• Aucun résultat trouvé

Time-local discretization of fractional and related diffusive operators using Gaussian quadrature with applications

N/A
N/A
Protected

Academic year: 2021

Partager "Time-local discretization of fractional and related diffusive operators using Gaussian quadrature with applications"

Copied!
21
0
0

Texte intégral

(1)

an author's

https://oatao.univ-toulouse.fr/21827

https://doi.org/10.1016/j.apnum.2018.12.003

Monteghetti, Florian and Matignon, Denis and Piot, Estelle Time-local discretization of fractional and related

diffusive operators using Gaussian quadrature with applications. (2020) Applied Numerical Mathematics, 155. 73-92.

ISSN 0168-9274

(2)

Time-local

discretization

of

fractional

and

related

diffusive

operators

using

Gaussian

quadrature

with

applications

Florian Monteghetti

a

,

,

Denis Matignon

b

,

Estelle Piot

a aONERA/DMPE,UniversitédeToulouse,31055Toulouse,France

bISAE-SUPAERO,UniversitédeToulouse,31055Toulouse,France

a

b

s

t

r

a

c

t

Keywords: Fractionalderivative Fractionalcalculus Diffusiverepresentation Eigenvalueproblems Non-classicalmethod Completelymonotonekernel

This paper investigates the time-local discretization, using Gaussian quadrature, of a classofdiffusiveoperatorsthatincludesfractionaloperators,forapplication infractional differential equations and related eigenvalue problems. A discretization based on the Gauss–Legendrequadratureruleisanalyzedboththeoreticallyandnumerically.Numerical comparisons with both optimization-based and quadrature-based methods highlight its applicability. In addition, it is shown, on the example of a fractional delaydifferential equation,thatquadrature-baseddiscretizationmethodsarespectrallycorrect,i.e.thatthey yieldanunpollutedandconvergentapproximationoftheessentialspectrumlinkedtothe fractionalderivative,bycontrastwithoptimization-basedmethodsthatcanyieldpolluted spectrawhoseconvergenceisdifficulttoassess.

1. Introduction

Thebroadfocusofthisarticleisthediscretizationoffractionaloperators usingtheir so-calleddiffusive representation, forapplicationintime-domaincomputationsoreigenvalueproblems.

The diffusiverepresentation offractional operators enablesto recastthem intoan observerofan infinite-dimensional ODE:thelongmemoryoftheoperatorisreflectedintheinfinitedimensionofthecorresponding statespace.Convolution operators that admit such a representation,known asdiffusive operators, havea locallyintegrablecompletely monotone kernel.See[41,40] fordefinitionsoffractionaloperators,[39,6] foran introductiontotheclassofdiffusiveoperators, [21] forexamplesofdiffusiveoperators,and[11,44] forasemigroupformulationofthestate-spacerepresentationinthecontext ofVolterraequations.

Providedthat thediffusive representationissuitablydiscretized,it constitutesatime-local alternativeto,forinstance, fractional linear multistep methods [28] or methods based on the Grünwald–Letnikov approximation [42]. Existing dis-cretizationmethodsforthediffusiverepresentationcanbesplitintotwocategories:methodsthat relyonanoptimization (hereinafter“optimization-based” methods)andpurely analytical methods based onknown quadraturerules (hereinafter “quadrature-based” methods). Note that methods based on discrete diffusive representations are also known as “non-classical”methods[12,4].

In [20], which deals witha fractional monodimensional wave equation, thefractional integral is splitinto two parts, namelyalocalandahistoricalone:whiletheformerisapproximatedadhoc,aGauss–Legendrequadratureruleisemployed

*

Correspondingauthor.

E-mailaddresses:florian.monteghetti@onera.fr(F. Monteghetti),denis.matignon@isae.fr(D. Matignon),estelle.piot@onera.fr(E. Piot).

(3)

forthe later,see [25] foran analysis. Anotherapproachconsistsindirectlyusinga quadraturerule,withoutanysplit.To get back toa finiteinterval, one caneither truncatethe semi-infiniteintegration domain[2] oruse achange ofvariable [46,12,4].

In [2], Gauss–LegendreandCurtis–Clenshawquadraturerules are usedon atruncateddomain.A methodproposed in [46],based on aGauss–Laguerre quadrature rulewith achange ofvariable, hasbeen widelyinvestigated andled tothe definitions ofmethods basedinstead ontheGauss–Jacobi quadraturerule [12,4],see[4] foracomparisonthat favors [4, Eq. (23)].

Optimization-based methods have also received scrutiny and enjoyeda wide range of applications, notably in wave propagationproblems.Amethodbasedonalinearleastsquaresoptimizationwherethepoledistributionischosenapriori hasbeenintroducedin[16] fortheidentificationofaleadacidbatteryimpedancemodelusingtime-domainmeasurements. Furtherrefinementshavebeenproposedin[21],withapplicationtoawiderangeofdiffusiveoperators,andin[26],where anonlinearleastsquaresiscomparedwiththemethodproposedin[4],mentionedabove.

TheobjectiveofthispaperistoinvestigatethediscretizationofdiffusiverepresentationsusingGaussianquadrature,for application inthe numerical solutionof fractional differential equationsaswell asrelatedeigenvalue problems.Inspired by classical works on numerical integration [10,1], a family of discretization methods that rely on the Gauss–Legendre quadratureruleisintroducedandanalyzedboththeoreticallyandnumerically.Theanalysisenablestopindownthemost suitable method forapplications.Inparticular,it emphasizes thatthe methodmustbe tailoredto thekernelathand,by contrast withaone-size-fits-allapproach.Numerical comparisonswithexisting discretizationmethods,both optimization andquadraturebased,shedlightonthepracticalinterestoftheproposedmethod.Additionally,itisshownonanumerical example that quadrature-baseddiscretization methods are spectrally correct, i.e.that they yield an unpolluted and con-vergent approximationoftheessential spectrum(linkedto thefractional derivative),bycontrastwithoptimization-based methods.

Thispaperisorganizedasfollows.Section2recallselementaryfactsaboutdiffusiverepresentationsandintroduces the proposed Qβ,N discretizationmethod,where

β

isascalarparametertobesuitablychosenandN isthenumberof

quadra-turenodes.Section3presentsananalysisofthemethodinthecaseoffractionaloperators,whichhighlightsthedependency of

β

uponthe orderofthefractional operator. Numericalapplications andcomparisonsare gatheredinSection 4,where the Qβ,N methodiscomparedagainsttwoexisting methods,one optimization-basedandonequadrature-based.Section 5

investigatestheuseofanonlinearleastsquaresminimizationtorefinethepolesandweightsgivenbythe Qβ,N method.

2. Definitionoftheproposedquadrature-baseddiscretizationmethod

The purposeof thissection isto introduce the proposed Qβ,N discretization method, where

β

is a scalar parameter

to be suitably chosen and N is the number ofquadrature nodes.Aftersome backgroundon diffusive representations in Section2.1,themethodisdefinedinSection2.2,namelyinDefinition4.

2.1. Diffusiverepresentation

Inthispaper,weconsiderthediscretizationofso-calleddiffusivekernels,expressedas

h

(

t

)

:=



0

e−ξtH

(

t

)

μ(ξ )

d

ξ

(

t

∈ R),

(1)

where H istheHeavisideorunitstepfunction(H(t

)

=

1 fort

>

0,nullelsewhere)and

μ

C((

0,

∞))

isthediffusiveweight. Bydefinition,diffusivekernelsarelocallyintegrableon

[

0,

∞)

,i.e.h

L1

loc

(

[

0,

∞))

,sothatthediffusiveweightsatisfies



0

μ(ξ )

1

+ ξ

d

ξ <

∞.

Notethat,ingeneral, h isnotintegrableover

(0,

∞)

.Thisclassofkernelsisphysicallylinkedtonon-propagating diffusion phenomena, encounteredinviscoelasticity[11,44,29],electromagnetics[18],andacoustics[38] [35,Chap. 2].See[39,21,6,

26] andreferencesthereinforfurtherbackgroundondiffusiverepresentationsandtheirapplications.BydefiningtheLaplace transformas

ˆ

h

(

s

)

:=



0 h

(

t

)

estds

(

(

s

) >

0

),

theidentity(1) reads

ˆ

h

(

s

)

=



0

μ(ξ )

s

+ ξ

d

ξ.

(4)

Remark1.As definedherein,a diffusive kernelisa locallyintegrablecompletely monotone kernelon

(0,

∞)

.A diffusive kernelh isintegrableon

(0,

∞)

ifandonlyif[19,Thm. 5.2.5]



0

μ(ξ )

ξ

d

ξ <

∞,

whichisnotthecaseforthekernelsconsideredinthispaper,seethethreeexamplesbelow.

Remark2(Terminology).Inthispaper,weusethefollowingterminology:thediffusiverepresentation ofh istheidentity(1), whilethefunction

μ

iscalledthediffusiveweight.Thisslightlydiffersfrom[39] where

μ

iscalledthediffusive representa-tionofh.Thequantity

μ

isalsoknownunderothernamessuchasspectralfunction [18] orrelaxationspectrum [29].

Thecomputationalinterestofdiffusivekernelsisthat,formally,theconvolutionoperatoru

→

h



u admitsthefollowing infinite-dimensionaltime-localrealization

t

ϕ(

t

, ξ )

= −ξ

ϕ(

t

, ξ )

+

u

(

t

),

ϕ(

0

, ξ )

=

0

∈ (

0

,

∞)),

h



u

(

t

)

=



0

ϕ(

t

, ξ )μ(ξ )

d

ξ,

(2)

whereu isacausalinput. Afunctionalframeworkforthisrealizationhasbeenproposed in[11,44]. Letusnowlistthree examplesofdiffusiveoperatorscoveredbythediscretizationmethodintroducedinSection2.2.

1. TheRiemann–Liouvillefractionalintegral,definedas[41,§ 2.3] [32]

Iαu

:=



u

,

where

α

∈ (

0

,

1

)

andthefractionalkernelis

(

t

)

:=

H

(

t

)

(α)

t1−α

, ˆ

(

s

)

=

1

.

(3)

Theassociateddiffusiveweightis

μ

α

(ξ )

:=

sin

(απ

)

πξ

α

.

(4)

2. Anotherdiffusivekernelisthezeroth-orderBesselfunctionofthefirstkind[31,§ 3.3]

J0

(

t

)

H

(

t

)

= +

eit



0

μ

1/2

(ξ )

−ξ +

2ie −ξtd

ξ

+

eit



0

μ

1/2

(ξ )

−ξ −

2ie −ξtd

ξ

(5)

= +

2



eit



0

μ

1/2

(ξ )

−ξ +

2ie −ξtd

ξ

⎦ ,

where

μ

1/2 isgivenby(4) andi istheunitimaginarynumber.

3. ThefractionalCaputoderivative,definedas[5] [40,§ 2.4.1] [32]

dαu

:=

I1−αu

˙

,

(6)

whereu is

˙

thestrongderivative.Itformallyadmitstheinfinite-dimensionaltime-domainrealization(contrastwith(2))

t

ϕ(

t

, ξ )

= −ξ

ϕ(

t

, ξ )

+

u

(

t

),

ϕ(

0

, ξ )

=

u

(

0

)

ξ

∈ (

0

,

∞)),

dαu

(

t

)

=



0

(

−ξ

ϕ(

t

, ξ )

+

u

(

t

))

μ(ξ )

d

ξ,

(7)

whereu isasufficientlyregularcausalinput.Ifu

(0)

=

0,thendα u matchestheRiemann–Liouvillefractionalderivative. Thesethreeconvolutionoperatorscanbediscretizedusingthe Qβ,N method,introducedinSection2.2below.

(5)

2.2. Discretizationmethod

Thecausalkernelh givenby(1) isdiscretizedusingN first-orderkernelsas

h

(

t

)

hnum

(

t

)

:=

N

n=1

μ

ne−ξntH

(

t

) (

t

∈ R).

(8)

IntheLaplacedomain,thisreads

ˆ

h

(

s

)

ˆ

hnum

(

s

)

=

N

n=1

μ

n s

+ ξ

n

(

(

s

) >

0

).

In this work, we seekto find an expression for

n

,

μ

n

)

that applies atleast to the kernels listed inSection 2.1, whose

diffusiveweights

μ

aremonotoneon

(0,

∞)

withasingularityat

ξ

=

0,whichleadstothefollowingassumption. Assumption3.Thediffusiveweight

μ

C((

0,

∞))

hasapower-lawsingularityat

ξ

=

0,i.e.

μ(ξ )

=

O

1

ξ

α

,

(9) with

α

∈ (

0,1).

Followingclassicalworksonnumericalquadrature[10,Chap. 3] [1,§ 5.6],thefollowingtwomethodscouldbeenvisaged todealwithasingularintegrallike(1).

1. Consider

μ

asaweightfunctionanddefine eitheranewsetofGaussnodes(ifpossible)oranewproductquadrature rulewithequidistantnodes[1,§ 5.6].

2. Recoveracontinuousintegrandusingachangeofvariables.Forexample,forthisintegral,MATLAB®

integral

function

usesthechangeofvariable

ξ

=



v 1−v



2

,see[43,§ 4.2].

Tosimplifytheimplementation,wechoosethesecondmethod,i.e.weseekasuitablechangeofvariables

: (−

1

,

1

)

→ (

0

,

∞), (−

1

)

=

0

,

(

1

)

= ∞,

sothattheright-handsideoftheidentity

h

(

t

)

=

1



−1

μ((

v

))

e−(v)t

˙(

v

)

dv (10)

canbeaccuratelydiscretizedusingtheGauss–Legendrequadraturerule

(

vn

,

wn

),

thusyielding

ξ

n

:= (

vn

),

μ

n

:=

wn

˙(

vn

)

μ(ξ

n

),

(11)

where

˙

denotesthederivativeof

.

Giventhesingularitycondition(9),anaturalchoiceis[10,§ 3.1] [1,§ 5.6]

β

(

v

)

:=

1

+

v 1

v

1 β

, β >

0

.

(12)

This change of variables results from the composition of v

→

11+vv, which maps

(

1,1) to

(0,

∞)

, and the power law v

→

v1β.Using

β,therepresentation(10) reads

h

(

t

)

=

2

β

1



−1 et  1+v 1−v 1 β

(

1

v

)

−1−1β

(

1

+

v

)

β1−1

μ



1

+

v 1

v

1 β



dv

,

(13)

whichleadstothedefinitionofthe Qβ,N discretizationmethodgivenbelow.

Definition4.The Qβ,N discretizationof(1) is(8) with

ξ

n

:=

1

+

vn 1

vn

1 β

,

μ

n

:=

wn 2

β

(

1

+

vn

)

1 β−1

(

1

v n

)

−1− 1 β

μ

n

) ,

(14)

(6)

Intuitively,one mayexpectthebest valuefor

β

to bedependent onpropertiesofthediffusive weight

μ

,suchasthe valueof

α

in(9).Section3investigatesthisforthecaseoffractionaloperators.

3. Analysisforfractionaloperators

Thepurposeofthissectionistoshowthat,forthefractionalkernel(3),thebestpracticalvaluefor

β

isgivenby(22). ThetheoreticalanalysisispresentedinSection3.1andexamplesofapproximationerrorsareprovidedinSection3.2.

3.1. Theoreticalanalysis

Letusrecallthefollowingstandardtheorem.

Theorem5(Convergencerate).Let

(

vn

,

wn

)

betheGauss–Legendrequadratureruleandp anonnegativeinteger.Iff

C

p

(

[−

1,1

])

,

then lim N→∞N p







1



−1 f

(

v

)

dv

N

n=1 wnf

(

vn

)





 =

0

.

Inparticular,iff

C

(

[−

1,1

])

thenspectralconvergenceisachieved.

Proof. Since f isatleastcontinuouson

[−

1,1

]

,wehavetheestimate[1,Thm. 5.4]







1



−1 f

(

v

)

dv

N

n=1 wnf

(

vn

)





 ≤

4 inf deg q2N−1

f

q

L([−1,1])

.

Theconclusionfollowsfromapolynomialapproximationresult[13,Thm. I.VIII].

Giventheaboveresult,tofindtheoptimalvaluefor

β

inthe Qβ,N discretization,itissufficienttostudytheregularity

oftheintegrandin(13).Letusnowfocusonthefractionalkernel(3),whichisthesimplestkernelthatsatisfies(9).Afirst convergenceresultissummarizedinthepropositionbelow.

2

Proposition6.Let

β >

0,N

∈ N

,andYα,numbetheQβ,NdiscretizationofYα with

α

∈ (

0,1).If

β

1

α,

(15)

thenYα,num

(

t

)

(

t

)

asN

→ ∞

foranyt

>

0.If,additionally,

1

β

∈ N,

α

β

∈ N,

(16)

then



(

t

)

Yα,num

(

t

)

 =

k→∞

O



nk



foreverypositiveintegerk andt

>

0.

Proof. Thediffusiverepresentation(13) ofthefractionalkernel(3) reads

Yα

(

t

)

=

1



−1

β

(

t

,

v

)

dv

,

(17) with

β

(

t

,

v

)

:=

2 sin

(απ)

π

β

et1+v 1−v 1 β

(

1

v

)

−1+αβ1

(

1

+

v

)

−1+1−βα

.

Since

β

(

t

,

·)

C

((

1,1)),theonlytaskistoinvestigatethesingularitiesat

1 and1.Thereisnosingularityatv

=

1 as

longast

>

0,since x

→

e−t  1+ 2x  1 β x1+ 1−βα

isinfinitelydifferentiableat0+,withoutassumptionon

α

and

β

.Sincev

→

et 

1+v 1−v

1 β

hasalimitasv

→ −

1+,theintegrand

β

(

t

,

·)

iscontinuous ifandonlyif(15) holds.Furthermore,

β

(

t

,

·)

C

(

[−

1,1

])

(7)

FromProposition6,aconvergenceresulton

− ˜

L1( ,T)forany

>

0 andT

>

canbereadilydeduced,although

thisisnotsufficientfortime-domaincomputations.Indeed,foraninputu

L2

(0,

T

)

L

(0,

T

),

wehavethestraightforward estimate

|

h



u

(

T

)

|

u

L(0,T)

h

L1(0,T)

,

(18)

whichjustifiesaninterestinapproximatingtheL1 normofh.Thisrequiresanadditionalconstrainton

β

,seeProposition7.

Proposition7.Let

β >

0,N

∈ N

,andYα,numbetheQβ,NdiscretizationofYα with

α

∈ (

0,1).Ifboth(15) and

β

α

(19)

hold,thenlimN→∞

Yα,num

L1(0,T)

=

L1(0,T)foranyT

>

0.If,additionally,(16) holds,thenthisconvergenceisspectral. Proof. Let T

>

0.Since

α

∈ (

0,1),wehave

β

L1

((0,

T

)

× (−

1,1)).TheFubinitheoremyields

L1(0,T)

=

1



−1

β

(

T

,

v

)

dv

,

(20) where

β

(

T

,

v

)

=

2 sin

(απ)

π

β



1

eT  1+v 1−v 1 β



(

1

v

)

−1+βα

(

1

+

v

)

−1− α β

.

It issufficient to investigatethe regularity of

β

(

T

,

·)

at v

= ±

1.

β

(

T

,

·)

is continuous at 1 ifand only if(19) holds.

Expandingaround v

= −

1 yields



1

et  1+v 1−v 1 β



(

1

+

v

)

−1−βα

=

t

(

1

+

v

)

1− α β −1

(

1

v

)

β1

+ · · · ,

hencecontinuityat

1 isachievedifandonlyif(15) holds.If,additionally,(16) isassumed,then

β

(

T

,

·)

C

(

[−

1,1

])

.

2

Remark 8.Proposition 7 states convergence of the L1 norm, but not convergence in the L1 norm, i.e. lim

N→∞

Yα,num

L1(0,T)

=

0 (which impliesconvergenceofthe L1 norm).This propositioncan thereforebe deemed insufficientin

viewoftheestimate(18);however,itgivesasecondconstrainton

β,

namely(19),whichispracticallyuseful.

Remark9(Frequencydomain).Asimilar studyin the frequencydomain reachesthe same conclusion.For anys

=

0 with

(

s

)

0,wehave

ˆ

(

s

)

=

2

β

sin

(απ)

π

1



−1

(

1

v

)

αβ−1

(

1

+

v

)

1−α β −1 s

(

1

v

)

β1

+ (

1

+

v

)

1β dv

,

andthe integrand iscontinuous on

[−

1,1

]

ifandonlyif(15, 19) hold. If, furthermore,(16) holds,then theintegrand is infinitelysmoothandwehavespectralconvergencefor







Y

ˆ

α

(

s

)

N

n=1

μ

n s

+ ξ

n







.

Forany

ω

m

>

0,wereadilydeducethat

i

ω

ˆ

(

i

ω

)

i

ω



nN=1

μn

iω+ξn

L2(ωm,ωm) hasthesameconvergenceproperties.

Practicalchoiceof

β

Basedontheaboveresults,thefollowingrulescanbefollowedtochoose

β

inpractice. 1. If

α

∈ (

0,1)

∩ Q

suchthat

α

=

n0 n1 withni

∈ N

,then

β

1

:=

1 n1 (21) satisfiesthecondition (15),(16),and(19) sothatthe 1,N methodyieldsaspectrallyconvergentapproximation.This

valueisalsosuitedfor

α

∈ (

0,1)

∩ (R\Q)

with

α

n0 n1.

(8)

Fig. 1. Errors(23,24,25)andmaximumpole(26) forh= withα=58.( )Qβ,N withβ= β1=18.( )Qβ,N withβ= β2.( )Qβ,N with

β= β2×0.99.( )Qβ,Nwithβ= β2×1.01.( )Qβ,Nwithβ= β3.

2. Theconditions(15) and(19) suggestusingalargervalueof

β,

namely

β

2

:=

min

(α,

1

α),

(22)

whichyields atleasta convergent approximationfromPropositions6 and7.Section 3.2belowshowsthat

β

2 isthe

mostinterestingchoiceformoderatevaluesofN. 3.2. Numericalillustrations

Toinvestigatenumericallytheinfluenceof

β

ontheconvergenceofthe Qβ,N method,wedefine threeerrors.Thefirst

oneisinthefrequencydomain

ε

∞,ωm

:=







1

ˆ

hnum

ˆ

h

(

i

ω)







L(ωm,ωm)

,

(23)

with

ω

m

>

0 agivenangularfrequency.Thesecondandthirdonesareinthetimedomain,namely

ε

T

:=





1

hnum h



(

T

),

ε

1,T

:=



h

L1(0,T)

hnum

L1(0,T)



h

L1(0,T)

,

(24)

withT

>

0.Fromnowon,weset

ω

m

=

T

=

104

,

(25)

so that we considerbroadband approximationsof thekernel h.We first considerh

=

Yα, covered by theresults of Sec-tion3.1,withfourvaluesof

α

andthenconcludewithh

=

J0.Computationsaredonewithdoubleprecisionfloatingpoint.

The case h

=

Yα with

α

=

5

8

0.62

1

2 is shown in Fig. 1. The choice

β

1

=

18 achieves spectral convergence, with

saturation at double precision, asexpected from Section 3.1. The value

β

2

=

1

α

does not converge spectrally, butit

providesabetterapproximationformoderatevaluesofN.Thevalue

β

3

:=

max

(α,

1

α),

whichdoesnotsatisfy(15),istheleastinterestingoption.Thesensitivityoftheerrorsobtainedwith

β

= β

2 ishighlighted

bythecurvescorrespondingto

β

=

0.99

× β

2 and

β

=

1.01

× β

2,whicharesignificantlyworseinthetimedomain.These

error plotshighlight that the time-domain norms do add information: here, the sensitivity to

β

2 cannot be seen inthe

frequencydomainforinstance,whileitistheoppositeforothervaluesof

α

coveredbelow. TheupperrightplotofFig.1givesthemaximumpole

ξ

max

:=

max

n

ξ

n

.

(26)

Thisquantityisespeciallyimportantwhenusinganexplicitschemetoadvancetherealization(2) intime,sincethetime steptypicallyscalesas

O(ξ

max−1

).

Theplotshowsthat

ξ

max

=

O

(

N

2

β

).

Giventhatthehigher

ξ

max,themorecostlythetimeintegration,onemayexpectthatahighervalueof

ξ

maxsystematically

yields amoreaccurate discretization.However,thisneednot bethecase:althoughthisisindeedverifiedfor

β

1,

β

2,and

(9)

Fig. 2. Errors(23,24,25)andmaximumpole(26) forh=withα=12.( )Qβ,N withβ=12.( )Qβ,Nwithβ= β2×0.99.( )Qβ,Nwith

β= β2×1.01.

Fig. 3. Errors(23,24,25)andmaximumpole(26) forh= withα=27.( )Qβ,N withβ= β1=17.( )Qβ,N withβ= β2.( )Qβ,Nwith

β= β2×0.99.( )Qβ,Nwithβ= β2×1.01.( )Qβ,Nwithβ= β3.

Fig. 4. Errors(23,24,25)andmaximumpole(26) forh=withα=

√ 2−1 √ 2 .( )Qβ,Nwithβ= β1= 1 7.( )Qβ,Nwithβ= β2.( )Qβ,Nwith β= β2×0.99.( )Qβ,Nwithβ= β2×1.01.( )Qβ,Nwithβ= β3.

Fig. 2 plots theerror graphs for

α

=

1

2. Here, the values

β

1,

β

2, and

β

3 are identicalso that the Qβ,N discretization

enjoys spectral convergence,withdoubleprecisionon

ε

T reachedforaround 100variables.The sensitivitytoachangein

β

around

β

2 canbeseeninbothfrequency-domainandtime-domainerrors:althoughthevaluesof

ξ

max remainclose,the

approximationsaresignificantlyworsefor0.99

× β

2 and1.01

× β

2.

Theconclusionsfor

α

=

2

7

0.28

1

2,showninFig.3,areidenticalto

α

=

5

8.Theonlydifferenceisthatthesensitivity

to

β

2isonlyseeninthefrequency-domainnorm

ε

∞,ωm.Fig.4showstheerrorsobtainedfor

α

=

2−1

2

0.29,avalueclose

to 27 butirrational. Themain differenceis theerrorobtainedfor

β

= β

1,whichis lessaccurate inthe frequencydomain

compared to

α

=

2

7.However,thehierarchybetweenthe Qβ,N methodsisidentical,andthe othererrorsare similar.The

choices

β

=

411 (justified by

α

12

41)and

β

=

1

3 (justified by

α

1

3),notshownhere,deliverpoorerresults.Overall,Fig.4

illustratesthattheirrationalityof

α

isnotamajorconcerninpractice.

Insummary,Figs.1–4show that,formoderatevaluesofN,the Qβ,N methodwith

β

= β

2 deliverssatisfactory

conver-genceresultsforany

α

∈ (

0,1),rationalorirrational.Inaddition,thefactthat

β

2

≥ β

1 impliesthatthe2,N methodyields

a lowermaximumpole(26) than 1,N,whichisofparticularinterestfortime-domainsimulations.Thesetwoproperties

(10)

Fig. 5. Errors (23,24,25) and maximum pole (26) for h=J0. ( ) Qβ,Nwithβ=12. ( ) Qβ,Nwithβ= β2×0.99. ( ) Qβ,Nwithβ= β2×1.01.

Fig.5givestheerrorsobtainedinapproximatingtheBesselfunction J0,whosediffusiverepresentationisgivenby(5):

the results are similar to that shown inFig. 2 for the fractional kernel oforder 1

/

2, since the diffusive weights of both kernelshaveasimilarbehavior.

Thecomputationalmeritsofthe Qβ,N-methodwith

β

= β

2 arefurtherinvestigatedinSection4,wherenumerical

appli-cationsaregathered.

4. Numericalapplicationsandcomparisons

Thepurposeofthissectionistoinvestigatethecomputationalpropertiesofthe Qβ,N methodaswellascomparethem

to those oftwo existing methods: one quadrature-based, recalledin Section 4.1,andone optimization-based, recalledin Section4.2.Thecomparisoniscarriedoutintheotherthreesections:Section4.3gathersapproximationerrors,Section4.4

focusesonthesimulationofafractionaldifferentialequation,andSection4.5investigatesspectralcorrectness,whichturns outtobeanimportantfeatureofthe Qβ,N method,and,moregenerally,ofquadrature-basedmethods.

4.1. Birk–Songquadraturemethod

Afterreviewingexistingmethods,notably[46] and[12],BirkandSongproposedthechangeofvariable

ξ

=

β

(

v

)

with

β

=

14.However,theyproposetouseaGauss–JacobiquadratureruleinsteadofaGauss–Legendreone(therebyintroducing asingularityatv

= −

1 intheintegrand),whichleadstothediscreterepresentation[4,Eq. (23)]

ξ

n

:=

1

− ˜

vn 1

+ ˜

vn

4

,

μ

n

:=

8 sin

(απ

)

π

˜

wn

(

1

+ ˜

vn

)

4

,

(27)

where

(

v

˜

n

,

w

˜

n

)

istheGauss–Jacobiquadraturerulefortheweightfunctionv

→ (

1

v

)

2α+1

(1

+

v

)

−(2α−1)with

α

:=

1

2

α

.

(Bewarethat,in[4,Eq. (23)],“

α

”denotestheorderoftheCaputoderivative,whereasherein,

α

istheorderofthefractional integral.)

4.2. Optimizationmethod

Webrieflyrecallheretheoptimizationmethoddefinedin[21,§ 4.3],whichconsistsinaleastsquaresoptimization.The mainchallengeofsuchanoptimizationisthath

ˆ

num isnonlinearwithrespecttothepoles

n

)

n,whichfurthermorehavea

widevariationsincetheoretically

ξ

∈ (

0,

∞)

.Toavoidthiscomputationaldifficultythemethodproceedsasfollows. 1. Thethreeinputparameters,namelyN

∈ J

2,

∞J

,

ξ

min

>

0,and

ξ

max

> ξ

minarechosen.

2. TheN poles

ξ

n arelogarithmicallyspacedin

min

,

ξ

max

]

:

ξ

n

= ξ

min

ξ

max

ξ

min

n−1 N−1

(

n

∈ J

1

,

N

K).

3. Let A

:=



(

i

ω

k

+ ξ

n

)

−1



k,n

∈ C

K×N andb

:=



h

ˆ

(

i

ω

k

)



k

∈ C

K,wheretheK angularfrequencies

ω

karealsologarithmically

spacedin

min

,

ξ

max

]

.TheN weights

μ

n arecomputedwithalinearleastsquaresminimizationof

J

(μ)

:=

C

μ

d

22

=

K

k=1







N

n=1

μ

n i

ω

k

+ ξ

n

− ˆ

h

(

i

ω

k

)







2

,

(28)

(11)

Fig. 6. Errors(23,24,25)andmaximumpole(26) forh=withα=58.( )Qβ,N withβ= β1=18.( )Qβ,N withβ= β2.( )Birk–Song method(27).( )Qβ,Nwithβ=14.

Fig. 7. Errors(23,24,25)andmaximumpole(26) forh= withα=12.( )Qβ,N withβ=12.( )Birk–Songmethod(27).( )Qβ,N with

β=14. C

:=



(

A

)

(

A

)



∈ R

2K×N

,

d

:=



(

b

)

(

b

)



∈ R

2K

.

Providedthat2K

>

N theproblemisoverdeterminedandcanbedirectlysolvedbyapseudo-inverse.Therealityofthe weights

μ

nisenforcedthroughthedefinitionofC andd,whichseparatesrealandimaginaryparts.However,notethat

thesignofeach

μ

n isunconstrained.

Thistechnique isparticularlysuitedfortime-domainsimulations,where

ξ

max isnaturally known(frome.g. theminimum

acceptabletimesteporthemaximumfrequencyofinterestinwavepropagationproblems);itcanalsohandlemorecomplex representations that involve additional poles. For a given N and

ξ

max, there is usually an optimal range for the lower

bound

ξ

min,whichgovernsthelong-timebehaviorofhnum,whichmustnotbechosen toosmall.Forthediffusive kernels

considered herein, a logarithmic spacing ofthe poles

ξ

n is satisfactory (alinear spacingyields poorerresults). In all the

applicationspresentedinthissection,weset

K

=

104

.

(29)

Remark10.Thereisan inherentdifficulty whencomparing theaboveoptimizationmethodwiththe Qβ,N method,since

both do not havethesame numberof parameters:1forthe Qβ,N method(namely thenumber ofquadraturenodes N,

since

β

hasbeenchosentobe

β

2 followingtheanalysisofSection3), 3fortheoptimizationmethod(namely N and the

minimum and maximum poles

ξ

min and

ξ

max). In all the results presented below, the parameters

ξ

min and

ξ

max of the

optimizationmethodhavebeenempiricallychosentoyieldthebestresults. 4.3. Approximationerrors

InthespiritofSection3.2,herearegatheredcomparisonsoftheapproximationerrors.

ComparisonwiththeBirk–Songmethod. Acomparisonbetweenthe Qβ,N methodandtheBirk–Songmethod(27) isshown

inFig.6for

α

=

5

8 andFig.7for

α

=

1 2.

Let usfirst consider the case

α

=

5

8.The behavior of

ε

∞,ωm highlights the accuracy of the Birk–Songmethod in the

(12)

Fig. 8. Errors(23,24,25)andmaximumpole(26) forh=withα=12.( )Qβ,N withβ= β2.Optimizationwithξmax=104:( )ξmin=10−16, ( )ξmin=10−14,( )ξmin=10−10,( )ξmin=10−6.

Fig. 9. Errors(23,24,25)andmaximumpole(26) forh=withα=58.( )Qβ,N withβ= β2.Optimizationwithξmax=104:( )ξmin=10−16, ( )ξmin=10−14,( )ξmin=10−10,( )ξmin=10−6.

N

70,asone mayexpect fromthechangeofvariablethatdefinestheBirk–Songmethod.Asimilartrendisseeninthe timedomain,althoughtheretheclosest Qβ,N methodforN

70 isthat obtainedwith

β

= β

2.Allthemethodsarecloser

for

α

=

1

2,atleastinthetime domain,andthe method Qβ,N with

β

=

14 hasalmostidenticalconvergencepropertiesto

thatoftheBirk–Songmethod.

Asalreadymentionedwhencomparingthevarious Qβ,N methodsinSection3.2,thegraphsof

ε

∞,ωm,

ε

T,and

ε

1,T alone

arenotsufficienttocomparediscretizationmethods:onemusttakeintoaccountthevalueof

ξ

max,showninthetopright

plotofFigs.6and7.TheseplotsshowthatfortheBirk–Songmethodwehave

ξ

max

=

O(

N 2

β

)

with

β

=

1

4,i.e.

ξ

max

=

O(

N8

),

whichimpliessignificantlylargervaluesthatthe 2,N methodrecommendedfromtheanalysisofSection 3.2.Theimpact

oftheselargevaluesof

ξ

max isofconcernwhenusingexplicittime-marchingscheme,seeSection4.4.

Comparisonwiththeoptimizationmethod. Theerrorsfor

α

=

1

2 and

α

=

5

8 areplottedinFigs.8and9,respectively.Giventhe

resultsofSection 3,onlythe Qβ,N methodwith

β

= β

2 isconsidered.Forthe(three-parameter)optimizationmethod,we

choose

ξ

max

=

ω

m

=

104andplottheerrorsforvariousvaluesof

ξ

min:theresultshowsthattheoptimalvalueof

ξ

mindoes

stronglydependuponN,sothat

ξ

minisnotstraightforwardtochooseapriori.However,providedthatthevalueof

ξ

minis

well-chosen,theoptimizationmethodcanoutperformthe 2,N methodonarangeofN,whichjustifiesitspopularityin

large-scaleapplicationswherethevalueofN iscritical.Notethat,bycontrastwithSection3.2,thecomparisonisrestricted to N

∈ J

1,50

K

,sinceoutsideofthisinterval,themaximumpole

ξ

max ofthe 2,N methodissignificantlylargerthan10

4

sothat thecomparisonwouldnot be fair.Insummary,here, themainadvantage ofthe 2,N-method isthatit hasjust

oneparameter.

Torefinethecomputedpolesandweights,onemayconsidertheuseofanonlinearleastsquaresminimizationbyadding thefollowingfourthsteptothethree-stepoptimizationmethoddescribedinSection 4.2:

4. Compute N newweights

(

μ

n

)

n andpoles

n

)

n witha nonlinearleastsquaresminimization oftheright-handsideof

(28),startingfromthepoleschoseninstep2andtheweightsobtainedinstep3,withthefollowinglinearconstraints

μ

n

0

, ξ

n

0

, ξ

n

≤ ξ

max

(

n

∈ N).

Fig.10showstheapproximationerrorsobtainedusingthetrust-regionalgorithmimplementedinMATLAB®

lsqnon-lin

.Both theconvergence speed ofthe nonlinear optimizationstage and thequality of the endresultstrongly depend upontheinitialpolesdistribution,whichmakesthismethodunpractical (forexample,thecase

ξ

min

=

10−14 isdifficultto

(13)

Fig. 10. Errors(23,24,25)andmaximumpole(26) forh= withα=21.( )Qβ,N withβ= β2.Four-stageoptimizationwithξmax=104:( )

ξmin=10−16,( )ξmin=10−14,( )ξmin=10−10.(SameparametersasFig.8.)

Fig. 11. FDE(30) fory0=1 andg=1.NumericalsolutionscomputedwithRKF84,t=9×10−3,andN=6.( )Qβ,Nwithβ= β2(ξmin=1.221×10−3,

ξmax=8.189×102).( )Optimization(ξmin=10−3,ξmax=102).( )Optimization(ξmin=10−4,ξmax=102).(Leftonly)( )Exactsolution(31), ( )Exactsolutionforg=0.

convergewhile

ξ

min

=

10−16isalmostinstantaneous.).Furthermore,theapproximationerrorgraphsshow thatitis

unsat-isfactory, sothat it isnot worth considering in practice.In fact,nonlinear optimizationis bestused incombination with quadraturerules: thisisinvestigatedinSection 5.Thisnonlinearfour-stageoptimizationmethodisnotfurtherconsidered intheremainingofthissection:“optimizationmethod”willdenotethethree-stepmethoddescribedinSection 4.2.

4.4. Fractionaldifferentialequation

Letusconsiderthefollowingscalarfractionaldifferentialequation

˙

y

(

t

)

=

ay

(

t

)

g d12y

(

t

),

y

(

0

)

=

y0

(

t

>

0

),

(30)

where y is

˙

thestrongderivativeandd12 istheCaputoderivativedefinedin(6).Theexactsolutionof(30) canbeexpressed

usingtheMittag-LefflerfunctionEα,β as[32,Ex. 1.6]

ye

(

t

)

:=

y0

λ

1

− λ

2



λ

1E1/2,1



λ

2

t



− λ

2E1/2,1



λ

1

t



,

(31)

where

λ

1 and

λ

2 aretherootsofs

→

s2

+

gs

a.TheleftplotofFig.11showstheexactsolutionon

[

0,tf

]

withtf

=

100,

y0

=

1,andforboth g

=

0 (i.e. standardODE) andg

=

1 to highlighttheeffectofthefractional derivative.Toaccurately

evaluate ye,werelyonthealgorithmproposedin[17].

Comparisonwiththeoptimizationmethod. Weseektocomputenumericalsolutionsof(30) witharelativeaccuracyof,say, 6%.WiththeQβ,N method,thesoleparameterofwhichis N,thisaccuracytargetisattainedforanyN

6,sothatweset

N

=

6 fortheoptimizationmethodaswell. Thecorresponding numericalsolutions areshowninFig.11,whichalsoplots therelativeerrorforother valuesof

ξ

minand

ξ

max.Time-integrationisperformedusingafourth-ordereight-stageexplicit

Runge–Kutta method,namely the RKF84 from[45, Tab. A.9],with a timestep of



t

=

9

×

10−3, whichis the maximum stabletimestepforallmethods.AsexpectedfromSection3.2,bothmethodsyieldsimilarresults.

ComparisonwiththeBirk–Songmethod. Forthetimestep



t

=

9

×

10−3,usedinFig.11,theBirk–Songmethod(27) yields

a stableresultonlyforN

2.Forinstance,for N

=

3,thestability timestepisfoundtobe



tmax

=

2.37

×

10−3,whichis

a significantreduction.Thiscanbe explainedby thelarge valuesof

ξ

max,alreadyhighlightedinSection4.3.Thistimestep

reductioncouldbebalancedbyanaccuracyincrease.Toinvestigatethis,Fig.12plotsacomparisonbetweentheBirk–Song and Qβ2,N methodsatatimestep well-belowthe stabilitylimit, namely



t

=

10−

3 for N

=

3.Onthisexample,the Q

β,N

(14)

Fig. 12. FDE(30) fory0=1 andg=1.NumericalsolutionscomputedwithRKF84,t=10−3andN=3.( )Qβ,Nwithβ= β2(ξmin=1.613×10−2,

ξmax=6.198×101).( )Birk–Songmethod(27) (ξmin=3.139×10−4,ξmax=3.185×103).(Leftonly)( )Exactsolution(31).

4.5. Eigenvalueapproachtostability

Toconcludethis section onnumerical applications,let usconsidera casewhere the Qβ,N andoptimizationmethods

haveradicallydifferentproperties.Weareinterestedinstudyingthestabilityofthesolutionofthefollowingvector-valued fractionaldelaydifferentialequation

˙

x

(

t

)

=

Ax

(

t

)

+

Bx

(

t

τ)

g I2d1−αx

(

t

),

(32) with A

=

1 2



3 1 1

3



,

B

=

1 4



1 1 1 1



,

I2

=



1 0 0 1



,

τ

=

10

,

α

=

5 8

.

(33)

ThematricesA and B arechosensothat(32) isasymptoticallystableforanyg

0,

τ

0,and

α

∈ (

0,1)[36,Thm. 7]. Tostudythestabilityof(32),werecastitintoanabstractCauchyproblem

d X dt

(

t

)

=

A

X

(

t

),

X

(

0

)

H

,

X

:=

ψ

x

ϕ

⎠ ∈

H

,

(34)

whichisknown asan eigenvalueapproach. Thedefinitionof

A

isobtainedby usingthediffusiverepresentationof d1−α andrewritingthetime-delaytermasan observerofatransportequation ontheboundedinterval

(

τ

,

0)[14,§ VI.6] [9, § 2.4] [34,Chap. 2],whichleadsto

A

X

:=

Ax

+

B

ψ (

τ)

g I2

$

0 [

−ξ

ϕ(ξ )

+

x]

μ

α

(ξ )

d

ξ

dψ dθ

−ξ

ϕ(ξ )

+

x

⎠ ,

withstate-space H anddomain

D

(

A

)

givenby

H

:= C

2

×

L2

(

τ

,

0

; C

2

)

×

L2ξμα(ξ )

(

0

,

∞; C

2

),

D

(

A

)

:=

&

(

x

, ψ,

ϕ)

H







ψ

H1

(

τ

,

0

; C

2

)

−ξ

ϕ(ξ )

+

x

L2(1+ξ)μ α(ξ )

(

0

,

∞; C

2

)

'

,

wheretheweightedL2spaces L2ξμ

α(ξ )andL 2 (1+ξ)μα(ξ )aredefinedas L2f

(

0

,

∞) :=

ϕ

: (

0

,

∞) → C

measurable









0

|

ϕ(ξ )

|

2f

(ξ )

d

ξ <

,

with f

(ξ )

= ξ

μ

α

(ξ )

and f

(ξ )

= (

1

+ ξ)

μ

α

(ξ ),

respectively. Foradditionalbackgroundonthissemigroupformulation,see [33,37].

Remark11(Motivation).Theequation(32) isatoymodelmeanttocheckthesuitabilityofagivendiscretizationmethodfor stabilitystudies,thusvalidatingitsuseforequationsthatdonotenjoytheoreticalresults.Practicalstabilitystudiesconsist in computingstability regions, see e.g. [34] fordelay equations. When usingan eigenvalue approach,it is ofparamount importance that the spectrum of

A

be accurately approximated, something which is lessof concern with time-domain simulations.

(15)

Fig. 13. Spectrum σ(Ah)for(32,33)obtainedwith the Qβ,N methodwithβ= β2.Transport equationdiscretizedwith Np=80 nodes.( )N=400 (S(Ah)= −8.12×10−11).( )N=200 (S(Ah)= −1.29×10−9).( )N=11 (S(Ah)= −1.00×10−4).

Fig. 14. Spectrumσ(Ah)for(32,33)obtainedwiththeoptimizationmethodwithξmax=104.TransportequationdiscretizedwithNp=80 nodes.N=400 with( )ξmin=10−15(S(Ah)= +3.5×1012);( )ξmin=10−10(S(Ah)= −7.1×10−11).N=20 with( )ξmin=10−15(S(Ah)= +2×10−15);( )ξmin= 10−10(S(

Ah)= −10−12).

Thestabilityofthefractionaldelaydifferentialequation(32) followsfrompropertiesofthespectrumof

A

.Theoretically, thespectrumof

A

consistsoftwodistinctparts:(a)isolatedeigenvalueswithfinitealgebraicmultiplicity;(b)anessential spectrumon

(

−∞,

0)ifg

=

0.Thisessentialspectrumimpliesthat

S

(

A

)

:=

sup

λσ(A)

(λ) =

0

,

sothat(32) cannotbeexponentiallystable,butisindeedasymptoticallystable.

Let uschose g

=

2 and try to recover this stability result numerically, by computing the spectrum of

A

h, a

finite-dimensionalapproximationof

A

,whichrequirestodiscretizeboththetime-delayandthefractionalderivative.

The monodimensional transport equation on

(

τ

,

0) can be discretized using any numerical scheme suited to the transport equation. Herein, we use a discontinuous Galerkin finite element method [22], whose spectral properties are well-known [23],on1elementwithNp nodes(i.e.apolynomialofdegree Np

1).Forthelargevalue Np

=

80,the

spec-trumissatisfactoryintheregionofinterest,sothatanywitnessedspectralpollutionstemsfromtheapproximationofthe fractionalderivative.

Thefractional derivativeisapproximatedwithN variables

ϕ

n,sothatthematrix

A

h issquare with

(2

+

Np

+

N

)

lines.

Figs. 13and14plotthespectraobtainedusingboththe Qβ,N andtheoptimizationmethods.Inbothcases,thestructure

ofthespectrumisconsistentwiththetheory;therearehowevermajordifferencesbetweenthetwomethods.

Since the Qβ,N method has one parameter, it is straightforward to assess convergence.In the region of interest, the

spectrum isconvergedforN

11,seeFig.13.TherightplotofFig.13showsthat theessentialspectrumisonlymadeof realeigenvalues.Moreover,wehavethemostimportantpropertythat

S

(

A

h

)

:=

max

λhσp(Ah)

(λ

h

)

isnegativeforallvaluesofN.Hence,thestabilityresultisverifiednumerically.

LetusnowturntotheoptimizationmethoddescribedinSection4.2.Letusset

ξ

max

=

104 so thatthetworemaining

freeparametersare N andthelowerbound

ξ

min.Fig.14plotsthespectraobtainedusingtwovaluesforN and

ξ

min,namely

smallones(N

=

20 and

ξ

min

=

10−15)andlargeones(N

=

400 and

ξ

min

=

10−10).Theleftplotshowsthatthestructureof

thespectrumisapparentlyidenticaltothatobtainedwiththe Qβ,N method,withareasonablyconvergedpointspectrum.

However, thezoomgivenintherightplotshowsthattheessentialspectrumispolluted.Significantlyforastabilitystudy, thespectrumcanbecomeslightlyunstable,seethepositivevalueofS

(

A

h

)

for

ξ

min

=

10−15:although S

(

A

h

)

remainsclose

tozero,itssigndependsonthechoiceof

ξ

minandN. Thisimpliesthattheoptimizationmethodisnot suitedtocompute

thespectrumof

A

inthisexample.

TheBirk–Songmethod(27) alsoenjoysspectralaccuracy,seeFig.15.AtN

=

11,thespectrumiswell-convergedandthe essential spectrum isboth non-polluted andstable. Thissuggeststhe conjecturethat spectral correctness isexhibitedby

(16)

Fig. 15. Spectrumσ(Ah)for(32,33)obtainedwithtwoquadraturemethodswithN=11.TransportequationdiscretizedwithNp=80 nodes.( )Qβ,N methodwithβ= β2.(S(Ah)= −10−4).( )Birk–Songmethod(27) (S(Ah)= −3.5×10−8).

Fig. 16. Spectrumσ(Ah)for(35,33)obtainedwiththeQβ,Nmethodwithβ= β2andN=400.TransportequationdiscretizedwithNp=80 nodes.( ) τ0=0 (S(Ah)= −6×10−10).( )τ0=2τ(S(Ah)=6.3×10−2).

everyquadrature-basedmethods,sothat theyshouldbepreferredtooptimization-basedonesforanyapplicationwherea correctspectrumisneeded.

Letusconcludethissectionwithtwoadditionalexamples.

ApplicationtoBesselfunction. AsrecalledinSection2.1,diffusiverepresentationsneednotberestrictedtofractional opera-tors.Letusconsideramorecomplexequationthan(32),forinstancethememorydelayequation

˙

x

(

t

)

=

Ax

(

t

)

+

Bx

(

t

τ)

g I2J0



x

(

t

τ

0

),

(35)

where

τ

0

0 and A, B,g,and

τ

aregivenby(33).Similarlyto(32),thediffusiverepresentationof J0givenby(5) enables

toformulatean abstractCauchyproblem(34).However,since theweight

μ

iscomplex-valued,theasymptoticstabilityof (35) cannot be established using the energy methodfollowed in [36, Thm. 7] for(32). Hence the need fora numerical stability study. Fig.16 plots the discrete spectrum obtainedwiththe Qβ,N method fortwo valuesof

τ

0,namely

τ

0

=

0

and

τ

0

=

2

τ

.Thespectrumexhibitstwostraightlinesthatstartfrom

i and

+

i,whicharethecutschosentoextendthe

Laplacetransform

ˆ

J0tothelefthalf-plane.Thisdiscretizationenablesustoconcludethatthecase

τ

0

=

0 isasymptotically

stablewhilethecase

τ

0

=

2

τ

isunstable.

Constrainedoptimization. The pollution ofthe essentialspectrum visibleinthe rightplotofFig. 14can be linked tothe unconstrained natureofthelinearleastsquaresoptimizationdescribedinSection4.2.Morespecifically,itiscausedbythe negativityofsomeweights

μ

n (whichisnotnecessarilyapracticalconcernfortime-domaincomputations).Analternative

isthereforetouse,insteadofthepseudo-inverse,an iterativeoptimizationalgorithmthatenforces thenonnegativity con-straint.ThisisillustratedbyFig.17,whichpresentsspectraobtainedbyminimizing(28) with

μ

0 usingthenonnegative leastsquaresalgorithm[24,(23.10)] throughitsimplementationinMATLAB®

lsqnonneg

.Thespectralpollutionis signif-icantlyreduced,buthasnotcompletelydisappeared,sinceslightlyunstablespectra(orevenunconvergedspectra)canstill beobtainedforsomepoorlychosenparameterssuchas

ξ

min

=

10−15,

ξ

max

=

104,andN

=

50.Thecostofthisoptimization

algorithm,aswell asits difficultytoconvergeforsometriplets

min

,

ξ

max

,

N

),

isapracticalchallenge tothecomputation

ofstabilityregions.

5. Improvementofthequadraturemethodusinganonlinearleastsquaresoptimization

The discussion of Section 4.3 hashighlighted that thesole use of a nonlinear least squaresminimization of the cost function (28) is not practical, dueto both its computational cost andsensitivity to the initial pole distribution (i.e. the initialdistributionof

n

)

n).Thissectioninvestigatestheuseofanonlinearleastsquaresminimizationtorefinethepoles

andweights givenby the Qβ,N method(see Definition4),i.e.acombined useofanoptimizationandaquadraturerule.It

(17)

Fig. 17. Spectrumσ(Ah)for(32,33)obtainedbyminimizing(28) withthenonnegativityconstraintμ≥0.Upperboundchosenasξmax=104.Transport equationdiscretizedwith Np=80 nodes.Lowerboundξmin=10−10with( )N=400 (S(Ah)= −10−12);( )N=50 (S(Ah)= −10−12);( )N=20 (S(Ah)= −10−12).( )N=50 withξmin=10−15(S(Ah)= +5.4×10−16).

the numericalresultsshow that thecost function(37) isto bepreferredto build parsimoniousapproximationsasit can deliversubstantialimprovementswhenthenumberofquadraturenodesislow.

Section 5.1 defines the numerical methodology as well asthe covered cost functions, while Section 5.2 gathers the numericalresultsandconcludeswithpracticalguidelines.TheMATLABcodeisavailableonline.1

5.1. Numericalmethodologyandconsideredcostfunctions

The purpose of the numericalmethodology described below is to improvethe poles andweights given by the Qβ,N

methodbyminimizing agivencostfunction J ;fromnowon,thismethodologyisdenoted Qβ,OPT- JN .Asimilarmethodology isusedin[26,§ 4.2] toimprovetheBirk–Songmethod(27).

Definition12.The Qβ,OPT- JN discretizationof(1) is(8) wherethepolesandweightsarecomputedwiththefollowing three-stepmethod.

1. Choose N (numberof quadraturenodes),

β

(scalar parameterthat sets thechangeofvariable), and

(ξ,

μ

)

→

J

(ξ,

μ

)

(costfunction).

2. Computethepoles

n

)

n andweights

(

μ

n

)

n usingtheQβ,N method(seeDefinition4).

3. Refinethecomputedpolesandweightsbyminimizing J underthelinearconstraints

0

≤ ξ

n

(

a)

ξ

n

≤ ξ

max (b)

μ

n

0 (c)

(

n

∈ N),

(36)

startingwiththevaluesobtainedinstep2.

Theconstraints(36) are motivatedbythediscussionsoftheprevious sections:letussummarizetheirpurposes. Condi-tion(a)isrequiredforstability,asitpreventsanypoleofh

ˆ

num fromhavinganonnegativerealpart.Condition(b)ensures

that thepoles stay below theupper bound givenby the Qβ,N method,so that there isno time-step reduction withan

explicittime-integrationscheme.Condition(c)isoptionalbutcanbeenforcedwhenthediffusiveweight

ξ

→

μ

(ξ )

is non-negative asitenables toget an unpolluted andstablespectrum (see Section 4.5foran illustrationof theimpact ofthis constraint).

The useofa nonlinearleastsquaresoptimizationimpliesanadditionalfreedom inthedefinition ofthecostfunction, compared withthe linearleastsquaresconsidered inSection 4.2.The three studiedcost functionsareformulated in the frequencydomain.ThefirstoneisthatalreadyusedinSection4.2:

J

(ξ,

μ)

:=

K

k=1







N

n=1

μ

n i

ω

k

+ ξ

n

− ˆ

h

(

i

ω

k

)







2

,

(37)

withtheK angularfrequencieslogarithmicallyspacedin

min

,

ξ

max

]

ω

k

= ξ

min

ξ

max

ξ

min

k−1 K−1

(

k

∈ J

1

,

K

K).

The second costfunction isformulated soasto cancelanintegrablesingularity of

ω

→ ˆ

h

(

i

ω

)

at

ω

=

0 (considerh

ˆ

= ˆ

with

α

∈ (

0,1)):

Figure

Fig. 1. Errors ( 23 , 24 , 25 ) and maximum pole ( 26 ) for h = Y α with α = 5 8 . ( ) Q β, N with β = β 1 = 1 8
Fig. 2. Errors ( 23 , 24 , 25 ) and maximum pole ( 26 ) for h = Y α with α = 1 2 . ( ) Q β, N with β = 1 2
Fig. 5. Errors ( 23 , 24 , 25 ) and maximum pole ( 26 ) for h = J 0 . ( ) Q β, N with β = 1 2
Fig. 6. Errors ( 23 , 24 , 25 ) and maximum pole ( 26 ) for h = Y α with α = 5 8 . ( ) Q β, N with β = β 1 = 1 8
+7

Références

Documents relatifs

The failure of a standard Gauss–Hermite quadra- ture of order k = 70 (green), as compared to the almost su- perimposed results from, respectively, the method using the Faddeeva

Durch die einteilung in diese 2 × 2 matrix ergeben sich vier generische Risikoprofile, die durch unterschiedliche Schwerpunkte im risikomanagement adressiert werden

Erwähnung im Zitat: Freiburg, K.U.B.: Papiere Theodor Scherer-Boccard (LD 5). Erwerbungsform: Schenkung von Frl. Hedwige Gressly, Solothurn, am 29. Beschreibung: Joseph Leisibach

In Section 2, we introduce a theory for three variables maps that will be applied to solution operator of time fractional problems.. We identify their main features and investigate

In addition, tuning the parameters with the ordinary least squares linear regression can be done with an exact method, whereas neural networks methods re- quire iterative

Il nous paraissait donc légitime de réaliser une étude dont l’objectif principal était de comparer la prévalence de l’infection à CT par méthode directe de dépistage par PCR,

Our construction of the fractional Brownian field, which is instead based on the study of fractional Riesz kernels is similar to the construction of fractional fields on manifolds

For decades, nuclear strategy and doctrine in China has been the purview of the weapons scientists who developed China’s nuclear and missile capabilities by dint of their positions