptex International Conference, Bologna, Italy 13-17 September

1999, 2001, Series on Concrete and Applicable Mathematics, �10.1142/4640�. �hal-03213428�

(2)

S attering Cross-Se tion in Ion-Atom Collisions

Thierry Je ko

Universitede Rennes I

Departement de Mathematiques

F-35042Rennes Cedex, FRANCE e-mail: je komaths.univ-rennes1.fr Markus Klein Universitat Potsdam Institut fur Mathematik D-14469Potsdam, GERMANY e-mail: mkleinmath.uni-potsdam.de

Xue Ping Wang

Universite de Nantes

Departement de Mathematiques

F-44072Nantes Cedex, FRANCE

e-mail: Xue-Ping.Wangmath.univ-nantes.fr

Abstra t

We prove the niteness of the total s attering ross-se tion for ion-atom ollisions withan initial hannelgivenbyasimpleeigenvalueoftheinternal Hamiltoniandes ribingtheneutral luster,i.e. the atom.Undermorerestri tiveassumptions,weshowthatsomee e tiveintera tioninBorn-Oppeheimer approximation ispre isely oforder O(jxj

4

) inthe distan ebetween themass enters oftwo lusters. Wethenextra ttheleadingtermofthes attering ross-se tionintheBorn-Oppenheimerlimit.

I Introdu tion

The s attering pro ess for multi-parti le Coulomb systems with initial two- luster data has been studied in physi s litterature, both experimentally and theoreti ally. In parti ular, in the ollision of a harged luster withaneutralone(ion-atoms attering),itis believedthatiftheneutralsub-systemhasnostati dipolemoment,thetotal ross-se tionwouldbeis nite. In[ES℄,Enss-Simonputforwardasopenquestions to provethe niteness of total ross-se tions in this ase and to give expli it bounds for them. In [CT℄, Combes-Tipsprovedthe nitenessandanalyti ityofforwards atteringamplitudeinele tron-atom s atter-ing. They indi atedte hni aldiÆ ulties to extendtheirresultsto ion-atom ollisionandsuggestedto use Born-Oppenheimerapproximationtostudytheproblem.

Re allthatitiswell-knownintwo-bodys atteringtheory(see,forexample,[Y ℄)thatifthepotentialV onR

3

hasthede ay

jV(x)jC<x> 

; 8x2R 3

with>2,thetotal ross-se tionforthes atteringpro essdes ribedby( , +V(x))is nite, while if V(x) 

C jxj 2

as jxj ! 1 for some C 6= 0, the total ross-se tion is in nite. In the s attering theory for multi-parti le Coulomb systems with initial two- luster data, the inter lusterintera tion between the two lusters de ays like O(jxj

1

)in general ase, likeO(jxj 2

) ifoneof the lusters is neutral( ion-atom s attering)andlikeO(jxj

3

)iftheboth lustersareneutral(atom-atoms attering). Herex2R 3

denotes therelativepositionofthemass- entersofthetwo lusters. SeeAppendixAformorepre isestatementsand the al ulus. Forion-atoms attering, theknownresultsin two-body asesuggestthat withoutadditional assumption, the total ross-se tion would bein nite. Inthis paper, we provethe niteness of total ross-se tions under theassumption that the atom isin thefundamental statewhi h implies, bythe symmetry of Coulomb potentials, that there is no stati dipole moment for the atom. The quantitive study of the total ross-se tionsin ion-atom s atteringis interestingand non-trivial,sin e theleadingtermsin various

(3)

present ase. Inthispaper,weonlystudytheasymptoti sin theBorn-Oppenheimerapproximation,where thesemi lassi alparameter,h,isproportionaltotheratiooftheele toni tonu learmass. Due totheuse of luster oordinateswhi hisneededtodes ribemany-parti les atteringpro esses,thepotentialsbe ome h-dependent. Theperturbationbytheshiftterml(y)=O(h

2

jyj)issingularandthepi tureofeigenvalues of the ele troni HamiltonianP

e

(x;h) de ned below hanges drasti ally from h=0to h 6=0. Our result in Born-Oppenheimerapproximationis basedonthesemi lassi alresolventestimatesof [KMW2℄whi h is establishedintermsoftheweightinx l(y),therelativepositionbetweenthetwonu leus. Wethenusethe adiabati approximationfortotal ross-se tionsandprovethattheeigenvalueoftheele troni Hamiltonian P

e

(x;h) onvergessuÆ ientlyfastasx!1sothat we anextra ttheleadingtermin thelimith!0. Theplan of this paperis as follows. In Se tion II weintrodu e thebasi notationwhi h will be used throughout the paper and we re all a few basi fa ts from N-body s attering theory. We introdu e the hypotheses whi h are relevant for this paper and we state our main results, i.e. Theorem II.2 on the existen e ofthe totals attering ross-se tionand Theorem II.3, whi h givesthe semi lassi alasymptoti s of this ross-se tion. In Se tion III we prove Theorem II.2. The essential point are ertain weighted L

2

estimateswhi hshowthatuponlo alizationinenergyintherelevantspe tralrangethee e tiveintera tion de aysfaster thanO(jxj

2

),whi histheobviousnormestimateonanion-atomintera tion. InSe tionIV, weestablishtherelevantsemi lassi alestimatesonpotentialsandresolvents,using methodsfrom[KMW2℄ and giveasket h ofthe proofof TheoremII.3. InAppendixA wein lude therelevantexpansionsforthe Coulombintera tioninion-atoms atteringwhi hareusedthroughoutthepaper.

II Notation, assumptions and main results

TheHamiltonianofadiatomi mole ulewithN ele trons anbewrittenin theform

P phys = 2 X k =1 1 2m k  x k  + N+2 X j=3 1 2  x j  + Z 1 Z 2 jx 1 x 2 j (II.1) + 2 X k =1 N+2 X j=3 e j Z k jx j x k j + X 2l<jN+2 e l e j jx l x j j wherex k 2R 3

,k=1;2,denotethepositionofthetwonu leiwithmassm k and hargeZ k >0andx j 2R 3 , j =3;:::;N +2,denote the position of N ele tronswithmass 1and hargee

j

2R (in thephysi al ase harges are equal and negative). Plan k's onstant is taken to be 1 in this formula. The result on the existen eoftotal ross-se tionsremainsvalidforanyCoulombsystem.

We are interested in s attering pro esses where the in oming s attering hannel is a two- luster one, whiletheout-goings attering hannel anbearbitrary. Leta=(a

1 ;a 2 )beatwo- lusterde omposition of f1;:::;N+2g, i.e. a partition (a 1 ;a 2

) of the parti le labels f1;:::;N +2g, where j 2 a j

, for j = 1;2. Adaptedtothis lusterde omposition,we hooseso alled lustered atomi oordinates(x;y)2R

3 R 3N : h =  1 2M 1 + 1 2M 2  1=2 ; M k =m k +ja 0 k j;a 0 k =a k nfkg;k=1;2; (II.2) R k = 1 M k  m k x k + X j2a 0 k x j  ;k=1;2; x = R 1 R 2 ; (II.3) y j = x j x k ;j2a 0 k ;k=1;2; (II.4) l(y) = 1 M 1 X j2a 0 1 y j 1 M 2 X j2a 0 2 y j : (II.5) Noti ethatR k

isthe enterofmassofthe lustera k

,fork=1;2,andthatxistherelativepositionofthese entersofmass. These oordinatesarewelladaptedtodes ribetwo- lusters atteringofdiatomi mole ules

(4)

phys bewritteninthissystemof oordinatesas

P = h 2  x +P e (x;h); P e (x;h) = P a (h)+I a (x;h); (II.6)

wherethesub-HamiltonianP a (h)isgivenby P a (h)=P a1 (h)+P a2 (h); (II.7) with P a k (h)= X j2a 0 k  1 2  yj + Z k e j jy j j  1 2m k  X j2a 0 k  yj  2 + X l;j2a 0 k l<j e l e j jy l y j j ;

andtheinter- lusterintera tionI a (x;h) by I a (x;h)= Z 1 Z 2 jx l(y)j + X k 2a 0 1 j2a 0 2 e k e j jy k y j +x l(y)j + X j2a 0 1 Z 2 e j jy j +x l(y)j + X j2a 0 2 Z 1 e j jx l(y) y j j : (II.8) Finally,weset P a (h) = h 2  x +P a (h): (II.9)

P is onsidered asa self-adjoint operator in L 2

(R 3(N+1)

;dxdy ). Note that l(y) = O(h 2

jyj) and that the studyofthedependen e onhofthespe traofP

e

(x;h)iste hni al. Infa t,eventoprovetheterme Z1Z2 jx l(y)j isuniformly(w.r.t. h) 

y

-bounded,theauthorsof[KMW2℄usedthefa tsthatx2R 3 andZ 1 Z 2 >0. Foranarbitrary lusterde omposition =(

1 ;:::; k )off1;:::;N+2g,i.e. 1 [[ k =f1;:::;N+2g and j \ k

=;,forj6=k,we analso hooseadapted oordinates(x ;y ). We allP thesub-Hamiltonian, x 2 R 3 (k 1)

theinter- luster oordinates, y

the intra- luster oordinates, and I (x ;y )the inter- luster intera tion. By D x (resp. D y ) and by  x (resp.  y

), we denote i times the gradient and the Lapla ianintheinter- luster(resp. intra- luster) oordinates. Itiswellknown(seee.g. [DG ℄)that,forthis S hrodingeroperatorP, themodi edwaveoperators

; = s lim t!1 e itP e it x + R t 0 I (sDx ;0)ds+E  J (II.10)

exist for any s attering hannel = ( ;E

;

), where is an arbitrary luster de omposition,  is an eigenfun tion of P with eigenvalueE : P  = E  , and where J

denotes theidenti ation operator, whi hisde nedforanyL

2

-fun tionf ofthevariablex by (J f)(x ;y )=f(x ) (y ): (II.11)

Furthermore,thefamilyof waveoperatorsf ;

;8 gisasymptoti ally omplete. It isequallywellknown (see[Ra℄)that,ifa=(a

1 ;a

2

)isatwo- lusterde ompositionwithoneneutral luster(anatom),saya 1 ,i.e. X j2a 0 1 e j = Z 1 ; (II.12)

then,forany hannel =(a;E

;

)withE

outsidethethresholdsofP a

,one ande nethewaveoperators withoutmodi er,namelyby

0 ; = s lim t!1 e itP e it x a +E  J : (II.13) Inthis ase, ; = 0 ; e i (D xa )

,where isarealfun tion. Thereforetheresultonasymptoti omplete-ness remains trueif we repla e

; by

0 ;

when the latterexists. So wejust set ;

= 0 ;

(5)

to hannelÆ by S =  +; ; ; T Æ = S Æ ; (II.14) whereÆ =1if = and0otherwise.

Let us now de ne the total s attering ross-se tions in many-parti le s attering. Sin e few is known about the s attering amplitudes in many-body s attering theory (see [V℄ for results in this subje t), we de ne thetotals attering ross-se tionsa ordingtothephilosophy of[ES℄. ForE

(h), weintrodu e themagnitudeofthemomentumasso iatedwiththekineti energyoftherelativemotionofthetwo lusters in thes attering hannel via

n (;h):= 1=2 (h);  (h):= E (h): (II.15) Forg2C 1 0 (I ;C), I =℄E (h);+1[,and!2S 2

,we onsiderthewavepa ket

R 3 3x 7! g ! (x) =~g(!x) (II.16) where ~ g()= 1 2 p h Z R e ih 1 n (;h) g() n (;h) 1=2 d:

Thenormalizationis hosensu hthat

kgk L 2 (R) =k~gk L 2 (R) :

DenotingbyCthesetofall hannels,wewanttoapply,forÆ2C,T Æ

tog !

(x)

(y;h). Sin ethisfun tion doesnotbelong toL

2 (R

3(N+1)

)-it de aysrapidlyonly inthe dire tionde ned by ! -weregularizeitby multipli ation witha fun tion h

R;! 2L

1 (R

3

), depending onlyon thevariable x (!x)! transversalto thedire tion! ofthein identwavepa ketg

!

(x),su hthatpointwisely

lim R!1

h R;!

= 1: (II.17)

Forthepurposeofthispaperweshallspe ifythis ut-o fun tion tobeaGaussian,i.e. wetake

h R;! (x)=e (x (!x)!) 2 =R (II.18) De nition. For2I and! 2S 2

, weshallsay thatthe total ross-se tion

(;!)with thein oming hannel existsattheenergywiththein identdire tion!,ifthefollowinglimitis niteandwellde ned:

 (;!) := lim n!1 lim R!1 X Æ2C kT Æ h R;! g n;!  k 2 ; (II.19) whereg n;!

isde ned asin(II.16)withg repla edbyg n : g n ()=n 1=2 h(( )=n) andhisanyC 1 0 (R )-fun ti on normalizedby R R jh()j 2 d=1.

Re allthatin[ES℄and[W℄,thetotal ross-se tionisde ned asdistributionin 2I by Z +1 E (h)  (;!)jg()j 2 d = lim R!1 X Æ2C kT Æ h R;! g !  k 2 ; (II.20) forall g2C 1 0 (I ;C). Sin e jg n ()j 2 onvergesto Æ 

(), theDira measure at, asn!1,thede nitions (II.19)and(II.20) oin ide ifthedistributionde nedin(II.20) anbeidenti edwitha ontinuousfun tion in a neighbourhood of ,whi h is truein the ase whenone knowsto prove theexisten e in the sense of

(6)

oneintwo-body ase,see[ES℄,[RW℄,[W℄,[Je ℄. Forsome hannels ;Æandsomein identdire tion!,total s attering ross-se tionsmaynotexistonanyintervalI(see[W ℄). Usuallyitisrequiredthattheintera tions de ayquite rapidlyto ensuretheirexisten e. Inthepresent situationwith Coulomb intera tions, whi h a prioridonotde aysuÆ ientlyfast,weshallshowtheexisten e,i.e. niteness,of 

onlyforsomespe ial hannel des ribingion-atoms attering,forallin identdire tions!2S

2

. The onditionson are olle ted in thefollowinghypothesis.

Hypothesis 1. Let =(a;E ; )bea hannelwithE 2 dis (P a

)and lusterde ompositiona=(a 1

;a 2

) su hthat ea h luster ontainsanu leusandsu hthat a

1

isneutral(an atom),that is X j2a 0 1 e j +Z 1 =0: (II.21) Assumethat E = E ;1 +E ;2 with E ;j 2 dis (P a j );j =1;2; (II.22) whereP aj

standsfor theinternal Hamiltonianof luster a j

andE ;1

(theeigenvalueofthe neutral luster) isnon-degenerate.

RemarkII.1. Writey=(y 0

;y 00

)for the ele troni oordinates inthe lusters a 1 ;a 2 andput  (y) =  ;1 y 0   ;2 y 00  ; 8y2R 3N ; (II.23) with P aj  ;j = E ;j  ;j :

By the spheri al symmetry of Coulomb potential and the non-degenera y of E ;1

, it an be dedu ed that j ;1 y 0  j=j ;1 y 0  j. Therefore, Z R 3ja 0 1 j y j j ;1 y 0  j 2 dy 0 =0; 8j2a 0 1 : Sin ea 1

isneutral,an elementary al ulus usingthe Taylor expansionof I a iny showsthat <I a (x;h) ; > y =O(jxj 3 ): <;> y

denotes the s alar produ tinL 2

(R 3N y

;dy).

WedenotebyR(z;h)theresolventofP(h)andre allthatitsboundaryvalueR(i0;h):L 2;s

!L 2; s

is well de ned outsidetheset T of thethresholdsand theeigenvaluesof P(h) asanoperator betweenthe weightedL

2

spa es,foranys>1=2.

Our rstmain result on ernstheexisten eof

andgivesausefulformulaforit.

TheoremII.2. Let =(a;E

(h);

(h))be as attering hannelsatisfyingHypothesis 1. Weset

F(z;!;h)= D R(z;h)I a e ;I a e E ; Im z6=0; (II.24) where e (x;y)=e ih 1 n (;h)!x  (y;h):

Let T be the set of thresholds and eigenvalues of P. Then, for any energy  2 I

nT and any in ident dire tion !2S 2 ,the limit F(+i0;!;h)= lim !0+ F(+i;!;h) (II.25)

exists and de nes a ontinuous fun tion in . The total s attering ross-se tion 

(;!) exists for any energy2I

nT andanyin ident dire tion !2S 2

andone hasthe opti al formula

 (;!)= 1 hn (;h)

(7)

Sin eI a

e

doesnotbelongtoL ,forsomes>1=2,thisresultisnottrivial. Itsproof-giveninSe tion III - depends ru ially on the de ay of some appropriate e e tive potentials, ombinedwith phase spa e analysis,i.e. anappropriatelo alizationintherelativekineti energyofthetwo lusters.

NextweareinterestedintheBorn-Oppenheimerapproximation(h!0)of

. Werestri tourselvesto thegroundstateenergyofP

a

and demandsomestabilitypropertyw.r.t. x andh.

Hypothesis 2. Leth 0

>0besmallenough. LetE

(h),satisfyingHypthesis1,bethebottomofthespe trum ofP a (h),0hh 0 . Let 0 >E

(0). From(II.7),weseethat,forsomeÆ>0, 0 Æ>E (h),0<hh 0 . Let 1

(x;h) bethe bottom of the spe trumof P e

(x;h). We assumethat for x inaneighborhoodO 0 of the non- ompa t set fx2R 3 ;  1 (x;0)   0 g;  1

(x;h) isasimpleeigenvalueandistheuniqueeigenvalueofP e

(x;h) thattendstoE

(h)asjxj!1,and the uniqueeigenvalueof P

e

(x;h) that tendsto 1

(x;0) ash!0. Furthermore, wedemand that

 1 (x;h) ! E (h) as jxj !1;uniformlyw.r.t.hh 0 ; (II.27)  1 (x;h) !  1 (x;0) as h !0;uniformlyw.r.t. x2O  0 : (II.28)

Notethat thereexistsÆ 0

>0, su hthat, forh 0

smallenough and0hh 0 , fx2R 3 ;  1 (x;h)   0 +Æ 0 g  O  0 :

Wealso impose thatfor 0hh 0 , inf x2O  0   P e (x;h)  nf 1 (x;h)g  >  0 +2Æ 0 ; (II.29) where(P e

(x;h))denotes the spe trumofP e (x;h). Forx2O 0 ,let e (x;h)beanormalizedeigenfun tionofP e (x;h)asso iatedto 1 (x;h). Asin[KMW2℄, we anextendittoasmooth,normalizedfun tion 

e

(x;h)ofx su hthat,forsomeÆ 1 >0, P e (x;h) e (x;h); e (x;h)   0 +Æ 1 ; (II.30) forall0hh 0

andforallxin some ompa tneighborhoodK ofthe omplementofO 0 ,satisfying K  fx2R 3 ; 1 (x;h) >  0 ;0hh 0 g:

We denote the orthogonal proje tion on the one-dimensional spa e generated by  e (x;h) in L 2 (R 3N y ) by (x;h). It indu esaproje tion(h) onL 2 (R 3(N+1)

). Theorthogonalproje tion 0

(h)onto

(h) (intro-du edin Hypothesis1)alsoindu es aproje tiononL

2 (R

3(N+1)

),whi hwestill denoteby 0

(h). Wethen de netheadiabati operatorasso iatedwiththespe tralproje tion(h) by

P AD

(h):=(h)P(h):

WedenotebyR AD

(z;h)itsresolventandset ^ (h)=1 (h) and ^  0 (h)=1  0 (h). We onsideranenergyrangeJ ℄E

(0);

0 [. Let

t

betheHamiltonian owofthee e tiveHamiltonian fun tion H e (x;)=jj 2 + 1 (x;0) E (0): (II.31)

Anenergy2Risnon-trappingforH e

if,forall(x;)belongingtotheenergysurfa eofH e

ofenergy, thepoint

t

(x;)goestoin nityastand tgoto +1.

Hypothesis 3. Let J an open interval of R su h that J is non-trapping for the e e tive Hamiltonian fun tion H

e

,i.e. isanon-trapping energyfor H e

(8)

Inour ontextweneedsu hahypothesistoobtainasemi lassi alestimateontheresolvent.

Undertheprevioushypotheses,weshallderiveinPropositionIV.1semi lassi alestimatesonR(i0) and R

AD

(i0), for  2 J, using arguments developed in [KMW2℄. Finally we introdu e the e e tive potentialswhi hgoverntheleadingtermsof

. DenotingbyC 2

theele troni hargeofa 2 ,thatis C 2 = X j2a 0 2 e j ; (II.32)

wede nethefun tion

C(^x ;y) = C 2 +Z 2  X l2a 0 1 e l ^ xy l ; (II.33)

where x^=x=jxjandwheredenotes thestandards alarprodu tin R 3

. Physi ally,thisfun tion des ribes the intera tion ofthe dipoles formed by theele trons in luster a

1

with the e e tive hargeof luster a 2 . De ne ^ R a (h)=(P a (h) ^  0 (h) E (h)) 1 ^  0 (h): (II.34)

Thee e tivepotentialinthe ontextoftheBorn-Oppenheimerapproximationisgivenby

I e (x):= 1 (x;0) E (0): (II.35)

While the intuitive e e tiveterm < I a (x;0) (0); a (0) > y

may de ay exponentially, weshall provethat I

e

(x) isexa tlyoftheorderO(jxj 4

). Infa t,weprovein LemmaIV.2that

jI e (x) ^ I e (x)j=O(jxj 5 ); asjxj!1 (II.36) where ^ I e (x):= 2 ^ R a (0) ^  0 (0)C(^x ;y) (0); ^  0 (0)C(^x ;y) (0) L 2 (R 3N y ) jxj 4 ; (II.37) iseverywherenegativeifC 2 +Z 2

6=0. Itisessentiallythisfa twhi hallowstoextra t theleadingorderof thetotals attering ross-se tioninequation(II.39)below. Nowwe anstateourse ondmainresult,whi h givesthesemi lassi alasymptoti sof

.

TheoremII.3. Let =(a;E

(h);

(h))beas attering hannelsatisfyingHypothesis1andHypothesis2. LetJ beareal interval satisfyingHypothesis 3. Then wehave

 (;!) = O h 2=3  ; (II.38)

lo ally uniformly w.r.t.  2 J and ! 2 S 2 . We set n (;0) = ( E (0)) 1=2 and we denote by H ! the hyperplane orthogonal to!. Thenthereexistssome

0

>0su hthat,for either hoi e ofe e tivepotential, i.e. for I=I e andI= ^ I e ,wehave  (;!) = 4 Z H! sin 2  1 4hn (;0) Z R I(u+s!)ds  du + O h 2=3+0  ; (II.39)

lo ally uniformlyw.r.t. 2J and !2S 2

. If a 2

isnot neutral (i.e. the ele troni harge C 2 of a 2 satis es C 2 6= Z 2

),the leadingterm (II.39) withI= ^ I e isexa tly of orderh 2=3 andthusis .

Theorem II.3 shows that the Born-Oppenheimer approximation orre tly des ribesthe asymptoti s of thetotals attering ross-se tionin thesituation onsideredinthis paper,asexpe tedin [CT℄.

(9)

In thisse tion weshallprove theexisten eof thetotal s attering ross-se tionasstated in Theorem II.2. Theparameterhplaysnoroleinthisse tionandwillbesetto1. Weshallassumethroughoutthisse tion thattheinitial hannel isasso iatedtoatwo- lusterde ompositiona=(a

1 ;a 2 )witha 1 aneutral luster, that is,(II.21)holds fora

1

. Asa rststep,weestablishthefollowingrepresentationformula. Here weuse thefun tionu R;! =g ! h R;! ,whereg ! ;h R;!

arede ned in(II.16)and(II.18).

LemmaIII.1. Forg2C 1 0 (I ;C), I :=℄E ;+1[,one has X 2C kT u R;!  k 2 = 4 Z I ImhR (+i0)I a  u R;! ();I a  u R;! ()id (III.1) where u R;! (;x)= R 8  n ()   3=2 Z S 2 + e in ()x R 4  ( 2 2 + 2 3 ) p  1 g(  2 1 +E )d; (III.2) where  1 =!; the omponents  2 ; 3

denote the dire tionsorthogonal to! 2S 2

and S 2 +

denotes the half sphere

1

>0;2S 2

.

Theproof isthesameasin [RW,W℄ andisomittedhere. Remarkthat theasymptoti ompletenessof waveoperatorsplaysanessentialrolein theproof.

Writing 0 =( 2 ; 3 ),setting B ;R =f 0 2R 2 ;j 0 jR (1 )=2 gandusingd=(1  0 2 ) 1=2 d 0 onS 2 + , wenotethat equation(III.2)implies

u R;! (;x)= R 8  n ()   3=2 Z B ;R e in ()(x 1 p 1  02 +x 0  0 ) e R 4   02 (1  0 2 ) 1=4 g(   0 2 )d 0 +O  (jR  j 1 ); (III.3) uniformlyinx2R 3 . Forj 0 jR (1 )=2

we hangevariablesvia = p

R 0

and, onsideringseparatelythe regionsjxj>R

=2

andjxj<R =2

,weobservethat, forsuÆ ientlysmall,

hxi  je in ()(x 1 p 1  2 =R+  p R x 0 ) e in ()x1 jCn ()(1+ 2 )R =2 :

Taylorexpansionoftheintegrandinequation(III.3) ombinedwiththeevaluationoftheGaussianintegral Z R 2 e R 4   02 d 0 = 4 R  gives

LemmaIII.2. Forany >0;N 2N thereexistsC>0su hthat

ju R;! (x;) 1 2  1 n ()  1=2 g()e in ()x! jChxi  R =2 jn ()j N (III.4) uniformlyin x2R 3 ;R1andn () >0:

WeshallnowderiveTheorem II.2asaneasy onsequen eof

TheoremIII.3. Let2C 1 0

(R) beequalto1on[ Æ=2;Æ=2℄with supp( Æ;Æ):AssumingHypothesis 1, thereexistsÆ>0su hthatfor any 2I

nT andfor u;v2L 1 (R 3 x )with (  x  )u=u; (  x  )v=v (III.5) one has jhR (+i)I a  u;I a  vijC s jjhxi s ujj L 1jjhxi s vjj L 1 (III.6)

(10)

s hR (+i0)I a  u;I a  vi:= lim !0+ hR (+i)I a  u;I a  vi (III.7)

existsandde nes a ontinuousfun tion of inI

nT.

Proof of TheoremII.2: Itiswellknownthatthemap

(I nT)37!h(x;y)i s R (+i0)h(x;y)i s

is ontinuousforanys>1=2:FromTheoremIII.3, weseethatthefun tion

F(+i0;!):=hR (+i0)I a  e in ()x! ;I a  e in ()x! i (III.8)

is wellde ned and ontinuous for 2I

nT: Letu R;!

() bethe fun tion de ned in Lemma III.1. Then u R;! ()ande in ()x! areL 1

fun tions satisfyingthe ondition(III.5)in TheoremIII.3. Therefore, om-biningLemmaIII.2withthede nition off

andu

R;!

(),we ndthat forsome0<s<1=2

hR (+i0)I a  u R;! ();I a  u R;! ()i jg()j 2 4n () F(;!)  C hxi s  u R;! () g() 2(n ()) 1=2 e in ()x!  L 1  C M R s=2 jn ()j M ; (III.9) forallM;jn

()j >0. Thisestimateprovesthatforanyg2C 1 0 (I nT);thelimit lim R!1 X 2C kT h R;! g !  k 2

existsandis equalto

Z Im F(+i0;!) jg()j 2 n () d Nowwerepla eg byg n

intheaboveformulaandtakethelimitn!1. Sin eF(+i0;!)is ontinuousin 2I

nT,weobtainfromthede nitionoftotal rossse tionthat (;!)existsand  (;!)= 1 n ()

ImF(+i0;!) (III.10)

for2I

nT and!2S 2

.

Theremainingpartofthisse tionisdevotedtoprovingTheoremIII.3. Thisisdividedintoseveralsteps whi hshallbestatedasdistin tLemmata. HereweareinspiredbytheweightedL

2

estimatesandthephase spa ede ompositionin [CT℄. LemmaIII.4. If u2L 1 (R 3 x )satis es(  x 

)u=u,with asin Theorem III.3,then

( 1 (  x  ))I a  u2L 2;s (R 3(N+1) )

for any s<3=2and

jj(1 (  x  ))I a  ujj L 2;s (R 3(N+1) ) C s;s 0 jjhxi s 0 ujj L 1 (III.11) for any s;s 0 withs+s 0 <3=2.

(11)

(x;y). We hoosea ut-o fun tion~2C 1 0

(R 3(N+1)

)with0~1,whi h isequalto1in asmall oni neighborhoodof andvanishesoutsideaslightlybigger oni neighborhood. Then

~ I a  u2L 2;s (R 3(N+1) ) and (1 (  x  ))I~ a  u2L 2;s (R 3(N+1) ); 8s>0

Onthesupportof1 ;~ theintera tionpotentialI a

issmooth,andsin ethe lustera 1 isneutral,wehave for ~ I a =(1 )I~ a ~ I a (x;y) =O(jxj 2 );  x ~ I a (x;y) =O(jxj 3 ) in L 2;s (R 3N y ); 8s>0: Nextwerewrite ( 1 (  x  ))( ~ I a  u)= [(  x  ); ~ I a ℄( u)

Thekernelofthe ommutator [(  x  ); ~ I a ℄isgivenby K(x;x 0 ) = 1 (2) 3 Z  ~ I a (x;y) ~ I a (x 0 ;y)  e i(x x 0 ) ( 2  )d = i (2) 3 Z e ih 1 (x x 0 ) Z 1 0  2 x ~ I a  (x 0 +t(x x 0 );y)dt 0 ( 2  )d (III.12)

An easyanalysis showsthat

[(  x  ); ~ I a ℄( u)=O(jxj 3 ) in L 2;s (R 3N y );8s>0:

This implies the rst statement of the Lemma. The asserted norm estimate (III.11) is evident from the aboveproof.

LemmaIII.5. Let beanormalizedeigenfun tionofP a :P a  =E  b witheigenvalueE E :Then hI a  ; i y 2L 2;s (R 3 x ) 8s<1=2; (III.13)

andin the aseE

=E

we havethe improvedestimate

hI a  ; i y 2L 2;s (R 3 x ) 8s<3=2: (III.14)

Proof: Weusean expli it omputation to he kthe aseE

=E

: Inthis ase,Hypothesis 1implies that  (y)= ;1 (y 1 ) ;2 (y 2 ) where P a2  ;2 =E ;2  ;2 ; jj ;2 jj=1 Setting x^= x jxj

,wehavemodulo aterminL 2;s

(R 3 x

);foranys<3=2andforjxj>1;

hI a  ; i y = 1 jxj 2 ((C 1 +Z 1 ) 2; (^x) (C 2 +Z 2 ) 1; (^x )) (III.15) where C j = X k 2a 0 j e k ; j=1;2 and  j; (^x ) = X k 2a 0 j e k Z ^ xy k  (y) (y)dy = X k 2a 0 j e k Z ^ xy k j ;1 (y 1 )j 2  ;2 (y 2 ) ;2 (y 2 )dy; y=(y 1 ;y 2 )

(12)

Sin eC 1

= Z 1

,onehas,moduloaterminL (R x );foranys<3=2, hI a  ; i y = 1 jxj 2 (C 2 +Z 2 ) 1; (^x )

UsingHypothesis1(seetheremarkfollowingit),wesee that

y 0 7! X k 2a 0 1 e k ^ xy k j ;1 (y 0 )j 2 is anoddfun tion of y 0 , where y 0 =(y k ;k2a 0 1

). Thus itsintegralvanishes and 1;

(^x ) =0; 8x;^ whi h proves(III.14). Theproofof(III.13) issimilar.

Weshall now lo alizein energy usingthe spe tral proje tionsfor P a . Weset 2Æ :=dist (E ;(P a )n fE g)>0and denoteby 1

thespe tralproje tionof P a asso iatedwithE and by 2 ; 3 the spe tral proje tionsasso iatedwiththeintervals℄ 1;E

[and℄E

;1[. Theproje tions j

areregardedasoperators in L

2 (R

3(N+1)

):Itisthenpossibleto estimateontherangeofthespe tralproje tions 2 ; 3 theresolvent R a (z)=(P a z) 1 oftheHamiltonianP a

des ribing thefreemotionof the lusters,whi hwasde ned in (II.9). One nds

LemmaIII.6. Let  2 C 1 0 (℄ Æ;Æ[) and u 2 L 1 (R 3 x ): For j = 2;3, R a () j (  x  a ) are bounded operatorsandwehave theweightedestimate

jjhyi s hxi s 0 R a () j (  x  a )(I a  u)jjCjjhxi s 00 ujj L 1

for alls>0andfor alls 0 ;s 00 satisfying s 0 +s 0 0 <1=2: Proof: Setting =I a  a u,wehave 2 = P E <E h ; i L 2 (R 3N y )  ;wheref gisanorthonormalset ofeigenfun tionsofP a witheigenvalueE <E . Byde nitionofÆ,ifj 2  j<Æ;then  2 +E = 2  +E E

isinvertible. Thus,using thesupportpropertiesof, thefun tiong (;)=( 2  )( 2 +E ) 1 is boundedandsmooth,forE

asabove. Furthermore R a ()(  x  ) 2 = X E <E g (D x ;)h ; i L 2 (R 3N y )  : (III.16) Using de ayof 

in thevariable y one anapply Lemma III.5 withs=s 0

+s 00

<1=2to gettheasserted estimateforj=2:Forj =3,wehaveP

a 3 := 3 P a  3 (E +2Æ) 3

:ApplyingtheFouriertransformation withrespe tto thex-variable, weseeasabovethat

R a ()(  x  ) 3 =(P a 3  x ) 1 (  x  ) 3 (III.17)

iswellde nedasaboundedoperatoronL 2

(R 3(N+1)

):Applyingthemethodof ommutators,one anverify byindu tionthat hyi s hxi s 0 (P a 3  x ) 1 (  x  ) 3 hyi s hxi s 0 L(L 2 ) C foranys;s 0

2R: Grantedthis,theestimateforj=3followsfrom thefollowingweightedestimateon hyi s hxi s 0 I a  u Ckuk L 1; foranys>0;s 0

<1=2;whi hisan easy onsequen eofde ayof

in y and fall-o proportionalto jxj 2 ofkI a  k y .

(13)

a into4pie esvia

= 3 X j=0 j ; 0 =(1 (D 2 x  )) ; j = j (  x  ) ; j=1;2;3: (III.18) Similarly,forv2L 1 (R 3 x

), withu;vsatisfyingequation(III.5),wede ompose:=I a  v:= P 3 j=0  j :This gives hR (+i) ;i= 3 X j;k =0 hR (+i) j ; k i: (III.19)

Forj =0;1; we get from Lemma III.4 and III.5 that j ; j 2 L 2;s (R 3(N+1)

); 8s < 3=2: This gives for j;k=0;1,usingtheweightedestimatefortheresolvent,

jhR (+i) j ; k ij  Ckh(x;y)i s j kkh(x;y)i s  k k  C 1 khxi s 0 uk L 1 khxi s 0 vk L 1; (III.20) foranys>1=2; 0<s 0

<3=2 s:Thisestimateandthosebelowarealluniformin2[ 1;0[[℄0;1℄. Inthe asej=0;1,butk=2;3,wede omposefurtherusingtheresolventequation

R (+i)=R a (+i) R a (+i)I a R (+i): Thisgives jhR (+i) j ; k ij  C khxi s j kkhxi s R a ( i) k k+kh(x;y)i s j kkhxi 1+s R a ( i) k k   C 1 khxi s 0 uk L 1 khxi s 0 vk L 1 ; (III.21) foranys>1=2; 0<s 0

<3=2 s. HerewehaveusedtheweightedestimateontheresolventR (i)and on

j

;for j =0;1,- as explainedafter equation (III.19) -to estimate the ontribution of j

and wehave used Lemma III.6to estimate the ontribution of 

k

. Inter hangingj;k weobtainthesameestimates for theother rosstermsj =2;3andk=0;1.

Finally,to treatthe asej;k=2;3,weiterate theresolventequationon emore:

R (+i)=R a (+i) R a (+i)I a R a (+i)+R a (+i)I a R (+i)I a R a (+i): (III.22)

The rst2termsontherhsofthis equationareeasily handledbyLemmaIII.6andgive

jhR a (+i) j ; k ij  Ckhxi s 0 uk L 1 khxi s 0 vk L 1; 8s 0 <1=2 jhR a (+i)I a R a (+i) j ; k ij  Ckhxi s 0 uk L 1 khxi s 0 vk L 1; 8s 0 <1: (III.23)

ForthethirdtermontherhsofequationIII.22weobtain,againviaLemma III.6,

j hR a (+i)I a R (+i)I a R a (+i) j ; k ij  Ckhxi 1+s R a (+i) j kkhxi 1+s R a ( i) k k  Ckhxi s 0 uk L 1khxi s 0 vk L 1 ; (III.24) foranys>1=2; 0<s 0

<3=2 s:Choosingsarbitrarily loseto1=2andaddingequations(III.20),(III.21), (III.23) and (III.24) provesthe uniform boundedness in Theorem III.3. Tosee theexisten e of the weak limit,weusethesamede ompositions. The desiredresultfollowsfromLemma III.5,Lemma III.6 andthe existen eoftheboudaryvaluesR (i0)asoperatorfrom L

2;s toL

2; s

(14)

Thisse tionisdevotedtoasket hoftheproofofTheoremII.3. Withinthisse tion,weshallalwaysassume Hypotheses1,2and3andwereinserttheparameterhwhi hisde nedin (II.2).

Tostudy 

givenby(II.26),weneed variousapproximationsand estimatesfor theboundary valueof theresolventandforthefun tion I

a e

,whi hare olle tedin thefollowing

PropositionIV.1. Let be the h-dependent setof all possible ollisions (de nedin A.5) and let be an h-dependentsmooth fun tion on R

3(N+1)

,equal toone on some oni neighborhoodof ,andequal to zero onsome bigger oni neighborhood. Forany s0,wehave, uniformly w.r.t. h,

I a  2 L 2 s R 3(N+1)  ; (IV.1) k(1 )I a  k y = O hxi 2  ; (IV.2) wherekk y

denotes thenormon L 2 (R 3N y ). Forjxj>1, uniformlyw.r.t. h, k(x;h)I a (x;;h) k y = O jxj 4  ; (IV.3) I e (x) :=  1 (x;0) E (0) = O jxj 4  ; (IV.4) k(x;h) I a (x;;h) I e (x)   k y = O h 2 jxj 4  +O jxj 5  ; (IV.5) k(x;h) I a (x;;h) ^ I e (x)   k y = O h 2 jxj 4  +O jxj 5  ; (IV.6)

Furthermore, the smooth fun tion R 3

nf0g3x7!(x;h) has the following properties. Thereexists >0 su hthat,uniformlyw.r.t. x andh,

X j j2 hxi 4+j j e hyi (x;h) x (x;h)  0 (h)   0 (h) L(L 2 (R 3N y )) = O(1): (IV.7)

Notethat (IV.7) remainstrue ifthe rstproje tor (x;h) isrepla edby  0

(h). The resolvents satisfy,for alls>1=2andlo ally uniformlyfor 2J,

hx l(y)i s R(i0)hx l(y)i s + hxi s R AD (i0;h)hxi s = O(h 1 ); (IV.8) hx l(y)i s R(i0;h) ^  = O(1); (IV.9) hxi s  R(i0) R AD (i0;h)  hxi s = O(1): (IV.10) uniformlyin h2℄0;h 0 ℄.

Proof: (IV.1)followsfromtheexponentialde ayoftheeigenfun tions

(h),whi hisuniformw.r.t. h. A ordingto AppendixA,equation(IV.2)holdsforjxj>1anduniformly w.r.t. h,and

 0 (h)+ 0 (0)  I a (x;h)+I a (x;0)   0 (h)+ 0 (0)  y = A(^x ;h) jxj 5 +O jxj 6  ; (IV.11)

where x^=x=jxjandA(^x ;h)is uniformlybounded ash!0. Furthermore,theoperator hxi 2 I a (x;h) 0 (h) isuniformlybounded. Usingthisfa t,we anshow,asin[KMW2℄, that

X j j2 hxi 2+j j e hyi  x (x;h)  0 (h)  y = O(1): (IV.12)

Using(IV.12) and(IV.11),weobtain

(x;h)I a (x;h) 0 (h) = (x;h)  0 (h)  I a (x;h) 0 (h) + 0 (h)I a (x;h) 0 (h) = O jxj 4  : (IV.13)

Next,weshowthat

 1 (x;h) E (h) = ^ I e (x) + O h 2 jxj 4  +O jxj 5  : (IV.14)

(15)

k(x;h) (h)k 2 y = 1+O jxj 2  :

Thus, a ording to (IV.11), for jxjlarge enough and writingh;i y

for the s alarprodu t in L 2 (R 3 N y ), we have  1 (x;h) E (h) = (x;h) (h);I a (x;h)(x;h) (h) y =k(x;h) (h)k 2 y = (x;h) (h);I a (x;h)(x;h) (h) y +O jxj 6  = 2< (x;h)  0 (h)   (h);I a (x;h)(x;h) (h) y +O jxj 5  = 2< (x;h)  0 (h)   (h);I a (x;h) (h) y + O jxj 5  (IV.15)

Next,weusethefollowinglemma,whi h willbeprovedafterthepresentproof.

LemmaIV.2. Setting ^ R a (z;h) = (P a (h) ^  0 (h) z) 1 ^  0 (h) and ^ R a (h) = ^ R a (E (h);h) (as in equation (II.34)), wehave, for jxjlargeenough anduniformlyw.r.t. h,

2< (x;h)  0 (h)   (h);I a (x;h) (h) y = 2 ^ R a (h) ^  0 (h)C(^x;y) (h); ^  0 (h)C(^x;y) (h) y jxj 4 +O jxj 5  : (IV.16)

In parti ular, thetwoformsof the e e tive potential satisfyequation (II.36),i.e.

jI e (x) ^ I e (x)j=O(jxj 5 ); asjxj!1:

Furthermore, the rstterm onthe rhsof (IV.16)isnegative, forall x6=0, ifthe lustera 2

isnot neutral.

UsingLemmaIV.2,weobtain(IV.14). ByaTaylorexpansionw.r.t. handusingthepreviousestimates,

(x;h)I a (x;h) 0 (h) = (x;h)I a (x;0) 0 (h) +O hjxj 6  = (x;0)I a (x;0) 0 (0) +O h 2 jxj 5  +O jxj 6  = (x;0) (x;0) E (0)   0 (0) + O h 2 jxj 5  +O jxj 6  = (x;h) (x;0) E (0)   0 (h) +O h 2 jxj 5  + O jxj 6  :

Wethenhaveproved(IV.5). Using(IV.15),wederive(IV.6)from(IV.5).

Finally, wefollowthe argumentsin [KMW2℄ to derive(IV.7)from (IV.13). Stillfollowing[KMW2℄,we obtainresolventestimateswiththeweighthx l(y)i. Asalreadyremarkedin[KMW2℄,hxi

s

(x)hx l(y)i s

is uniformly bounded. Thus we may repla ethis weightbyhxi if is present. Wedo thisfor these ond termin(IV.8)andin (IV.10).

Proof of LemmaIV.2: Equation(II.36) simplyfollowsfrom(IV.15) and(IV.16),for h=0. Toprove (IV.16),wewritetheproje tionsas ontourintegrals. Let a omplex ontouren losingE

(h)and 1

(x;h) forhsuÆ ientlysmallandjxjsuÆ ientlylarge. Forbrevity,weshallnownotationallysuppressthe depen-den eonh. Werewritethelhsofequation(IV.16) as

lhs(IV.16) = 2< D (P e (x) z) (P a  z)   ; 1 2i I (P e (x) z) 1 (P a (x) z) 1  dz E y = 2< 1 2i I dz  (E z) (P e (x) z) 1  ; y +(E z) 1 I a (x) ;  y  = 2< 1 2i I dz(E z) (P e (x) z) 1  ;  y + O jxj 5  ; (IV.17)

by (IV.11). So weneed to ompute  0 R e (z) 0 , where R e (z) = (P e (x) z) 1

. To this end, we use the resolventequation R e (z)=R a (z) R a (z)I a R a (z)+R a (z)I a (z)R e (z)I a R a (z) (IV.18)

(16)

 0 R e (z) 0 =R a (z) 0 +R a (z) 0 I a ^  0 R e (z) ^  0 I a  0 R a (z)+O(jxj 5 ) (IV.19)

Inserting theseestimates into (IV.17) andusing Appendix C and(IV.11) again, wearriveat (IV.16) with ^ R a (h)repla edby ^  0 R e (E (h)) ^  0 . But k ^  0 ( R e (E ) R a (E )) ^  0 C(^x ;y) k y =O(jxj 2 ); (IV.20)

uniformly w.r.t. h. This follows from aNeumann expansion of R e

(z), exponentialde ay of 

, uniform boundednessoftheweightedredu edresolventhyi

M ^ R a hyi M

,foranyM0, ombinedwithkI a hyi M k y = O(jxj 2

):Thisprovesequation(IV.20) andthus (IV.16). Sin e ^ R a (E

(h))  b > 0, uniformly w.r.t. h, the rst term on the rhs of (IV.16) is bounded above by bk ^  0 C(^x ;y) (h)k 2 =jxj 4 . Sin e k 0 C(^x ;) (h)k 2 y =0

bytherotationalinvarian eof ;1

(seeAppendix A),wehave

k ^  0 C(^x ;y) (h)k 2 y =kC(^x;y) (h)k 2 y > 0: (IV.21)

Re allfrom(II.26)that

 (;!;h) = h 1 n (;h) Im R(+i0;h)I a e ; I a e :

Inviewoftheadiabati approximationoftheresolvent,weintrodu e

 ad (;!;h):= h 1 n (;h) Im R AD (+i0;h)I a e ; I a e : (IV.22)  ad

isalmostthetotal ross-se tionforthes atteringpro essofthepairofoperators(P AD (h);(h)( h 2  x + E

(h))(h)),asshownin[Je ℄. It thusshould beagoodapproximationfor

. Indeed,we laimthat

PropositionIV.3. Forall >0small enough,there existssomeC >

0su hthat, for allh>0suÆ iently smallandlo allyuniformly in(;!)2JS

2 ,  (;!;h)= ad (;!;h)+O(h 2=3+(1=2 ) ): (IV.23)

WiththeestimatesgiveninPropositionIV.1, theproofofPropositionIV.3followsthesamearguments asin[Je ℄.

Theadiabati operatorP AD (h)isequalto(h)( h 2  x + 1 (x;h))(h) in O 0

whi hlookslikea two-body S hrodinger operator with operator-valued potential. We an use themethods of [RT℄ and [Je ℄ to provethat  ad (;!;h)=O(h 2=3 ) andthat  ad (;!;h) = 4 Z H! sin 2  1 4n (;0)h Z +1 1 I e (x ! +u!)du  dx ! + O h 2=3+ 0  ; (IV.24)

whi h,a ordingtoPropositionIV.3,gives(II.39)forI=I e

. Sin ethepotential ^ I e

hasthesameproperties asI e and ^ I e I e =O(jxj 5

)(seePropositionIV.1),we anshowthat(IV.24)stillholdswithI e repla ed by ^ I e

. Wethus obtaintheformula(IV.24)with ^ I e

, whi his(II.39)forI= ^ I e

. NowweassumethatC

2 +Z 2 6=0. Toshowthat ad (andthus )isexa tlyoforderh 2=3 ,weestimate asin[Je ℄ theintegralin (II.39) forI=

^ I e . Re allthat ^ I e

(x)is oftheformA(^x ;0)jxj 4

(17)

2 2 asin[Y ℄that,forsomeh-independent onstantb6=0,

4 Z H! sin 2  1 4n (;0)h Z +1 1 ^ I e (x ! +u!)du  dx ! =bh 2=3 Z S 1 ! (!;) 2=3 d; (IV.25) whereS 1 !

istheunit spherein H !

andwhereisgivenby

(!;)= Z  0 ^ I e

( os!+sin)sin 2

d (IV.26)

for  2S 1 !

. ByLemma IV.2 we knowthat theintegrand -and thus -is negativeeverywhere. Thus the rhsof(IV.25) isexa tlyoforderh

2=3 .

A Expansion of the potentials

Inthisse tionwe olle ttherelevantexpansionsoftheCoulombintera tionsforatom-ions attering,whi h involvethee e tivedipolemomentsandquadrupolemomentsofthetwo lustersa

1 ;a

2

. Theyare ertainly wellknowninthephysi sliterature. Forthesakeofthereader,westatethem as

LemmaA.1. Let =(a;E

(h);

(h)) beas attering hannelsatisfying Hypothesis1. Then

kI a (x;h) (h)k y = O(hxi 2 ); (A.1)  I a C(^x ;) jxj 2   (h) y = O(hxi 3 ); C(^x ;y)= C 2 +Z 2  X l2a 0 1 e l ^ xy l ; (A.2) h  (h);I a (x;h) (h)i y = O(hxi 3 ); (A.3) uniformly w.r.t. h, for 0hh 0

. Assumingin addition that satis es Hypothesis 2, we even have the strongerestimate h (h);I a (x;h) (h)i y =O(hxi 5 ); (A.4) uniformlyw.r.t. h, for 0hh 0 .

Proof: Be ause of the Coulomb singularities, weseparate the ontribution of ollisions. Let be the (h-dependent)set ofallpossible ollisions,thatis

:=  (x;y)2R 3(N+1) ; 9l2a 0 1 ;9j2a 0 2 ; x= y l +l(y) or x=y j y l +l(y) or x=l(y) or x=y j +l(y)  : (A.5) Let2C 1 (R 3(N+1)

)su hthat 01,equals 1on asmall oni neighborhoodof ,and equals0 outsideaslightlybigger oni neighborhood. Wealsodemandthatiseveniny. Thankstotheexponential de ay(uniformlyw.r.t. h) oftheeigenfun tions

(h), wehave k(x;y;h)hyi L I a (x;h) (h)k y =O(hxi M ); 8L;M2N: (A.6)

Thus,weonlyhaveto estimatethe ontributionoftheregularpart

I reg ():=h (h); ~ I a (x;h) (h)i y ; ~ I a (x;h):=(1 (x;y;h))I a (x;h): (A.7)

A ordingto (II.8),wewanttoexpandtermsoftheform

jx+ ~ l (y)j 1 = jxj 1  ^ x+ ~ l(y)=jxj 1

(18)

for largejxj. To thisend, we useaTaylorexpansionat zeroof thefun tion f :R 3r 7! ju+rvj for non-zero ve torsu;v 2 R

3

. More pre isely, one obtainsby Taylor expansion, that for ea h r 2 R, there existssome2℄0;1[su hthat

f(r) = 3 X k =0 r k k! f (k ) (0)+ r 4 4! f (k ) (r) (A.8)

Weobservethatthe rstorderterm(the terminjxj 1 )oftheexpansionofI reg ()vanishesbyneutralityof a 1

( f. (II.21)). These ondordertermisgivenby

 (h);C(^x ;) (h) y  jxj 2 ; C(^x ;y)=(C 2 +Z 2 ) X l2a 0 1 e l ^ xy l ; (A.9) where C 2 = P l2a 0 2 e l

is theele troni hargeof a 2

and where wehaveused anestimate similarto(A.6)to get k(x;y;h) (h)C(^x ;) (h)k y =O(hxi M ); 8M 2N:

Bythe re exion symmetry, wesee that the se ond order termalso vanishes. Therest of the expansionis seentobeO(jxj

3

),uniformlyw.r.t. h. Inviewofequation(A.6),thisproves(A.2)and(A.3). Theproofof (A.1) issimilarandinvolvesanon-vanishingtermofse ondorder. Nextweshallprovetheestimate(A.4). It ru ially depends on thefull rotational symmetryof thewavefun tion 

=  ;1  ;2 in both lusters (whi hisa onsequen eofHypothesis 2). For onvenien e, we hoosethe ut-o  in su h awaythat the new ut-o alsohasthesamesymmetryproperties. Tothisend, we onsider

~

, de nedastheunionofthe orbitsunder the a tiono : y !oy =(oy

1

;;oy N

)of O(3;R) onthe y-variablesof ea h pointin (forh=0). Asbefore,we onstru ta ut-o ~2C

1 (R

3(N+1)

)su h that0~1,~equals1onasmall oni neighborhoodof

~

, and~equals0outsideaslightlybigger oni neighborhood. Noti e that, onthe support of,~ thepreviouspropertiesarepreservedsin ejxjand jyjareequivalentthere. Thus(A.6) holds in this asealso,anditagainsuÆ estoestimatetheregularpartde nedin (A.7). Obviously,the rstand se ondorder termoftheexpansionarezero. Expandingfurther, we ndthat thethirdordertermis

 (h);F 3 (^x ;y) (h)  jxj 3 ; (A.10)

wherewehaveestimatedthe ontributionoftheregion utoutby~asaboveandwhere

F 3 (^x;y)= (C 2 +Z 2 ) X l2a 0 1 e l jy l j 2 3(y l x )^ 2  +2 X l2a 0 1 ;j2a 0 2 e l e j (y l y j 3(y l x )(y^ j ^x)): (A.11)

BytherotationsymmetryofCoulombpotentials,we anrepla ein(A.10)x^bythe anoni albasisve tors b 1 ;b 2 ;b 3 ofR 3 . Sin e P k F 3 (b k

;y)= 0,it followsthat the third order termalso vanishes. Forthefourth orderterm,weget

 (h);F 4 (^x ;y) (h)  jxj 4 ; (A.12)

wherethefun tion F 4 satis es F 4 (^x ;y 1 ; y 2 )= F 4 (^x ;y 1 ;y 2 ); y=(y 1 ;y 2 );

sin eitishomogeneousofdegree3iny. ByHypothesis2theeigenvalueE ;2

issimpleand ;2

isinvariant under there e tion y

2 7! y

2

. Thus thefourth ordertermis zero,and astandardappli ation of Taylor's theorem(A.8) showsthattheremainderoftheexpansionisO(jxj

5

),uniformlyw.r.t. h.

A knowledgements. X.P. Wangthanksthe organizors ofthe BolognaAPTEXInternational Conferen e, September 1999,for their invitation andhospitality.

(19)

[A℄ S.Agmon: Le tures on Exponential De ay of Solutions of Se ond-Order Ellipti Equations. Prin eton UniversityPress,1982.

[CT℄ J.M.Combes, A.Tip: Properties of the s atteringamplitude for ele tron-atom ollisions. Ann. I.H.P., vol.40,n

Æ

2,1984,p.117-139.

[DG℄ J.Derezinsky, C.Gerard: S attering Theory of Classi al and Quantum N-Parti le Systems. Springer, (1997).

[ES℄ V.Enss,B.Simon: Finite Total Cross-Se tion inNonrelativisti QuantumMe hani s. Commun.Math. Phys.76,177-209(1980).

[HV℄ W.Hunziker,E.Vo k: Stabilityof S hrodinger EigenvalueProblems.Comm.Math. Phys.83,281-302, 1982.

[I1℄ H.T.Ito: High-energy behavior of the total s attering rossse tionsfor 3-body quantum systems. Publ. Res.Inst.Math.S i. 29,No.5,803-832(1993).

[I2℄ H.T.Ito: The semi lassi al asymptoti s ofthe total ross-se tionsfor elasti s atteringfor N-body sys-tems.J.Math.KyotoUniv.33,No.4,1143-1164(1993).

[Je ℄ Th.Je ko: Approximation de Born-Oppenheimer de se tionseÆ a es totales diatomiques. Toappear inAsymptoti Analysis.

[KMW1℄ M.Klein,A.Martinez,X.P.Wang: OntheBorn-OppenheimerApproximation ofWaveOperatorsin Mole ularS atteringTheory.Commun.Math.Phys.152,73-95,1993.

[KMW2℄ M.Klein, A.Martinez, X.P.Wang: On the Born-Oppenheimer Approximation of Wave Operators II:Singular Potentials.J.Math. Phys.Vol.38,No3,1373-1396,1997.

[PSS℄ P.Perry, B.Simon, I.Sigal: Spe tral analysis of N-body S hrodinger operators. Ann. of Math. 114, 519-567,1981.

[Ra℄ A.Raphaelian: Ion-AtomS atteringwithinthe Born-Oppenheimerframework.DissertationTUBerlin, 1986.

[RT℄ D.Robert, H.Tamura: Semi lassi al estimates for resolvents and asymptoti s for total ross-se tion. Ann.IHP46,415-442,1987.

[RW℄ D.Robert,X.P.Wang: Pointwise Semi lassi al Asymptoti s for TotalCross Se tionsin N-body Prob-lems. In\Spe traland S atteringTheory",181-196,Le turesNotes in Pure andApplied Mathemati , vol.161,Mar elDekker,1994.

[V℄ A.Vasy: S atteringmatri esinmany-body s attering,Commun.in Math.Phys.200,105-124,1999.

[W℄ X.P.Wang: Total Cross Se tions in N-body Problems: Finiteness and High Energy Asymptoti s. Comm.Math.Phys.156,333-354,1993.

[Y℄ D.R.Yafaev: Theeikonalapproximation andthe asymptoti softhe totals attering ross-se tion forthe S hrodinger equation.Ann.Inst.HenriPoin ar,vol.40(4),397-425,1986.

Références

Documents relatifs

Résume - Nous re-examinons la théorie des énergies d'apparition et de déficits d'énergie s'applicant aux mesures de resolution à haute énergie dans la sonde à atomes puisée

The possible observation of optical surface modes in KCl(001) is finally discussed. Introduction.- Although surface phonons have since long attracted much attention due to their

These measurements permitted us to determine the partial contribution of each section to the total current of the electron beam and to the resulting optical signal; one should know

Singlet-to-triplet ratio (S/T) for deexcitation of Is2 and Is4 in NeI as function of the velocity of the projectile ions. triplet like for ?sk. The solid line in the

Particularly the calculated cross section for radiative electron capture (REC) process from a neutral target atom by a high velocity projetile ion does depend on the

To demonstrate the impact of these phenomena on the nanoscale conical geometry of an La-APT tip, we studied the variations in tip temperature as a function of different amorphized

Commissariat à l’Energie Atomique et aux Energies Alternatives, Gif-sur-Yvette, France 139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz

Based on mathematical works on this approximation for molecular bound states, in scattering theory, in resonance theory, and for short time evolution, we give an overview of