• Aucun résultat trouvé

Random walks with negative particles for discontinuous diffusion and porosity

N/A
N/A
Protected

Academic year: 2021

Partager "Random walks with negative particles for discontinuous diffusion and porosity"

Copied!
16
0
0

Texte intégral

(1)

OATAO is an open access repository that collects the work of Toulouse

researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:

http://oatao.univ-toulouse.fr/25718

To cite this version:

Oukili, Hamza

and Ababou, Rachid

and Debenest, Gérald

and Noetinger, Benoît Random walks with negative particles

for discontinuous diffusion and porosity.

(2019) Journal of

Computational Physics, 396. 687-701. ISSN 0021-9991.

Official URL:

https://doi.org/10.1016/j.jcp.2019.07.006

(2)

Random

Walks

with

negative

particles

for

discontinuous

diffusion

and

porosity

H. Oukili

a

,

,

R. Ababou

a

,

G. Debenest

a

,

B. Noetinger

b

aInstitut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS - Toulouse, France bIFP Energies nouvelles, Rueil-Malmaison, France

a

b

s

t

r

a

c

t

Keywords: Diffusion

RandomWalkParticleTracking(RWPT) Discontinuities

Analyticalsolutions Porousmaterials Negativeparticles

Thisstudydevelopsanew Lagrangianparticlemethodfor modelingflowand transport phenomenaincomplexporousmediawithdiscontinuities.Forinstance,diffusionprocesses can be modeledby Lagrangian Random Walk algorithms. However, discontinuities and heterogeneitiesare difficulttotreat,particularlydiscontinuousdiffusionD(x)orporosity

θ (x).Inthe literatureonparticleRandomWalks, previousmethods used tohandlethis discontinuityproblemcanbecharacterizedintotwomainclassesasfollows:“Interpolation techniques”,and“Partialreflectionmethods”.Oneofthemaindrawbacksofthesemethods isthesmalltimesteprequiredinordertoconvergetotheexpectedsolution,particularly inthepresenceofmanyinterfaces.Theserestrictionsonthetimestep,leadtoinefficient algorithms.The RandomWalk Particle Tracking(RWPT)algorithmproposedhereis,like others intheliterature,discreteintimeand continuousinspace(gridless).We propose a novel approach to partial reflection schemes without restrictions on time step size. The new RWPTalgorithm is based onan adaptive “Stop&Go” time-stepping,combined withpartial reflection/refractionschemes, andextendedwith anew conceptofnegative massparticles.Totestthenew RWPTscheme,wedevelopanalyticalandsemi-analytical solutionsfordiffusioninthepresenceofmultipleinterfaces(discontinuousmulti-layered medium). The results show that the proposed Stop&Go RWPT scheme (with adaptive negative massparticles) fits extremelywell the semi-analytical solutions,even for very high contrasts and in the neighborhood of interfaces. The scheme provides a correct diffusivesolution inonlyafewmacro-timesteps,withaprecisionthatdoesnotdepend ontheirsize.

1. Introduction

Particlemethodshavebeenmuchusedtomodelthetransportofmass,heat,andotherquantitiesthroughsolids,fluids, andfluid-filled porousmedia. The last two cases involveboth diffusive and advective transport phenomena (due to the moving fluid). Hydrodynamicdispersion dueto detailedspatial variations of thevelocity field has alsobeen modeledas aFickiandiffusion-type process,e.g. influid-filledporous structures(see [1]).Other purelydiffuseprocessesincludeheat diffusioninmaterials(Fourier’slaw),andpressurediffusion(compressibleDarcyflowinafluid-filledporousmedium).

*

Correspondingauthor.

(3)

Particlemethodsarebasedonadiscreterepresentationofthetransportedquantity(soluteconcentration,fluidpressure, fluidsaturation,heatortemperature)asdiscretepackets(the“particles”),eachcarryingaunitmass,oraunitheat,etc.The advantage ofparticle methodsis thatthey avoidsome ofthe problemsofEulerianmethods basedon PartialDifferential Equations(PDE’s),suchasnumericalinstability,artificialdiffusion,massbalanceerrors,and/oroscillationsthatcouldleadto negativeconcentrationsorsaturations.Varioustypesofparticlemethodshavebeendevised:non-LagrangianParticle-in-Cell methods(PIC);implementingMarkovprocessesinaPICframeworkwithstochastictimes[2];continuous-timeparticleson a grid [3];the time-domain random walk (TDRW)[4,5];andLagrangian particles withdiscrete time-stepsin continuous space (gridless). Such particle methods have been extensively used for modeling advective-diffusive solute transport in poroussoils,aquifers,andreservoirs[6].

In “Lagrangian” methods, space is assumed continuous, and particle positions X

(

t

)

are real numbers (the method is then“gridless”).Inthepresentwork,wefocusonLagrangianparticletrackingtosolvediffusionprocessesbyrandomwalk (Wienerprocess),underthegenericnameRWPT(RandomWalkParticleTracking).

AspecificstudyofthemacroscopicbehaviorofRandomWalkparticlesisnecessarywhendealingwithaheterogeneous ordiscontinuous diffusioncoefficient D

(

x

)

.Thecaseofdiscontinuous diffusionisparticularlytroublesome,andthisisour mainfocus.Suchdiscontinuitiesoccurat“materialinterfaces”,withsuddenchangesofmicrostructure(compositematerials, layeredporousmedia,etc.),andatdiscontinuitiesinphase,forexampletheinterfacebetweensurfacewaterandgrounwater (an importantecological habitatin thehyporheic zone). Forsolute diffusion ina porous medium, an additionalpoint of interest is thecaseofdiscontinuous porosity

θ (

x

)

(if the mediumis water-saturated),or discontinuous volumetricwater content

θ (

x

)

(ifthemediumisunsaturated).

IntheliteratureonparticleRandomWalks, thedisplacementschemesusedforhandlingthediscontinuitycanbe char-acterizedintotwoclasses:(1)Interfacecoarsening,interpolation,anddriftvelocityscheme(e.g.[7,8]);(2)Partialreflection schemes (e.g.[9]).Thefirstclass(“interpolationtechniques”)smoothout thediscontinuity[10]:theinterfaceiscoarsened andtheparameters(diffusion,porosity)areconsideredcontinuousthroughthecoarsenedinterface.Thesecondclass (“par-tialreflectionmethods”), introducedby Uffink[9],implementsaprobabilistic reflection/transmission oftheparticles across the discontinuous interface:probabilities are assigned for particle reflection and transmission across the interface. Other similarpartialreflection/transmissionschemeswereinvestigatedby[11–17].

Lejay & Pichot [18] proposed a“two-step algorithm” (theirAlgo.2), equivalent toa Stop&Goprocedure: theparticle is

stopped atthe interface,andthen undergoes a “SkewedBrownianMotion” (SBM)forthenext step, whichmaylead the

particle to cross the interface. Their two-step algorithm was presented fora 1D finite domain with zero flux boundary conditions.Onthe otherhand,they alsopresenteda“one-step algorithm”(theirAlgo.3)where,itseems,they useatype of acceptance-rejectionmethod toobtainthe displacementinthe neighborhoodoftheinterface (this methodisdifferent fromours).Morerecently,Lejay&Pichot[19] testedtheirapproaches[18] byimplementing1Dbenchmarktests,involving comparisonsbetweentheirSBMandtwoRandomWalksapproachesintheliterature [9,15].

Oneofthedrawbacksoftheseapproachesisthatasmalltimestepisrequiredinordertoconvergetothecorrectsolution ofthediscontinuousPDE,evenifthenumberofparticlesisverylarge.Thisisparticularlylimitinginthepresenceofmany interfaces. Thislimitation becomes even more drasticfor very largediffusion contrasts,e.g., two orders of magnitudeor more.Thus,[20,17] showedthattheabovemethodsare onlyvalidforinfinitesimaltimesteps.Asmalltimestepmustbe usedinordertoavoidtheovershootofheterogeneousanddiscontinuoussubregionsofspacebytheparticles.

Inthisstudy,weproposeanovelapproachintheframeworkof“partialreflectionmethods”butwithoutrestrictionson time stepsize.ThenewRWPTalgorithmisdiscreteintimeandcontinuousinspace(gridless),andthenovelaspectshave to dowiththe treatmentof discontinuities.The newalgorithm isbasedon adaptive“Stop&Go” time-stepping,combined withpartialreflection/transmissionschemessimilarto[15–18],andextendedwiththeconceptofnegativemassparticles.

This paper is organized as follows. The next section, 2, presents the theory behind Random Walk Particle Tracking methods (RWPT),andthe correspondingmacroscopicdiffusionPDE. Section3presentsa novelparticle-basedmethodfor solvingheterogeneousanddiscontinuoustransportproblemsusingRWPTwith“negativemassparticles”.Section4compares analyticalsolutionstoourRWPTresults.Section5recapitulatesthemethodanddiscussesextensionsofthiswork.

2. Theory

Thissectionpresentsthetheoryofadvective-diffusivetransport,namely,theconcentration-based,macroscopicPDE’s,and therelatedtheoryofStochasticDifferentialEquations(SDE’s)drivenby whitenoise,governingparticlesatthemicroscopic scale.

2.1. ConcentrationbasedPDE’s 2.1.1. TheGaussianfunction(PDF)

Let usdefine aGaussian PDF, denoted G



μ

,

σ

2

,

x



, where

μ

is themean,

σ

2 thevariance, and x

=

X

(

t

)

the particle

positionatanyfixedtimet:

x



R

;

G



μ

,

σ

2

,x



=

1

σ

2

π

exp



(x

μ

)

2 2

σ

2



(2.1)

(4)

A Gaussian random variable (RV) withmean

μ

and variance

σ

2 is denoted N



μ

,

σ

2



and hasthe Probability Den-sity Function (PDF) G



μ

,

σ

2

,

x



. Letting

σ

2

=

2D

0t, this Gaussian PDF represents the macroscopic concentration

solu-tion C

(

x

,

t

)

of the diffusion PDE with spatially constant diffusion coefficient D0, for an initial point source condition

C

(

x

,

t

)

=

M0

δ (

x

μ

)

,withunitmassM0

=

1,inaninfinitedomain.

2.1.2. Theadvection-diffusiontransportPDEforconcentration

Theequationgoverningthetransportofsolute concentration(C )inaheterogeneousmediumwithvariableparameters

D (diffusioncoefficient),

θ

(porosity)andV (velocity)is(seeforinstance[11]):

∂ (θC

)

∂t

= ∇·(−θ

C V

+

D

·∇ (θ

C

))

= −∇·{θ

C

(

V

+ ∇·

D

+

D

·∇ (

ln

θ ))

} +

1

2

∇·∇·(

2

θ

C D) (2.2)

Notethatwedonotdistinguishbetweenvectorsandsecondranktensors.Thefirstequalitycorrespondstotheconservative (divergence)formofthePDE,whilethe secondequalitycorrespondstoits decomposedform(fromwhichapparent “drift velocity”termsemergeduetospatiallyvariablediffusionandporositycoefficients).

Fora1Dproblemwithscalardiffusion D, thetransportPDEforaninitialsourceatx

=

x0 ina homogeneousmedium

withconstantparameters D,

θ

andV is:

t

>

0

; ∀

x



R;

C

∂t

(x,t)

= −

V

C

x

(x,t

)

+

D

2C

x2

(x,t)

t

>

0

;

lim x→±∞C

(x,t)

=

0

x



R

;

C

(x,

0

)

=

M0

θ

δ (x

x0

)

(2.3)

The last equation represents an initial point source located at x

=

x0 with mass M0, and

δ (

x

)

represents the Dirac

pseudo-function(

δ

distribution)(e.g.Schwartz[21]).

ThisPDEwillbelaterformulatedforpurelydiffusivediscontinuousdiffusionandporositycoefficientsinsection2.2. TheanalyticalsolutionofEq. (2.3) is:

∀t

>

0

; ∀x



R;

C

(x,t)

=

M0

θ

G

(x

0

+

V t

,

2Dt

,

x) (2.4)

whereG istheGaussianPDFdefinedinEq. (2.1).

2.1.3. Fromconcentrationtoparticlepositions

LetusconsidernowaparticlebasedmethodtosolveEq. (2.3).Theconcentrationcanbeexpressedasfollows[22,23]:

C

(x,

t)

=

R C

(X

t

,t

) δ (X

t

x)d Xt

=

R

δ (X

t

x)dmt (2.5)

where Xt anddmt represent,respectively,thepositionandmassofaninfinitesimalconcentrationpacket(tobediscretized

asa“particle”).

ThePDFofparticlespositionsatanyfixedtimet shouldfollowthedistributionG

(

x0

+

V t

,

2Dt

,

x

)

.Thus,the

correspond-ingparticlepositionscanbegeneratedusingaGaussianRV:

Xt

=

N

(x

0

+

V t

,

2Dt

)

=

x0

+

V t

+

2 D t N

(

0

,

1

)

(2.6)

whereN

(

0

,

1

)

designatesanormalizedGaussianRV(zeromeanandunitvariance).ForV

=

0,

(

Xt

)

istheWienerprocess.

Ascanbeseen,thePDFof

(

Xt

)

isidenticaltotheconcentrationsolutioninEq. (2.4) dividedby M0.

InthecaseofspatiallyvariablebutdifferentiablecoefficientsD

(

x

)

and

θ (

x

)

,thecorrespondingSDEbecomes[22,11,24]:

Xt+dt

=

Xt

+

2D

(

Xt

)

dt N

(

0

,

1

)

+ {

V

(

Xt

)

+ ∇ (

D

(

Xt

))

+

D

(

Xt

)

∇ (

ln

θ (X

t

))}

dt (2.7)

whichgovernstheGaussianMarkovianprocess

(

Xt

)

.After“explicit”“discretization”,dt is replacedwiththefinite



t step

[7–9,12,25,13–17].

(5)

2.2. Prototypeproblem:1Ddiffusionwithasinglesourceandasinglediscontinuity

In thissection,we define a purelydiffusive problem, withan initialDiracsource, inan infiniteporousmedium com-prising twosubdomains

1 and

2 separatedbyasingle discontinuity,or“materialinterface”.The interfaceislocatedat

x1−2

=

0,andtheinitial point sourceis locatedat XSource

=

x0

<

0.The subdomains

1 and

2 havedifferentdiffusion

coefficients D1 andD2,anddifferentporosities

θ

1 and

θ

2.Suchdiscontinuities canbe foundinsoils,fracturedrocks,and

manyother porousmaterials. Forinstance,[8] studiedoxygendiffusionthrough adiscontinuous grains/jointssystemin a submicronlayerofNickelOxide.

Here,toillustrateourRWPTmethod(asinLabolle’sanalysis[11]),wefocuson1Dsolutediffusioninaporousmedium withasingleinterface,wherebothD

(

x

)

and

θ (

x

)

arediscontinuous.ThePDEsystemforthediscontinuousproblemis,for

thedomain

= 1

∪ 2

:

∀t

>

0

; ∀x



i

;

∂ (θ

iCi

)

∂t

=

∂x



θ

iDi

Ci

x



(2.8a)

t

0

;

lim x→±∞Ci

(x,

t)

=

0 (2.8b)

∀t

0

;

C1

(x

1−2

,

t)

=

C2

(x

1−2

,t)

t

0

; −θ

1D1

C1

x

(x

1−2

,t)

= −θ

2D2

C2

x

(x

1−2

,t)

(2.8c)

x



i

;

Ci

(x,

0

)

=

M0

θ

i

δ (x

x0

)

(2.8d)

InEq.(2.8a),each PDErepresentsamassconservationequation forthesolute ineachsubdomain.Inthecaseathand, porosities

θ

1 and

θ

2 are constantin eachsubdomain andcan befactored out fromeach PDE.Thesystem(2.8c) enforces

thecontinuityofsolute concentration(masspervolumeofsolvent)andofarealsolutefluxdensity.Inalltheseequations, Fick’slawisusedforthediffusiveflux.

Theanalyticalsolutionofproblem2.8isgivenbyC1 andC2(

t

0):

(

1

)

: ∀

x

x1−2

;

C1

(x,t

)

=

C1S

(x,

t)

+

C1R

(x,t)

(2.9a) C1S

(x,t)

=

M0

θ

1 G

(x

1−2

+ (

x0

x1−2

) ,

2D1t,x) (2.9b) C1R

(x,t)

=

M0

θ

1 R1−2G

(x

1−2

− (

x0

x1−2

) ,

2D1t,x) (2.9c)

(

2

)

: ∀

x

x1−2

;

C2

(x,t

)

=

M0

θ

2

(

1

R1−2

)

×

G

(x

1−2

+ β

1−2

(x

0

x1−2

) ,

2D2t

,x)

(2.9d) R1−2

=

θ

1

D1

− θ

2

D2

θ

1

D1

+ θ

2

D2 and

β

1−2

=

D2

D1 (2.9e)

C1S (“S”for“Source”)isthesolutionofthisdiffusionproblemwithoutinterface(nodiscontinuities).

C1R isthesymmetricofC1S relativetotheinterfacex

=

x1−2,multipliedbycoefficient R1−2 (R forReflection).

C2 isthesolutionofadiffusionproblemwithinitialmassM0

(

1

R1−2

)

locatedatx1−2

+ β1

−2

(

x0

x1−2

)

.

Eqs.(2.9) extendpreviousanalyticalsolutionsgivenby[26,7,27].

3. Methodsandalgorithms

In this section, we start by explaining the need for a new algorithm to deal with discontinuities. Then we discuss previous methodsproposed intheliterature.Finally,wepresentournewmethodanddiscussits advantagescompared to thepreviousones.

3.1. DiscontinuityproblemforRandomWalk

ThemoststraightforwardtestofanalgorithmfordiffusionwithdiscontinuousD

(

x

)

isthe“uniformconcentrationtest”, wheretheexactsolutionofthediffusionPDEisconstantconcentrationC

(

x

,

t

)

=

C0atalltimes(t)andallpositions(x).This

isobtainedbyimposingconstantinitialconcentration C

(

x

,

0

)

=

C0,andimposingeitherzerofluxconditions

C

/∂

x

=

0,or

else DirichletconditionsC

=

C0,atbothboundaries.

Therandomwalkequationcanbewrittenasfollowsfor1DdiffusionwithvariableD

(

x

)

:

X(p)

(t

n

+ 

tn

)

=

X(p)

(t

n

)

+ 

tn

D

∂x



X(p)

(t

n

)



+



2D



X(p)

(t

n

)



t

nZ(p)

(t

n

)

(3.1)

(6)

However,thisequationislimitedtothecaseofcontinuouslyvariablediffusioncoefficient.Letusnowfocusonthecase ofdiscontinuous D

(

x

)

.Ifwenaïvelyinsertthediscontinuous D

(

x

)

intheaboveequation,adeficitofconcentrationappears near the interface of discontinuity, where D1

<

D2. We can deal with this deficit of concentration using two different

schemes(reflection,smoothing).Forthispurpose,aStop&Goalgorithmisnecessary;itisdescribedinthefollowingsection.

3.2. Partialreflectionandextensions(algorithm) 3.2.1. PartialreflectionschemeforthecaseR1−2

0

Thegeneralprincipleofthispartialreflectionscheme,sofar,issimilartotheonepreviouslyusedinliterature[15–17]. The fractions

|

R1−2|and

(

1

− |

R1−2|)are interpretedasprobabilities.The issueof“negativeprobabilities”will betackled

laterbelowandinsection3.2.2.Here,wefocusonR1−2

0.

Thus,thedisplacementalgorithmfor X

(

t

)

becomes:

JR

1−2

K =

1

;

X

(t)

=

x1−2

N

(x

0

x1−2

,

2D1t

)

:



XRlreflected



JR

1−2

K =

0

;

X

(t)

=

x1−2

+



D2 D1 N

(x

0

x1−2

,

2D1t

)

:



XRrrefracted



(3.2)

where

J

R1−2K designates a Bernoulli RV that is equal to 1 with probability

|

R1−2| and equal to 0 with probability

(

1

− |

R1−2|),x0 istheinitialparticleposition X

(

0

)

,andx1−2istheinterfaceposition.

However,untilnowwehaveconsideredonlytheabsolutevalueofR1−2.Thus,thepreviousalgorithmissufficientonly

incaseswhereR1−2 ispositive.

3.2.2. PartialreflectionschemeforthecaseR1−2

<

0

Negative partialreflection probability R1−2 corresponds to a subtractionin theanalytical solution

(

C

(

x

,

t

))

. However,

itis difficultto“substract” particlesata specificlocation (position)withRWPTcomparedto addingparticles.The reason isthat,whenattempting tosubstractaparticleata specifiedlocation,onehastoact indirectlybysearchingforparticles in a neighborhood ofthe desired location, whileadding a particle ata specific location isalways possibledirectly. This subsectiondiscussesanewmethodtodealwithnegativeR1−2 forasingleinterface(wehavealsoextendedthemethodto

multipleinterfacesinthenextsubsection).

Fig. 3.1. Partialreflectionschemewithnegativemassparticles,foradomainwithdiscontinuousdiffusionandporosity(e.g.,here,

D

2<D1).Eachgiven

particlearrivingattheinterfacewithnegative

R

1−2istransmittedwithprobability1.Inaddition,twoparticleswithoppositemassespopupwith|R1−2|

probability.

Forthe caseof negative R, we propose thefollowing algorithm. First,the particle isalways refracted. Secondly, with probability

|

R1−2|, two newparticles are created: one is refracted and has the same mass asthe original particle,and

theother isreflected withamassofopposite sign(Fig. 3.1). Thisalgorithmallows ustomodeltheexact solutiontothe discontinuousdiffusionproblem.Thus,thedisplacementalgorithmforeachparticle Xk

(

t

)

becomes:

Xk

(t

)

=

x1−2

+



D2 D1 N

(x

0

x1−2

,

2D1t)

{

refracted

}

J

R1−2

K =

1

;

Xkpos

(t)

=

x1−2

+



D2 D1 N

(x

0

x1−2

,

2D1t)

{

refracted

}

J

R1−2

K =

1

;

Xkneg

(t)

=

x1−2

N

(x

0

x1−2

,

2D1t

)

{

reflected

}

(3.3)

(7)

3.3. Multipleinterfaces

Aftercrossing oneinterface, aparticlecould eventually crossasecond interface. Thealgorithm shouldbe abletodeal withanynumberofinterfacescrossedbyagivenparticle,inasingletimestep.

3.3.1. Semi-analyticalsolutionforadiffusionproblemwithN

2 interfaces

ToobtaintheRWPTalgorithmthatdealswithmultipleinterfaces,letusfirstgeneralizethesolutionEq. (2.9) ofEq. (2.8) forN-interfacesand(N

+

1)layers.ThegeneralizationofEq. (2.8) fori

J

1

;

N

+

1

K

is:

∀t

>

0

; ∀x



i

;

∂ (θ

iCi

)

∂t

=

∂x



θ

iDi

Ci

x



(3.4a)

t

0

;

lim x→−∞C1

(x,t)

=

0

∀t

0

;

lim x→+∞CN+1

(x,t

)

=

0 (3.4b)

∀t

0

; ∀i



J

1

;

NK Ci



xi,i+1

,t



=

Ci+1



xi,i+1

,t



t

0

; ∀

i



J

1

;

N

K −θ

iDi

Ci

x



xi,i+1

,t



= −θ

i+1Di+1

Ci+1

x



xi,i+1

,t



(3.4c)

∀x



i

;

Ci

(x,

0

)

=

M0

θ

i

δ (x

x0

)

(3.4d)

The solutionEq. (2.9) iscomposed ofthreegaussians,one ofwhich(C1S

(

x

,

t

)

) isthesolutionofa purediffusiveproblem, andtheothertwodependonCS

1 andontheinterfaceposition.LetusdefinetwolinearoperatorsLi j andLi j:

Li j

(G

(x

0

,

2Dit,x))

=

Ri jG



2xij

x0

,

2Dit,x



(3.5) Li j

(G

(x

0

,

2Dit,x))

=



1

Ri j



G



xi j

+



Dj Di



x0

xij



,

2Djt,x



(3.6) ThusthesolutionEq. (2.9) couldbewrittenasfollows:

t

>

0

; ∀

x

x1−2

;

C1

(x,t)

=

C1S

(x,t)

+

L12



C1S

(x,

t)



t

>

0

; ∀

x

x1−2

;

C2

(x,t)

=

L∗12



C1S

(x,t)



(3.7)

Thedecomposition(Eq. (3.7))canbefurthergeneralized:foreachindividualinterface,newgaussiansaregenerated,with parameters chosen to fitthe solution.Hence, each time agaussian function g initiallyina subdomain

(

i

)

encountersan interfaceatpositionxij,weaddLi,j

(

g

)

tothesolutioninsubdomain

(

i

)

andLi,j

(

g

)

tothesolutioninsubdomain

(

j

)

.See

Algorithm1.

Algorithm1Semi-analyticalsolutionfordiffusionwithN

2 interfaces.

1. Ckconcentrationinsubdomain

k

2. Initialize

C ik

=CSwith

CS

thesolutionofadiffusionproblemwithnodiscontinuity. 3. uk= ±1 thedirectiontowardstheinterfaceslimitingsubdomain(k).

4. while(Ck)notconverged do

(a) Ck=Ck+Lk,k+uk(C ik)and

Ck

+uk=Ck+uk+Lk,k+uk  Ci k  (b) uk+uk=ukand

uk

= −uk (c) C ik=Lk,k+uk(C ik)and

C ik

+uk=C ik+uk+Lk,k+uk(C ik) 5. end

For the two-interface problem (N

=

2), the previous algorithm leads to an analytical solution for diffusion with an initial source,withdiscontinuousdiffusioncoefficientsandporositieshavingthreedifferentvalues(threelayers).Thus the analytical

solutionforasourcelocatedatthepositionx0 insubdomain

(

i

=

1

)

,

t

0:

x

x1;2

;

θ

1 M0 C1

(x,

t)

=

id

+

L12

+

+∞



i=0 L21

(L

23L21

)

iL23L∗12

x1;2

x

x2;3

;

θ

2 M0 C2

(x,

t)

=

+∞



i=0

(id

+

L23

) (L

21L23

)

iL∗12

x

x2;3

;

θ

3 M0 C3

(x,

t)

=

L∗23 +∞



i=0

(L

21L23

)

iL∗12 (3.8)

(8)

Theanalyticalsolutionforasourcelocatedatthepositionx0insubdomain

(

i

=

2

)

,

t

0:

x

x1;2

;

θ

1 M0 C1

(x,t)

=

L∗21 +∞



i=0

(L

23L21

)

i

(id

+

L23

)

x1;2

x

x2;3

;

θ

2 M0 C2

(x,t)

=

+∞



i=0

(id

+

L21

) (L

23L21

)

i

(id

+

L23

)

x

x2;3

;

θ

3 M0 C3

(x,t)

=

L∗23 +∞



i=0

(L

21L23

)

i

(id

+

L21

)

(3.9)

withtherightsideofEq. (3.8) isappliedtoG

(

x0

,

2D2t

,

x

)

.

ThissolutionisdetailedinAppendixA,andithasbeenverifiedbysubstitutionintothegoverningPDE’s.

3.3.2. GeneralizationoftheRWPTalgorithmforN

2 interfaces

Thesameideaofgeneralization oftheanalyticalsolutioninsubsection3.3.1 (fromoneinterfaceintoamulti-interface) hasbeenappliedtotheRWPTmethodforaproblemwithN interfaces.Ifaparticlecrossesan interface,then(step 1)its positionis alteredaccordingtoprevious algorithms that dealwithdiscontinuities (see subsection3.2,Eq. (3.2) for R

0 andEq. (3.3) for R

<

0).After this(step 2), ifthenew particleposition doesnot belong toits initial subdomain, norto the adjacent subdomains, then go back to “step 1”. Thereafter, the particle continues undergoing this algorithm within a conditional loop, until the particle doesnot cross an interface (it then reaches its final position within the loop). See Algorithm2.

Algorithm2RWPTalgorithmforN

2 interfaces.

1. Considerparticle(k)withmass

mk

andposition

Xk

. 2. while particle(k)crossesinterfaces do

(a) If R1,2≥0 then

i. IfJR1,2K =0; then theparticle(k)is

refracted to

theposition

X

kRrasinEq. (3.2) endif ii. IfJR1,2K =1; then theparticle(k)is

refracted to

theposition

X

kRlasinEq. (3.2) endif (b) Else (case

R

1,2<0)

i. Theparticle(k)is

refracted to

theposition

X

Rr k . ii. IfJR1,2K =1; then Createtwoparticles“A”and“B”:

A. withmass

mk

andatthe

refracted position X

Rr k . B. withmass−mkandatthe

refracted position X

Rl

k. iii. endif

(c) end 3. end

Thisalgorithmwillbe testedinsection4,withtheanalyticalsolutiondefinedinsubsection2.2.Then,itwillbe com-paredwithageneralizedanalyticalsolutionforapurediffusionproblemwithtwointerfacesandthreedifferentdiffusion coefficientsandwatercontents:thedetailedanalyticalsolutionforthis3-layercaseispresentedinEq. (3.8).Andfinally,it willbevalidatedwithanevenmoregeneralizedsemi-analyticalsolutionwhichalgorithmhasbeendetailedintheprevious subsection3.3.1.

3.4. Postprocessing:fromparticlestoconcentrations

Post-processinginRandomWalkmethodisessentialsincetheprimaryobjectiveofthesimulationistogetthe concen-tration(temperatureorpressure)field.AspecialattentionshouldbegiventoNegativeunitmassandAdaptivemassparticle methodsinparticular,sincetheyareverydifferentfromtheclassicalRandomWalksimulation.Here,massconservationis stillmaintained,sinceeachtimewecreateanegativemass,wecreatealsoapositiveone.

Themacroscopicconcentrationisdeterminedfromthedistributionofparticlepositions Xt weightedbytheirrespective

masses,dmt

=

C

(

Xt

,

t

)

d Xt.Thiscanbeexpressedformallyas1:

C

(x,

t)

=

R C

(X

t

,t

) δ (X

t

x)d Xt

=

R

δ (X

t

x)dmt (3.10)

1 Moreprecisely,inagivendomain ,thelocalconcentration

C

(x,t)isrelatedtothePDFofparticlepositions fXt(x;t)by

C

(x,t)=M (t)fXt(x;t) where

M

(t)isthetotalmassoftheparticlesinsidethedomain attime

t.

(9)
(10)
(11)
(12)
(13)

The solutionisdescribed fortwo casesof“initial”point sources C

(

x

,

0

)

=

M0

.δ (

x

x0

)

locatedatx0

<

x1:2

<

x2:3 and

C

(

x

,

0

)

=

M0

.δ (

x

x1

)

locatedatx1:2

<

x1

<

x2:3.Inthefirst case,thesourceisintheleft layer,butsimilarsolutionsare

obtainedforanysourceposition.ThesesolutionsareusedinthetextinrelationtothegeneralizationofourRandomWalk algorithm,andforcomparison/validationofresults(Section4,Fig.4.2).

Forasourcelocatedatleft

(

x0

<

x1:2

)

theinitialcondition forthediffusionproblemofEq. (A.1) is:

x

x1:2

;

C1

(x,

0

)

=

M0

θ

1

δ (x

x0

)

x1:2

x

x2:3

;

C2

(x,

0

)

=

0

x

x2:3

;

C3

(x,

0

)

=

0 (A.2)

Thesolutionofthediscontinuousdiffusionproblem(Eq. (A.1))withinitialcondition(A.2) is:

t

0

; ∀

x

x1:2

;

θ

1 M0 C1

(x,

t)

=

G

(x

0

,

2D1t,x)

+

R1:2G

(−

x0

+

2x1:2

,

2D1t

,x)

+

+∞



i=0

(

1

R1:2

)

R2:3

(R

2:3R2:1

)

i

(

1

R2:1

)

×

G



x0

+

2x1:2

+

2

(i

+

1

)

D1

D2

(x

2:3

x1:2

) ,

2D1t,x



(A.3a)

∀t

0

; ∀x

1:2

x

x2:3

;

θ

2 M0 C2

(x,t

)

=

+∞



i=0

(

1

R1:2

) (R

2:3R2:1

)

i

×



G

√

D2

D1

(x

0

x1:2

)

− (

2i

+

1

) (x

2:3

x1:2

)

+

x2:3

,

2D2t

,x



+

R2:3

×

G



D2

D1

(x

0

x1:2

)

+ (

2i

+

1

) (x

2:3

x1:2

)

+

x2:3

,

2D2t,x



(A.3b)

t

0

; ∀

x

x2:3

;

θ

3 M0 C3

(x,

t)

=

+∞



i=0

(

1

R1:2

) (R

2:3R2:1

)

i

(

1

R2:3

)

×

G

√

D3

D1

(x

0

x1:2

)

+ (

2i

+

1

)

D3

D2

(x

1:2

x2:3

)

+

x2:3

,

2D3t

,x



(A.3c) AndthesolutionofEq. (A.1) withtheinitialcondition

∀x

x1:2

;

C1

(x,

0

)

=

0

x1:2

x

x2:3

;

C2

(x,

0

)

=

M0

θ

1

δ (x

x1

)

x

x2:3

;

C3

(x,

0

)

=

0 (A.4) is:

∀t

0

; ∀x

x1:2

;

θ

1 M0 C1

(x,

t)

= (

1

R2:1

)

+∞



i=0

(R

2:3R2:1

)

i

×



G



x1:2

+



D1 D2

(

2i

(x

2:3

x2:1

)

+

x0

x1:2

) ,

2D1t

,x



+

R2:3G



x1:2

+



D1 D2

(

2i

(x

2:3

x2:1

)

+

2x2:3

x0

x1:2

) ,

2D1t

,

x



(A.5a)

t

0

; ∀

x1:2

x

x2:3

;

θ

2 M0 C2

(x,t

)

= −

G

(x

0

,

2D2t,x)

+

+∞



i=0

(R

2:3R2:1

)

i

× (

G

(

2i

(x

2:3

x1:2

)

+

x0

,

2D2t

,x)

+

G

(

2i

(x

1:2

x2:3

)

+

x0

,

2D2t,x)

+

R2:3G

(

2i

(x

2:3

x1:2

)

+

2x2:3

x0

x1:2

,

2D2t,x)

+

R2:1G

(

2i

(x

1:2

x2:3

)

+

2x1:2

x0

x2:3

,

2D2t,x)) (A.5b)

(14)

t

0

; ∀

x

x2:3

;

θ

3 M0 C3

(x,t)

= (

1

R2:3

)

+∞



i=0

(R

2:1R2:3

)

i

×



G



x2:3

+



D3 D2

(

2i

(x

1:2

x2:3

)

+

x0

x2:3

) ,

2D3t,x



+

R2:1G



x2:3

+



D3 D2

(

2i

(x

1:2

x2:3

)

+

2x1:2

x0

x2:3

) ,

2D3t,x



(A.5c) The above solutions have been checked by direct substitution in Eq. (A.1a) and the initial and boundary conditions Eq. (A.1b),Eq. (A.1c) andEq. (A.2).

Theinfiniteseriesobtainedinthissectionforconcentration C

(

x

,

t

)

havetheformofafunctionh

(

x

,

t

)

definedas:

h

(x,t)

=

+∞



n=0 A

tz nexp



(x

+

Cn

+

D)2 Bt



(A.6) withB

,

t

>

0; x

,

A

,

C

,

D

R

andz

=

R2:1R2:3 (productofpartialreflectioncoefficients).Theirconvergenceisstudiedinthe

nextappendix(AppendixB).

Appendix B. Studyoftheconvergenceandcontinuityoftheseriesh

Inthisappendix,westudytheconvergenceoftheinfiniteseriesh

(

x

,

t

)

(A.6) whichhastheformofthesolutionfoundin AppendixA.Thissolution(concentrationC

(

x

,

t

)

)wasusedinFig.4.2tovalidatetheRandomWalkParticleTrackingmodel proposedinthispaperfordiscontinuousdiffusion.

B.1. Pointwiseconvergenceusingd’Alembertcriteria Theorem1(d’AlembertRatiotest[29]).Let



an

,

n

N



beasequenceofcomplex numberssuchthatL

=

limn→+∞|an|an+1||exists.

IfL

<

1,thentheseries



+∞n=0anconvergesabsolutely.Thus,



+∞n=0anispointwiseconvergent.

IfL

>

1,thentheseries



+∞n=0anisdivergent.

IfL

=

1,thenthecaseisundecided.

Using Theorem 1, we now show that our series h

(

x

,

t

)

is pointwise convergent. This series is of the form h

(

x

,

t

)

=



+∞ n=0Un

(

x

,

t

)

,where: Un

=

A

tz nexp



(x

+

Cn

+

D)2 Bt



(B.1)

|

Un+1

|

|

Un

|

= |

z

|

exp



(x

+

C

(n

+

1

)

+

D)2

− (

x

+

Cn

+

D)2 Bt



(B.2)

|

Un+1

|

|U

n

|

= |

z| exp



2xC

+

C2

+

2DC Bt



exp



2C2n Bt



(B.3) IfC

=

0,thentheseriesconvergesfor

|

z

| <

1 and B

,

t

>

0;x

,

A

,

D

R

,h

(

t

,

x

)

=

A

t 1 1−zexp



(x+D)2 Bt



.Thiscaseoccursif thedistancebetweentwointerfaces

(

|

x1:2

x2:3|)goestozero(wemaydismissthiscasehere).

Otherwise,ifC

=

0,then |Un|Un+1||

n→+∞0.Bythe d’AlembertRatio test,the seriesh converges

z

C

;

B

>

0

,

t

>

0;

x

,

A

,

C

,

D

R

.

Inconclusion,theseriesh

(

x

,

t

)

andtheanalyticalconcentrationssolutions(Eqs. (3.8) and(3.9))convergepointwisein allcasesofinterest.

B.2. Uniformconvergence

Theorem2([29]).Assume

(

fn

)

isasequenceoffunctionsdefinedonE,andassume

|

fn

(

x

)

| ≤

Mn

(

xE

,

n

=

1

,

2

,

3

, . . .)

.Then



fn

convergesuniformlyonE if



Mnconverges.

Theinfiniteseriesh

(

x

,

t

)

isoftheform:

h

(x,t)

=

+∞



n=0 Aznexp



Bt ln(t

)

+

2

(x

+

Cn

+

D)2 2Bt



(B.4)

(15)

Letusdefine gn

(

x

,

t

)

as:

gn

(x,t

)

= −

Bt ln

(t)

+

2

(x

+

Cn

+

D)2

2Bt (B.5)

Fort

1 wehave gn

0.Thus,







Aznexp



Bt ln

(t)

+

2

(x

+

Cn

+

D)2 2Bt







≤ |

A

| |

z

|

n (B.6)

Sincetheseries



n+∞=0

|

A

| |

z

|

n convergesfor

|

z

| <

1,h isuniformlyconvergenton

R

×

[1

; +∞

[. For0

<

t

1 wehave −eB

Bt ln

(

t

)

0.

First,ifC

>

0 andforafixed x0



R

;

n1

/

n

n1;

x

x0;Bt ln

(

t

)

+

2

(

x

+

Cn

+

D

)

2

Bt ln

(

t

)

+

2

(

x0

+

Cn

+

D

)

2

0.

Hence,theseriesh convergesuniformlyon[x0; +∞[

×

]0

;

1].

Secondly,ifC

<

0 andforafixedx0



R

;

n2

/

n

n2;

x

x0;Bt ln

(

t

)

+

2

(

x

Cn

D

)

2

Bt ln

(

t

)

+

2

(

x0

Cn

D

)

2

0.Theseriesh convergesuniformlyon]0

;

1]

×

]

−∞;

x0].

Theorem3([29]).If

(

fn

)

isasequenceofcontinuousfunctionsonE,andif fn

f uniformlyonE,thenf iscontinuousonE.

Consequence Forz

C

suchthat

|

z

| <

1,h iscontinuouswithrespectto

(

x

,

t

)

on

R

×

]0

; +∞

[.

Conclusion Inallcasesofinterest,theanalyticalinfiniteseriesconcentrationsolutions(Eqs. (3.8) and(3.9))arepointwise convergentandcontinuouswithrespectto

(

x

,

t

)

on

R

×

]0

; +∞

[.

References

[1] M.Sahimi,Fractalandsuperdiffusivetransportandhydrodynamicdispersioninheterogeneousporousmedia,Transp.PorousMedia13 (1)(1993) 3–40,https://doi.org/10.1007/BF00613269.

[2]M.Spiller,R.Ababou,J.Koengeter,Alternativeapproachtosimulatetransportbasedonthemasterequation,in:TracersandModellinginHydrogeology, ProceedingsoftheTraM’2000ConferenceheldatLiège,Belgium,May2000,in:IAHSPubl.,vol. 262,2000.

[3] P.K.Kang,T.LeBorgne,M.Dentz,O.Bour,R.Juanes,Impactofvelocitycorrelationanddistributionontransportinfracturedmedia:fieldevidenceand theoreticalmodel,WaterResour.Res.51(2015)940–959,https://doi.org/10.1002/2014WR015799.

[4]F.Delay,J.Bodin,Timedomainrandomwalkmethodtosimulatetransportbyadvection-dispersionandmatrixdiffusioninfracturenetworks,Geophys. Res.Lett.28 (21)(2001)4051–4054.

[5] J.Bodin,Fromanalyticalsolutionsofsolutetransportequationstomultidimensionaltime-domainrandomwalk(TDRW)algorithms,WaterResour.Res. 51(2015)1860–1871,https://doi.org/10.1002/2014WR015910.

[6] B.Noetinger,D.Roubinet,J.DeDreuzy,A.Russian,P.Gouze,T.LeBorgne,M.Dentz,F.Delay,Randomwalkmethodsformodelinghydrodynamic transportinporousandfracturedmediafromporetoreservoirscale,Transp.PorousMedia115 (2)(2016)345–385,https://doi.org/10.1007/s1142 -016-0693-z,hal-014449131.

[7] E.M.LaBolle,G.E.Fogg,A.F.B.Tompson,Random-walksimulationoftransportinheterogeneousporousmedia:localmass-conservationproblemand implementationmethods,WaterResour.Res.32 (3)(1996)583–593,https://doi.org/10.1029/95WR03528.

[8]M.Spiller,R.Ababou,T.Becker,A.Fadili,J.Köngeter,MassTransportwithHeterogeneousDiffusion:InterpolationSchemesforRandomWalks,in:8th AnnualConferenceoftheInternationalAssociationforMathematicalGeology,IAMG2002,Berlin,Germany,15–20September2002,Selbstverlagder Alfred-Wegner-Stiftung,Berlin,2002,pp. 305–310(TerraNostra:SchriftenderAlfred-Wegener-Stiftung,4,2).

[9]G.J.M.Uffink,Arandom-walkmethodforthesimulationofmacrodispersioninastratifiedaquifer,in:RelationofGroundwaterQualityandQuantity, in:IAHSPubl.,vol. 146,Int.Assoc.ofHydrol.Sci.,Gentbrugge,Belgium,1985,pp. 103–114.

[10]A.C.Bagtzoglou,A.F.B.Tompson,D.E.Dougherty,Projectionfunctionsforparticlegridmethods,Numer.MethodsPartialDiffer.Equ.8(1992)325–340. [11] E.M.LaBolle,J.Quastel,G.E.Fogg,Diffusiontheoryfortransportinporousmedia:transition-probabilitydensitiesofdiffusionprocessescorresponding

toadvection-dispersionequations,WaterResour.Res.34 (7)(1998)1685–1693,https://doi.org/10.1029/98WR00319.

[12]P.Ackerer,Propagationd’unfluideenaquifèreporeuxsaturéeneau.Prise encompteet localisationdeshétérogénéitésparoutilsthéoriqueset expérimentaux,Ph.D.thesis,Univ.LouisPasteurdeStrasbourg,Strasbourg,France,1985.

[13]C.Cordes,H.Daniels,G.Rouvé,Anewveryefficientalgorithmforparticletrackinginlayeredaquifers,in:D.B.Sari,etal.(Eds.),ComputerMethodsin WaterResourcesII,GroundwaterModellingandPressureFlow,vol.1,Springer,Germany,1991,pp. 41–55.

[14]K.Semra,P.Ackerer,R.Mose,Threedimensionalgroundwaterqualitymodelinginheterogeneousmedia,in:L.C.Wrobel,C.A.Brebbia(Eds.),Water PollutionII:Modelling,MeasuringandPrediction,Southampton,UK,1993,pp. 3–11.

[15] H.Hoteit,R.Mose,A.Younes,F.Lehmann,P.Ackerer,Three-dimensionalmodelingofmasstransferinporousmediausingthemixedhybridfinite elementsandtherandom-walkmethods,Math.Geol.34 (4)(2002)435–456,https://doi.org/10.1023/A:1015083111971.

[16]D.H.Lim,Numericalstudyofnuclidemigrationinanonuniformhorizontalflowfieldofahigh-levelradioactivewasterepositorywithmultiple canisters,Nucl.Technol.156 (2)(2006)222–245.

[17] M.Bechtold,J.Vanderborght,O.Ippisch,H.Vereecken,Efficientrandomwalkparticletrackingalgorithmforadvective-dispersivetransportinmedia withdiscontinuousdispersioncoefficientsandwatercontents,WaterResour.Res.47(2011)W10526,https://doi.org/10.1029/2010WR010267. [18] A.Lejay,G.Pichot,Simulatingdiffusionprocessesindiscontinuousmedia:anumericalschemewithconstanttimesteps,J.Comput.Phys.231(2012)

7299–7314,https://doi.org/10.1016/j.jcp.2012.07.011.

[19] A.Lejay, G.Pichot,Simulatingdiffusionprocessesindiscontinuousmedia:benchmarktests,J.Comput.Phys.2016 (314) (2016)384–413,https:// doi.org/10.1016/j.jcp.2016.03.003.

[20] P.Ackerer,R.Mose,Commenton“Diffusiontheoryfortransportinporousmedia:Transition-probabilitydensitiesofdiffusionprocessescorresponding toadvection-dispersionequations”byEricM.LaBolleetal.,WaterResour.Res.36 (3)(2000)819–821,https://doi.org/10.1029/1999WR900326. [21]L.Schwartz,Théoriedesdistributions,2volumes,Hermann,1950/1951,nouvelleédition,1966.

(16)

[22]H.Risken,TheFokker-PlanckEquation,Springer,Heidelberg,NewYork,1996.

[23] M.Dentz,P.Gouze,A.Russian,J.Dweik,F.Delay,Diffusionandtrappinginheterogeneousmedia:aninhomogeneouscontinuoustimerandomwalk approach,Adv.WaterResour.(ISSN 0309-1708)49(2012)13–22,https://doi.org/10.1016/j.advwatres.2012.07.015.

[24]D.T.Gillespie,E.Seitaridou,SimpleBrownianDiffusion,OxfordUniversityPress,2013.

[25] A.F.B.Tompson,L.W.Gelhar,Numerical-simulationofsolutetransportin3-dimensional,randomlyheterogeneousporous-media,WaterResour.Res. 26 (10)(1990)2541–2562,https://doi.org/10.1029/WR026i010p02541.

[26]H.S.Carslaw,J.C.Jaeger,ConductionofHeatinSolids,Clarendon,Oxford,1959,pp. 363–365.

[27] F.Delay,P.Ackerer,C.Danquigny,Simulatingsolutetransportinporousorfracturedformationsusingrandomwalkparticletrackingareview,Vadose ZoneJ.4(2005),https://doi.org/10.2136/vzj2004.0125.

[28]P.A.Raviart,Particleapproximationoflinearhyperbolicequationofthefirstorder,in:Numerical MethodsinFluidsDynamics,in:LecturesNotesin Math.,SpringerVerlag,1983(Chap.I).

Figure

Fig. 3.1. Partial reflection scheme with negative mass particles, for a domain with discontinuous diffusion and porosity (e.g., here,  D 2 &lt; D 1 )

Références

Documents relatifs

As previously mentioned, one of the biggest obstacles to obtain Theorem 1.1 are the poor space-time mixing properties of the random environment. A method to overcome this difficulty

Large deviation principle for one- dimensional random walk in dynamic random environment: Attractive spin-flips and simple symmetric exclusion. Law of large numbers for a class

Vereecken, Efficient random walk particle tracking algorithm for advective-dispersive transport in media with discontinuous dispersion coefficients and water contents, Water Resour.

Renewal process, fractional Poisson process and distribution, fractional Kolmogorov-Feller equation, continuous time random walk, generalized fractional diffusion.. ∗

Some of the major challenges associated with such simulations are (1) geological time scales, which require long (in physical time) simulations using small time

In the mesoscopic regime, the upscaled evolution model is the transport equation, or radiative transfer equation in a high-frequency random medium where the correlation length

To be effective, a coarse space for a domain decomposition method that produces discontinuous iterates must contain discontinuous functions.. Furthermore the dis- continuities must

Branching processes with selection of the N rightmost individuals have been the subject of recent studies [7, 10, 12], and several conjectures on this processes remain open, such as