• Aucun résultat trouvé

UV-C radiation modifies the ripening and accumulation of ethylene response factor (ERF) transcripts in tomato fruit

N/A
N/A
Protected

Academic year: 2021

Partager "UV-C radiation modifies the ripening and accumulation of ethylene response factor (ERF) transcripts in tomato fruit"

Copied!
9
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 14569

To link to this article : DOI:10.1016/j.postharvbio.2015.02.001

URL :

http://dx.doi.org/10.1016/j.postharvbio.2015.02.001

To cite this version : Severo, Joseana and Tiecher, Aline and Pirrello,

Jullien and Regad, Farid and Latché, Alain and Pech, Jean-Claude and

Bouzayen, Mondher and Rombaldi, César Valmor UV-C radiation

modifies the ripening and accumulation of ethylene response factor

(ERF) transcripts in tomato fruit. (2015) Postharvest Biology and

Technology, vol.102. pp.9-16. ISSN 0925-5214

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

UV-C

radiation

modifies

the

ripening

and

accumulation

of

ethylene

response

factor

(ERF)

transcripts

in

tomato

fruit

Joseana

Severo

a,

*

,

Aline

Tiecher

b

,

Jullien

Pirrello

c

,

Farid

Regad

c

,

Alain

Latché

c

,

Jean-Claude

Pech

c

,

Mondher

Bouzayen

c

,

Cesar

Valmor

Rombaldi

d

aIFF,InstitutoFederalFarroupilha,EixodeProduçãoAlimenticia,RuaFábioJoãoAndolhe,1100,BairroFloresta,CEP98590-000,CampusSantoAugusto,

SantoAugusto,RS,Brazil

bUNIPAMPA,UniversidadeFederaldoPampa,CampusItaqui,RuaLuizdeJoaquimdeBritto,s/n,BairroPromorar,CEP97650-000,Itaqui,RS,Brazil cUMR990INRA/INP-ENSAT,PoledeBiotechnologieVégétale,24ChemindeBordeRouge,P.O.Box107,31326CastanetTolosanCedex,France dUFPel/FAEM,DepartamentodeCiênciaeTecnologia,CampusUniversitário,CaixaPostal354,CEP90010-900,Pelotas,RS,Brazil

Keywords: Abioticstress Ripening Senescence Solanumlycopersicum 1-Methylcyclopropene UltravioletC ABSTRACT

Ultraviolet-C(UV-C) radiationisused asapostharvest treatmenttoprolongthe shelflifeoffruit. However,thisstressfulprocessmayalsoaffectethyleneproductionand,consequently,theexpressionof genesencodingethyleneresponsefactors(ERFs).Totestthishypothesis,MicroTomtomatoesharvested atthebreakerstageweresubjectedto:1–applicationof3.7kJm2UV-Cradiation,2

–applicationof 2mLL11-methylcyclopropene(1-MCP)followedbyUV-Cradiation;and3

–without1-MCPorUV-C (controltreatment). Aftertreatmentall fruitwerestored for12dat 21 2!Cand 80 5% relative

humidity(RH).AlthoughUV-CradiationincreasedACCoxidasetranscripts andstimulatedethylene production,theripeningevolutionwasdelayed.FruittreatedwithUV-Cshowedloweraccumulationof lycopene,b-carotene,lutein+zeaxanthinandd-tocopherol;butretainedhigherlevelsofchlorogenic acid,r-coumaricacidandquercetinafter6d.Additionally,UV-Ctreatedfruithadhighercontentsof polyamines(putrescineandspermidine).Amongthe14ERFsstudied,11(Sl-ERFA.1,Sl-ERFA.3,Sl-ERFB.1, Sl-ERFB.2,Sl-ERFB.3,Sl-ERFC.6,Sl-ERFD.1,Sl-ERFD.3,Sl-ERFE.1,Sl-ERFF.5,Sl-ERFG.2)exhibitedincreased transcriptaccumulation,2ERFs(Sl-ERFE.2andSl-ERFE.4)showeddecreasedtranscriptaccumulationand only1ERF(Sl-ERFE.3)wasnotsignificantlyaffectedbyUV-Ctreatment.Asexpected,thetranscript profilesof1-MCPand/orUV-C-treatedtomatoesdemonstratethatethyleneplaysanimportantroleinthe expressionofERFs.ThedelayinfruitripeningmaybecausedbytheactivationofERFsthatcouldactas regulatorsofmetabolicpathwaysduringripening.However,thishypothesisneedstobebettertested.In conclusion,arelationshiphasbeenestablishedbetweenUV-Ctreatmentandripeningdelay,correlated tochangesin13ERFtranscriptsevaluatedduringpostharvesttreatment.

1.Introduction

UV-Cradiation(100–280nm)isa treatmentwithgermicidal

capabilitiesthathasbeenusedtopreventpostharvestrotinfruits

andvegetables(Stevensetal.,1998;Liuetal.,2011;Syamaladevi

et al., 2014). Because it is a stressor, UV-C can also accelerate

ethylene production and therefore activate the expression of

ethyleneresponsefactor(ERFs)genes.Alteringtheexpressionof

ERF, either through hormonal induction or abiotic stress, can

induce secondary metabolic pathways; these pathways may

activatepathogenesis-related(PR)genesrelatedtothesynthesis

of phytoalexins, phenols and terpenoids (Maharaj et al.,1999;

Charlesetal.,2008a,b;Liuetal.,2011;Pomboetal.,2011).Pombo etal.(2011)reportedthatUV-Ctreatmentofstrawberrieshelps

prevent rotnot onlyby direct inoculum reduction,but also by

activatinggenesencodingenzymesinvolvedinplantdefense.The

beneficial effects of the application of UV-Ccan vary between

species, cultivars and time of application. Bu et al. (2013)

previouslyreportedthatUV-CmaintainedthefirmnessofCherry

tomatoes(SolanumlycopersicumL.cv.Zhenzhu1.),withdecreased

expressionofcellwalldegradingenzymes.Incomparison,Tiecher

et al. (2013) observed delay in fruit maturation without a

commensurateprolongationof tomatofirmness(S.lycopersicum

cv. Flavortop). Obande et al. (2011) reported maintained the

*Correspondingauthor.Tel.:+555332757258;fax:+555332757258. E-mailaddress:joseana.severo@iffarroupilha.edu.br(J.Severo).

(3)

firmnessofpreharvestUV-Ctreatmentoftomatoes(S.

lycopersi-cumL. cv.Mill.) withvaryingresults dependingontheapplied

dose.

It iswidelyknownthatthephytohormoneethylenecontrols

manyeventsrelatedtogrowthanddevelopmentinplants,andis

expressed in response toabiotic and biotic stressors(Cara and

Giovannoni,2008;Bapat etal.,2010).1-Methylcyclopropene

(1-MCP)isapotentinhibitorofethyleneperception,whichhasbeen

usedsuccessfullyinstudiestounderstandtheactionofethylenein

ripeningprocessandconsequentlytheexpressionofrelatedgenes

(Hoeberichtsetal.,2002;OpiyoandYing,2005).

Ethylene is formed from the amino acid methionine by

S-adenosyl-L-methionine(AdoMet)and1-carboxylic

acid-1-amino-cyclopropane. The enzymes that catalyze the conversion of

AdoMettoACCandACCtoethyleneareACCsynthase(ACS)and

ACC oxidase (ACO), respectively. During ripening of climacteric

fruit,this biosynthesispathwayis autocatalyticallyregulatedby

ethylene (Barry et al., 1996; Cara and Giovannoni, 2008). In

responsetoethylene,theexpressionprofileofseveraltranscription

factorsmaybealtered,whichresultsintheactivationofpathways

thatinduceordelaysenescence(Ohme-TakagiandShinshi,1995;

Chenetal.,2008;Erkanetal.,2008;Liuetal.,2009,2011).

After synthesis, ethylene is recognized by receptors (ETRs)

locatedinthemembraneoftheendoplasmicreticulum.Asignaling

cascadewhich includespositiveandnegativeregulators,

modu-latestheexpressionofERF,whicharesubsequentlyresponsiblefor

changesinthemetabolicpathwaysinvolvedinripeningandplant

defense (Barry et al., 1996; Bapat et al., 2010). This process

culminates in biochemical and physiological responses suchas

chlorophylldegradation,carotenoidaccumulation,softening,and

changesintomatoaromaandflavor.Inaddition,therearechanges

in the levels of L-ascorbic acid, tocopherols and phenolic

compounds (Stevens et al.,1998; Cara and Giovannoni, 2008).

TheERFsbelongtotheAP2/ERFfamilyoftranscriptionfactorsthat

arecharacterizedbythepresenceofaDNAbindingdomaincalled

AP2/ERF, which is present exclusively in plants. This family of

transcription factorshasa 58-59amino acidconserveddomain

(ERFbindingdomain)thatcanbindtotwocis-elements:(i)

GCC-box, which is present in the promoter regionof PR-genes that

conferaresponsetoethylene,and(ii)C-repeat

(CRT)/dehydration-responsive element(DRE),whichisinvolvedintheexpressionof

genesrelatedtodehydrationand responsetolowtemperatures

(Singhetal.,2002;Xuetal.,2008,2011).Whereassomeofthese

transcription factorsbindtoonlyoneoftheseciselements(Gu

etal.,2002;Singhetal.,2002),othersmaymodulateresponsesto

stresstolerancethroughinteractionswithboth(GCC-boxandDRE)

ciselements(Huangetal.,2004;Zhangetal.,2004;Xuetal.,2007,

2011).

Since the first ERF binding domain was identified in four

tobaccoproteins(Ohme-TakagiandShinshi,1995),newERFgenes

have been identified in other plant tissues (Zhou et al., 1997;

Tournieretal.,2003;Wangetal.,2007;Xuetal.,2007;Zhangetal., 2010;Yinetal.,2012; Girardietal.,2013).Severalstudieshave

soughttorelatetheinfluenceofbioticandabioticstressorstothe

expression of these transcription factors (Singh et al., 2002;

GuttersonandReuber,2004;Xuetal.,2007,2011;Yinetal.,2012).

In general, studiesthat havemodified ERFexpressionin plants

havedemonstratedanincreasedtolerancetosalinity(Huangetal.,

2004; Wang et al.,2004; Zhang et al., 2004;Pan et al., 2010),

drought(Chenetal.,2008;Zhangetal.,2010),temperature(Chen

et al., 2008; Zhang and Huang et al., 2010) and/or pathogen

infection(Heetal.,2001;Panetal.,2010).Yinetal.(2012)showed

that 13 ERFs sequences are differentially expressed during

postharvestabioticstresses(lowtemperature,hightemperature,

highCO2andhighwaterloss)inKiwifuit.Liuetal.(2011),using

microarraytechniques,determinedthatUV-Cirradiationinduced

the expression of defense response genes (such as PR related

proteins,

b

-1,3-glucanase and chitinase), signal transduction

genes(such asethylene relatedgenes,IAA receptorproteinand

calmodulin) and protein metabolism genes. At the same time,

somegenesrelated tocell walldisassembly (such asexpansin,

pectinesterase and endo-

b

-1,4-D-glucanase), photosynthesis

(such as chlorophyll a/b binding protein precursor) and lipid

metabolism(suchaslipoxygenase)seemtobesuppressedinthe

tomatofruitafterUV-Cradiation.

The tomato is one model for the studyof the relationships

betweenstress,hormonalresponsesandfruitquality.Tomatoes

are a good model because their structural genomics are

well-known,theirtranscriptomeandproteomedatabasesarerelatively

rich,andbecausetheyareaspeciesofgreateconomicimportance

(CaraandGiovannoni,2008;Bapatetal.,2010;Barsanetal.,2010).

ThegoalofthisresearchwastounderstandhowUV-Caffects

thetranscriptionalprofilesofACO1andERFsaswellaslevelsofthe

majorsecondary metabolitesintomatoes.Theapplication of

1-MCPpriortoUV-Ctreatmentwasusedtodistinguishiftheeffectof

UV-C treatmenton gene expressionwas mainlydependent on

ethylene.

2.Materialandmethods

2.1.Plantmaterial

Tomato plants (S. lycopersicum Mill., “MicroTom”) were

cultivatedinpotswithpeatsubstrate(Klasmann-Deilmann,R.H.

P.15).Growing conditionswere:a14:10hlight/darkcyclewith

temperatures of 25!C during the dayand 20!C overnight, 70%

relativehumidity(RH)andalightintensityof250

m

molm2s1.

Tomatofruitwereharvestedatthebreakerstageoftheripening

processandtransportedatroomtemperature(RT)fortreatment.

Theaveragetimebetweenharvestandtreatmentwas30min.

2.2.UV-Ctreatment

ForUV-Ctreatment, theharvestedtomatoes werepackedin

traysandplaced underUV-Clamps(TUVG30T8, 30W,Philips).

Fourlamps were placed at a distance of 30cm from thefruit,

providing a UV-C dose of 3.7kJm2 as measured by a digital

radiometer(ModelMRUR-203,Instrutherm1).Toachievethetotal

dose,4minofexposurewererequiredoneachofthefoursidesof

the fruit, totaling 16min of treatment. To isolate the effect of

ethylene,atreatmentof1-MCPwasappliedtothefruitinthe

1-MCP+UV-C group at a concentration of 2

m

LL1 before UV-C

treatment.TheseconditionswerepreviouslyoptimizedbyTiecher

et al. (2013). Thus, the experimental design contained the

followingtreatments:1–UV-C:fruitwereharvestedandtreated

withUV-Cat3.7kJm2andstoredatRT(20 3!Cand80 5%RH)

for12d.2–1-MCP+UV-C:fruitwereharvestedandtreatedwith

1-MCPat2

m

LL1for12h,followedbytreatmentwithUV-Cas

describedaboveandstoredatRTfor12d.3–Control(untreated

fruit):fruitwereharvestedandimmediatelyplacedatRTfor12d.

2.3.RNAextraction,cDNAsynthesisandrealtimePCR(qPCR)

Theexocarpsoftheharvestedtomatofruitwereusedtostudy

the transcriptional expression of ACO1 and ERF genes by

quantitative PCR (qPCR).The samples described in Section 2.2

werecollectedafter6hofstorage.TotalRNAwasextractedusing

PureLinkTMreagent(Invitrogen1)accordingtothe

manufacturer’s

instructions.ThequalityandconcentrationofRNAextractswere

evaluatedusinganAgilent2100Bioanalyzer1(Agilent

Technolo-gies,CA),inwhichonlyRNAsamplesthathadRIN(RNAintegrity)

(4)

Fig.1.EffectsofUV-CtreatmentonrelativeaccumulationofACO1(A)andERF(B–O)genetranscriptsin“MicroTom”tomatofruitafter6hofstorage.Therelative quantificationoftranscripts(RQ)isrelativetocontrolfruitandnormalizedwithb-actintranscripts.Verticalbarsrepresentthestandarddeviation.

(5)

2

m

gofRNAextractwastreatedwithDNase(Qiagen,Valencia,CA,

USA). Reverse transcription of mRNAwas completedusing the

OmniscriptReverseTranscriptionkit(Qiagen,Valencia,CA,USA),

resultinginatotalvolumeof20

m

L.ForqPCR,2

m

LofcDNAwas

addedto25

m

Lofreactionagent-SYBRGREENPCRMasterMix

(PE-AppliedBiosystems,FosterCity,CA,USA),andanABI7900ht

sequence-detection system was used. The Sl-ACO1 gene (Barry

etal.,1996)and14ERFgenes(Sl-ERFA.1–Pirrelloetal.,2012;

Sl-ERFA.3–Zhouetal.,1997;Sl-ERFB.1–Pirrelloetal.,2012;Sl-ERF

B.2–Pirrelloetal.,2012;Sl-ERFB.3–Tournieretal.,2003;Sl-ERF

C.6–Zhouetal.,1997;Sl-ERFD.1–Pirrelloetal.,2012;Sl-ERFD.3–

Pirrelloetal.,2012;Sl-ERFE.1–Tournieretal.,2003Sl-ERFE.2– Zhang etal., 2004; Sl-ERFE.3 –Wang etal., 2004; Sl-ERFE.4 – Pirrelloetal.,2012;Sl-ERFF.5-Tournieretal.,2003;Sl-ERFG.2

-Zhouetal.,1997)wereused.Primerswereusedataconcentration

of50nM,andtheqPCRconditionswereasfollows:50!Cfor2min,

95!Cfor10min,40cyclesat95!Cfor15s,60!Cfor1min, 1cycleof

95!Cfor15sand1cycleof60!Cfor15s.Analyseswereperformed

in triplicate onplates witha capacity of 384reactions. The Ct

(threshold cycle) values were calculated for each sample. The

relative quantification (RQ) was calculated with the method

proposedbyLivakandSchmittgen(2001),using

b

-actin(Pirrello

etal.,2006)asaninternalstandard(nonaffectedby1-MCP+UV-C,

UV-C, fruit growth and development) and control fruit for

calibration.

2.4.Ethyleneproductionandfruitcolor

Fruitethyleneproductionwasquantifiedbygas

chromatogra-phy 1h, 6h, and 12h, and daily (up to 12d) after the UV-C

application.Thefruitineachgroupwasplacedina100mL

screw-capglassvial.After30minofincubation,1mLofheadspacewas

collectedtodeterminetherate ofethyleneproduction, andthe

resultswereexpressedinngkg1s1.

Thecolorofalleachofthesixfruitineachgroupwasmeasured

daily (upto 12d) on 4 sides with a colorimeter (Minolta

CR-300 TM),and the results wereexpressedas thehueangle “H”

[H=tan1(b/a)whena>0andb>0orh=180+tan1(b/a)when

a<0andb>0].

2.5.Levelsoflycopene,

b

-carotene,luteinandzeaxanthin

Extraction techniques and chromatographic analysis were

performed following methods described by Rodriguez-Amaya

(2001) followedbysaponificationoftheetherextract.Levelsof

lycopene,

b

-carotene,luteinandzeaxanthinwerequantifiedusing

a highperformanceliquid chromatography(HPLC) systemfrom

Shimadzuequippedwithanautomaticinjector,UV–visdetectorat

450nm, a RP-18CLC-ODS (5mm, 4.6mm"150mm, Shimadzu)

reverse-phase column and CLC-GODS (5mm, 2mm"4mm,

Supelco)guardcolumn.Separationwasperformedusingagradient

elutionsystemwithmethanol(solventA),acetonitrile(solventB)

andethylacetate(solventC)asthemobilephaseataflowrateof

16.7

m

Ls1(i.e.1mLmin1).Theinitialphaseconsistedof30%A

and70%B;after10minthecompositionwaschangedto10%A,80%

Band10%C;after35minthecompositionwaschangedagainto5%

A,80%Band15%C;theinitialcompositionwasrepeatedat40min

and maintainedfor 2.5mintorebalance thesystem.The peaks

were identified by comparison with the retention times of

standardsandquantifiedbycomparisonwithexternalcalibration

curves forlycopene,

b

-carotene,lutein andzeaxanthin (Sigma–

Aldrich1)standards.TheHPLCresultsareexpressedasmgkg1of

freshmaterial.

2.6.

d

-tocopherollevels

Tocopherolextractionwasperformedas describedby

Rodri-guez-Amaya (2001), using a method similar to that used for

carotenoid extraction. The tocopherols were separated and

quantifiedusingHPLCinamanneridenticaltothatdescribedin

item 2.5. The separation was performed by a gradient elution

systemwithamobilephaseof:methanol(solventA),isopropanol

(solventB),andacetonitrile(solventC)ataflowrateof16.7

m

Ls1

(i.e. 1mLmin1). The gradient began with a ratio (A/B/C) of

40:50:10 (v/v/v), which was changed linearly to 65:30:5 over

10min,thendecreasedto40:50:10overanother2minandheld

constantfor15min.Thepeakwasidentifiedbycomparisonwith

theretentiontimeofthestandardandquantifiedbycomparison

with an external calibration curve for

d

-tocopherol (Sigma–

Aldrich1).Resultsonafreshweightbasisareexpressedasmgkg1.

2.7.Levelsofp-hydroxybenzoicacid,p-coumaricacidandquercetin

The extraction and identification of individual phenolic

compoundswasperformedfollowingthemethodsdescribedby

Häkkinenetal.(1998).Phenoliccompoundswereextractedwith

methanol acidified with6M HCl and separated and quantified

usinganHPLCprocessidenticaltothatdescribedinitem2.5.The

mobilephaseconsistedofanelutiongradientwithaceticacidin

water(99:1)(solventA)andmethanol(solventB)ataflowrateof

15

m

Ls1(i.e.0.9mLmin1).Thestartingpercentageof100%Awas

graduallychangedto60%Aand40%Boveraperiodof25min,held

constantatthisratioforafurther2min,graduallychangedto95%

Aand5%Bat37min,heldconstantforanadditional5minand

thenreturned tothestarting proportionfora totalrun timeof

45min.Thephenoliccompoundswereidentifiedbycomparison

with the retention time of standards and quantified based on

calibrationcurvesofexternalstandardsforp-hydroxybenzoicacid,

p-coumaricacidandquercetin(Sigma–Aldrich1).Theresultsare

expressedonafreshweightbasisasmgkg1.

2.8.Polyaminelevels

Polyamine extraction and quantification was carried out

following Vieira et al. (2007) with minor changes. Polyamines

wereextractedwithtrichloroaceticacid(5%inwater)andanalyzed

byHPLCseparatedinaC18column(30cm"3.9mmi.d."10

m

m,

Waters).Polyamineanalysesusedanelutiongradientprogramin

which mobilephase Awas acetate buffer(0.1M) containing

1-octanesulfonicsodiumsalt(10mM),adjustedtopH4.9withacetic

acidandeluentBwasacetonitrile,ataflowrateof11.7

m

Ls1(i.e.

0.7mLmin1.Afterseparation,theamineswerederivatizedwith

o-phthalaldehyde(OPA)anddetectedfluorometricallyat340nm

excitationand445nmemission.Resultswereexpressedonafresh

weightbasisasmgkg1.

2.9.Experimentaldesignandstatisticalanalysis

Theexperimentaldesignwascompletelyrandomized,

consist-ingof3UV-Ctreatmentgroups(control,1-MCP+UV-C,UV-C)with

3 analytical replicates. Data was verified for normality using

Shapiro–Wilks’testandforhomoscedasticityusingHartley’stest.

ResultswereanalyzedusingANOVA,withaP#0.05 considered

significant.Post-hoc analysis was performed using Tukey’stest

(p#0.05).SASsoftwarewas usedforallstatisticalanalysis(Sas

(6)

3.Results

3.1.TheeffectsofUV-Ctreatmentonthetranscriptionalaccumulation

ofACO1andERFgenes

As revealed by the relative accumulation of ACO1 and ERF

transcripts,UV-Ctreatmentaffectedtheexpressionofmostgenes

investigated(Fig.1).Therewasanincreaseintheaccumulationof

ACO1 gene transcripts when fruits were treated with UV-C

(Fig.1A),andtheapplicationof1-MCPprior toUV-Ctreatment

reducedlevelsofACO1transcriptscompared toUV-Ctreatment

alone; however, levels were still above those observed in the

controlfruit.

Amongthe14ERFgenesstudied(Fig.1B–O),11ERFs(Sl-ERFA.1,

Sl-ERFA.3,Sl-ERFB.1,Sl-ERFB.2,Sl-ERFB.3,Sl-ERFC.6,Sl-ERFD.1,

Sl-ERF D.3, Sl-ERF E.1, Sl-ERF F.5, Sl-ERF G.2) increased withUV-C

treatment, 2 ERFs (Sl-ERF E.2 and Sl-ERF E.4) had decreased

transcriptaccumulationand1ERF(Sl-ERFE.3)wasnotaffectedby

UV-Ctreatment.Whentheethyleneactioninhibitor(1-MCP)was

applied prior to UV-C treatment, there was less transcript

accumulationcompared toUV-C treatment alone for allof the

ERFsstudied,withtheexceptionofSl-ERFG.2.

3.2.TheeffectsofUV-Ctreatmentonethyleneproductionandcolor

ThefruitsubjectedtoUV-Ctreatmentshowedhighethylene

production in the first hour after treatment. The evolution of

ethyleneproductioninalltreatmentsfollowedaclassicclimacteric

pattern,withincreasedethyleneproductioncorrespondingtothe

climactericpeak. However,the maximumclimacteric peak was

delayedby1dwithUV-Ctreatment(Fig.2A),and3to4dwiththe

application of 1-MCP prior to UV-C,as compared withcontrol

tomatoes(Fig.2A).

TheapplicationofUV-Chelpedtomaintainthegreencolorof

the fruit, and 1-MCP+UV-C treatment further inhibited color

change,and retaineda higher !Hue value(Fig.2B),despitethe

increasedethyleneproductionofthisfruit(Fig.2A).Additionally,

bettervisualappearanceinUV-Ctreatedfruitwasobservedafter

12dofstorage(Fig.2C).

3.3.EffectofUV-Consecondarymetabolitelevels

TheUV-Ctreatmentdelayedtheripeningevolution,withlower

levels of lycopene,

b

-carotene, lutein and zeaxanthin and

d

-tocopherolobserved,aftersixdaysofstorage.Slower

accumu-lation was observed when 1-MCP was applied before UV-C

treatment(Table1).Thetreatmentalsoresultedinhigherlevels

ofallmeasuredphenoliccompounds(Table1,chlorogenicacid,

p-coumaricacidandquercetin).

Putrescine and spermidine were predominant among the

polyaminesdetected intreated fruit(Table 1).It wasclearthat

the application of UV-C promoted a greater accumulation of

putrescineandspermidineafter6doftreatment.Infruitthatwas

previously subjected to treatment with 1-MCP before UV-C,

polyaminelevelswerelowerthaninfruittreatedonlywith

UV-Cbuthigherthancontrol.

4.Discussion

Thereisalargebodyofresearchdemonstratingthebeneficial

effectsofUV-Cradiationtreatmentonfruit(Maharajetal.,1999;

González-Aguilaretal.,2007;Charlesetal.,2008a,b;Erkanetal., 2008;Liuetal.,2009;Pomboetal.,2011;Stevensetal.,1998;Liu etal.,2011;Tiecheretal.,2013;Maharajetal.,2014;Syamaladevi

etal.,2014).Theresultsobservedinthisworkhaveconfirmedthat

UV-Ctreatmentstimulatesethyleneproduction,especiallyinthe

first few hours after treatment (Fig. 2A, Maharaj et al., 1999).

Additionally, UV-C treatmentcauses an increase in ACO1 gene

transcripts(Fig. 1A)thatcodefortheenzymeACCoxidase,whichis

activeduringthelaststepofethylene biosynthesis(Barryetal.,

1996;CaraandGiovannoni,2008).Thisphysiologicalresponseis

consistentwiththefactthat UV-Cisa stressorand thatplants

Fig.2.EffectsofUV-Ctreatmentonethyleneproduction(A),!Hue(B)andtomatofruits(C):(i)control,(ii)1-MCP+UV-C,(iii)UV-C,in“MicroTom”tomatofruitsstoredfor

(7)

generally increase ethylene production under stress, likely by

actingonsystem2autocatalyticethylene(González-Aguilaretal.,

2007;Liuetal.,2011;VandePoeletal.,2012;Tiecheretal.,2013).

UV-Cdelayedripeningintomatofruit,indespiteoftheincrease

in ethylene production (Fig. 2A) and ACO1 transcriptional

expression(Fig.1A).Infact,infruittreatedwithUV-Cradiation

thedevelopmentofcolorationwasslowerthaninthecontrolfruit,

andthetreatedfruitshowedthefewestsenescencesignals(Fig.2

B,C).ThisfindingisconsistentwithStevensetal.(1998),Maharaj

etal.(1999),Liuetal.(2009)andTiecheretal.(2013)whoalso

foundthat UV-C treatmentled toa reduction in ripening and

delayedtheonsetofredcolorationintomatoes.TheeffectofUV-C

on the development of fruit coloration may be due to its

interferencewithcarotenoids(Table1),whicharethe

predomi-nantpigmentsintomatoes (Stevensetal.,1998;Maharajetal.,

1999;Liuetal.,2009).Liuetal.(2011)reportedachangeinthe

profilecarotenoidsgenesexpressionsintomatoestreatedwith

UV-C.Achangeincolorisoneofthemostobvioustransformationsthat

takesplaceduringtomatofruitripeningandinvolvesthe

ethylene-dependenttransitionofchloroplaststochromoplasts(Opiyo;Ying,

2005;Barsanetal.,2010).Moreover,UV-Ctreatmentmaycause

changesinotherantioxidantpathways,suchastheproductionof

antioxidantenzymes(Erkanetal.,2008)andsynthesisofphenolic

compounds (Charles et al., 2008b) and/or bioactive amines

(Stevens et al., 1998; Maharaj et al., 1999; González-Aguilar etal.,2004;Tiecheretal.,2013).Thesecompoundsmayprevent

thedegradationofchlorophylland/orslowcarotenoiddegradation

(Maharajetal.,1999;Liuetal.,2009;Tiecheretal.,2013).

The effects of UV-C treatment on the levels of compounds

derivedfromplantsecondarymetabolism,previouslyreportedby

several authors (Charles et al., 2008a,b; Erkan et al., 2008;

González-Aguilar et al., 2004; Liu et al., 2009; Pombo et al., 2011;Tiecheretal.,2013)werepartiallyconfirmedbythiswork

(Table 1). The UV-C slows the accumulation of lycopene and

b

-carotene in fruit, which explains the lower intensity of the

characteristicredcolor(Fig.2B).Whenapplying1-MCPpriorto

UV-C, this physiological response was strengthened (Fig. 2B).

Variations inthe fruitprofile of thesecompounds accordingto

differences in variety, ripening stage, growth, and postharvest

conditionsiswidelyreported(Charlesetal.,2008a,b;Erkanetal.,

2008;Liuetal.,2009;Pomboetal.,2011).UV-Cradiationinduced

the accumulationof at least three of the phenolic compounds

investigated(Table1),which isinagreementwithCharlesetal.

(2008b), who also found higher concentrations of phenolic

compounds,anacceleratedlignificationprocessandtheformation

ofsuberinintomatoestreatedwithUV-C.

Thefactthat UV-Cradiationstimulatedtheaccumulationof

thesecompoundsisinterestingnotonlyforprolongingshelf-life,

but also for increasing plant defenses, and for increasing

potentially bioactive compound levels (Stevens et al., 1998;

González-Aguilaret al.,2004;Charles etal., 2008;Erkanetal., 2008;Tiecheretal.,2013).ItisplausiblethattheERFsinfluenced

by UV-C (Fig.1)control the biosynthesis of these compounds

becausethetomatoisaclimactericfruit,andethyleneisinvolved

inthecontrolof severalof itsbiosyntheticpathways(Cara and

Giovannoni,2008).

Thedelayofsenescencesignals(Fig.2)maybecorrelatetothe

levelsofpolyamines(Table1).Theseresultssupportwhathasbeen

reportedinthepeachbyGonzález-Aguilaretal.,(2004) andby

Maharajetal.(1999)andTiecheretal.(2013)intomatoes.These

authorssuggestedthatbyactingasastressor,UV-Cinitiatesthe

synthesisofpolyaminesthatmaybeinvolvedintheregulationof

ripening.

Becauseethylene can activatedifferenttranscription factors,

including regulators of metabolic pathways involved in fruit

ripening and those related to the stress response, the

T able 1 Levels of caro tenoids, d -to copherol, phenolics, and pol y amines fr om e x ocarps of “ Micr o T om ” tomato fruit 6 d after the UV-C tr eatment. Caro tenoids T ocophero l Phenolics Pol y amines Ly copene (m g k g  1) b -caro tene (m g k g  1) Lut ein + zeaxanthin (mg kg  1) d -to copherol (m g k g  1) Chlor og enic acid (m g k g  1) r -coumaric acid (m g k g  1) q uerce tin (mg kg  1) Putr escine (m g k g  1) Spermidine (mg kg  1) Contr ol 69. 1a * 1 2a 3.6a 1 4.64a 1 92.8c 7 .8a 6.8b 5. 1c 17 .3b 1-MCP + UV-C 20c 6.3b 2.4b 7 .43b 256.9b 9.7b 7 .9b 5 7 .1b 40.2a UV-C 26.6b 8.2b 2.5b 9.67b 36 7 .6a 1 0. 1b 1 9.8a 94.2a 43. 1a * Means with the same lo w er case lett er in the column ar e no t statisticall y differ ent according to the Tuke y’ s test (p # 0.05).

(8)

transcriptionalexpressionofERFswasalsoevaluated.UV-Cwas

foundtohavedifferenteffectsontheexpressionofthesegenes

(Fig. 1B–O).Ohme-TakagiandShinshi(1995)characterizedthefirst

fourERFsintobaccodemonstratingthattheyresponddifferently

toethylene.Chenetal.(2008)reportedthatintomatoesERFsmay

be differentially regulated during ripening and in response to

stress.

MostoftheERFsstudiedhere(Sl-ERFA.1,Sl-ERFA.3,Sl-ERFB.1,

Sl-ERFB.2,Sl-ERFB.3,Sl-ERFC.6,Sl-ERFD.1,Sl-ERFD.3,Sl-ERFE.1,

Sl-ERFF.5,Sl-ERFG.2)showedhighertranscriptaccumulationwhen

thetomatoesweretreatedwithUV-Csuggeststhatthesegenesare

strong candidates for explaining the UV-C response, and its

relationshiptoethylene.Thedelayintheripeningprocess,despite

the increase in ethylene production, ACO1 level, and ERFs

transcription level, could be due to activation of metabolic

pathways of antioxidant protection for these ERFs (Liu et al.,

2011;Erkanetal.,2008;Tiecheretal.,2013).Ingeneral,when

1-MCPwas applied prior toUV-C,reduced accumulation of ERFs

transcriptswasobserved,thusconfirmingthattheexpressionof

thesetranscriptionfactorscanberegulated byethylene(Zhang

etal.,2004;Pirrelloetal.,2006;Wangetal.,2007).Moreoverthis

datasuggeststhatregulationofERFtranscriptsbyUV-Cisethylene

dependent.

Inthiswork,theclassificationproposedbyPirrelloetal.(2012),

whoclassifiedtomatoERFsinto8sub-classes(A,B,C,D,E,F,G,H)

wasused;however,membersofsub-classHwerenotevaluated.Of

the14ERFsassessedinthepresentstudy,6(Sl-ERFA.1,Sl-ERFB.1,

Sl-ERFB.2,Sl-ERFD.1, Sl-ERFD.3andSl-ERFE.4) wereisolated and

characterizedbyPirrelloetal.(2012),whowasthefirsttorelate

theseERFstoothertypesofplantstress.

Zhouetal.(1997),whostudiedERFsSl-ERFA.3,Sl-ERFC.6and

Sl-ERFG.2,(describedinhisworkaspti4,pti5andpti6,respectively),

reportedtheabilityoftheseERFstobindspecificregionsofEREBR’s

(ethylene-responsiveelement-bindingproteins),alsoknownasthe

GCC-boxof PR-genes,increasingthetolerance ofplantstobiotic

stress.TheregulationoftheseERFgenesthroughphosphorylation

mayalsoinfluencetheinteractionofthesetranscriptionfactors

withtheGCC-boxregionsofPR-genes(Guetal.,2000;Xuetal.,

2008, 2011). In the present study, these ERFs were strongly

influenced by the abiotic stress generated by UV-C treatment,

showingasignificantincreaseintheaccumulationoftranscripts,

especially Sl-ERFC.6,which showed anapproximately 250-fold

increaseinexpressionrelativetocontrolfruit.Thisindicatesthat

theinductionofERFsmaycontributetotheacquisitionoftolerance

toadverseconditions(Heetal.,2001;Guetal.,2002;Chenetal.,

2008).Liuetal.(2011)alsoreportedasignificantincreaseinthe

expression of these three genes, especially Sl-ERF C.6, which

correspondstopti5.Byover-expressingSl-ERFC.6intomatoes,He

etal.(2001)reportedincreasedlevelsofGluBandcatalasegene

transcripts,whichareassociatedwithresistancetodiseasessuch

asPseudomonassyringae pv. Tomato.Likewise,Guet al. (2002),

observedthatinArabidopsisthalianaplantstheERFsSl-ERFA.3,

Sl-ERFC.6andSl-ERFG.2interact withtheGCC-boxregions of

PR-genes,resultinginpathogendefense.Chenetal.(2008)reported

thatwaterstressandlowtemperaturesreducethelevelsofSl-ERF

A.3transcripts.However,mechanicaldamagealsoincreasedthe

expressionofthisgene,whichsuggeststhattheremaybedifferent

regulatorymechanismsdependingonthestimulus.

The increase of transcript accumulation ofSl-ERF B.3agrees

withtheresultspublishedbyLiuetal.(2011),whichshowedthe

relationshipofthisgenetotheripeningtomatoesprocessand,Liu

etal.(2014)thatalsoreporteddelayoftheonsetofripeningcaused

forover-expression ofSl-ERF B.3-SRDX(a climactericdominant

repressorreversion).

Results from the present study on Sl-ERF E.1, previously

characterized by Tournier et al. (2003) as LeERF2, reveal the

strongimpactofethyleneonERFexpression,inagreementwith

theresultsofPirrelloetal.(2006),Liuetal.(2011),Zhangetal.

(2009) and Zhang and Huang (2010) who also related the

expression of this transcriptionfactor tothe hormoneethylene

intomatoandtobaccoplants.

Sl-ERF E.2 and Sl-ERF E.4 showed significantly reduced

accumulation of transcripts after UV-C treatment. Zhang et al.

(2004), who described Sl-ERF E.2 as JERF1, demonstrated that

expressionofthis ERFintomatoeswasinducedbyanumberof

factors: ethylene,methyl jasmonate(MeJA), abscisic acid(ABA)

and salt treatment.In rice, plants over-expressing JERF1 show

increaseddroughttolerance(Zhangetal.,2010).Incontrast,the

resultspresentedhereinsuggestthatSl-ERFE.3isnotsignificantly

involvedin theresponse toUV-C,although Wang etal. (2004)

reportedthatSl-ERFE.3respondstojasmonicacid,ethylene,cold,

saltstressandabscisicacidbybindingtoGCC-boxandDREregions

oftargetgenes.

Inthisstudy,Sl-ERFF.5alsoshowedincreasedtranscriptionasa

resultofUV-Ctreatment.Chenetal.(2008),studyingSl-ERFF.5

(whichtheyrefertoasLeERF3b),relatedtheexpressionofthisERF

tostressgenerated bydroughtand low temperatures.This ERF

possessesaamphiphilicrepressorbindingdomain(EAR)(Xuetal.,

2008;Panetal.,2010;Pirrelloetal.,2012).Panetal.(2010)deleted

theEARofSl-ERFF.5(referredtoasSl-ERF3in theirstudy)and

observed the induction of PR-gene expression, with increased

tolerancetosaltstressandreducedlipidperoxidationinRalstonia

solanacearum.

Herein, arelationshipbetweenUV-Ctreatment andripening

delay was established, and correlated with changes in 13 ERF

transcriptsevaluatedduringpostharvesttreatment.Theethylene

actioninresponsetoUV-Ctreatmentwasconfirmedwith1-MCP

applicationbeforeUV-C.ItisclearthatalthoughUV-Cpromotesan

increaseinethyleneproduction,theconcomitantincreasesinthe

ACO1expressionprofile, andvirtually allof theERFsevaluated,

resultinextendedfruitpreservation.Thedelayinfruitripening

maybecausedbytheactivationofERFsthatcouldactasregulators

ofmetabolicpathwaysduringripening.However,thishypothesis

needstobebettertested.

Acknowledgements

WethankCapes-Cofebubforthestudyscholarshipandresearch

funding.ResearchfundingwasalsoprovidedbyCNPqandFapergs.

We alsothankDr. RachelKopec forvaluable help withEnglish

revisions. References

Barry,C.S.,Blume,B.,Bouzayen,M.,Cooper,W.,Hamilton,A.J.,Grierson,D.,1996. Differentialexpressionofthe1-aminocyclopropane-1-carboxylateoxidase genefamilyoftomato.PlantJ.9,525–535.

Barsan,C.,Sanchez-Bel,P.,Rombaldi,C.,Egea,I.,Rossignol,M.,Kuntz,M.,etal.,2010. Characteristicsofthetomatochromoplastrevealedbyproteomicanalysis.J. Exp.Bot.61,2413–2431.

Bapat,V.A.,Trivedi,P.K.,Ghosh,A.,Sane,V.A.,Ganapathi,T.R.,Nath,P.,2010. Ripeningoffleshyfruit:molecularinsightandtheroleofethylene.Biotechnol. Adv.28,94–107.

Bu,J.,Yu,Y.,Aisikaer,G.,Ying,T.,2013.PostharvestUV-Cirradiationinhibitsthe productionofethyleneandtheactivityofcellwall-degradingenzymesduring softeningoftomato(LycopersiconesculentumL.)fruit.PostharvestBiol.Technol. 86,337–345.

Cara,B.,Giovannoni,J.J.,2008.Molecularbiologyofethyleneduringtomatofruit developmentandmaturation.PlantSci.175,106–113.

Charles,M.T.,Mercier,J.,Makhlouf,J.,Arul,J.,2008a.Physiologicalbasisof UV-C-inducedresistancetoBotrytiscinereaintomatofruitI:roleofpre-and post-challengeaccumulationofthephytoalexin-rishitin.PostharvestBiol.Technol. 47,10–20.

Charles,M.T.,Goulet,A.,Arul,J.,2008b.PhysiologicalbasisofUV-Cinduced resistancetoBotrytiscinereaintomatofruitIV:biochemicalmodificationof structuralbarriers.PostharvestBiol.Technol.47,41–53.

(9)

Chen,G.,Hua,Z.,Grierson,D.,2008.Differentialregulationoftomatoethylene responsivefactorLeERF3b,aputativerepressor,andtheactivatorPti4in ripeningmutantsandinresponsetoenvironmentalstresses.J.PlantPhysiol. 165,662–670.

Erkan,M.,Wang,S.Y.,Wang,C.Y.,2008.EffectofUVtreatmentonantioxidant capacity:antioxidantenzymeanddecayinstrawberriesfruit.PostharvestBiol. Technol.48,163–171.

Girardi,C.L.,Rombaldi,C.V.,DalCero,J.,Nobile,P.M.,Laurens,F.,Bouzayen,M.,etal., 2013.Genome-wideanalysisoftheAP2/ERFsuperfamilyinappleand transcriptionalevidenceofERFinvolvementinscabpathogenesis.Sci.Hortic 151,112–121.

González-Aguilar,G.A.,Wang,C.Y.,Buta,J.G.,2004.UV-Cirradiationreduces breakdownandchillinginjuryofpeachesduringcoldstorage.J.Sci.FoodAgric. 84,415–422.

Gu,Y.Q.,Yang,C.,Thara,V.K.,Zhou,J.,Martin,G.B.,2000.Pti4isinducedbyethylene andsalicylicacidanditsproductisphosphorylatedbythePtokinase.PlantCell 12,771–785.

Gu,Y.Q.,Wildermuth,M.C.,Chakravarthy,S.,Loh,Y.T.,Yang,C.,He,X.,etal.,2002. TomatotranscriptionfactorsPti4,Pti5,andPti6activatedefenseresponseswhen expressedinArabidopsis.PlantCell14,817–831.

Gutterson,N.,Reuber,T.L.,2004.RegulationofdiseaseresistancepathwaysbyAP2/ ERFtranscriptionfactors.Curr.Opin.PlantBiol.7,465–471.

Häkkinen,S.H.,Kärenlampi,S.O.,Heinonen,M.,Mykkänen,H.M.,Törrönen,A.R., 1998.HPLCMethodforscreeningofflavonoidsandphenolicacidsinberries.Sci FoodAgric.77,543–551.

He,P.,Warren,R.F.,Zhao,T.,Shan,L.,Zhu,L.,Tang,X.,etal.,2001.Overexpressionof Pti5intomatopotentiatespathogen-induceddefensegeneexpressionand enhancesdiseaseresistancetoPseudomonassyringaepv.tomato.Mol.Plant MicrobeInteract14,1453–1457.

Hoeberichts,F.A.,VanDerPlas,L.H.W.,Woltering,E.J.,2002.Ethyleneperceptionis requiredfortheexpressionoftomatoripening-relatedgenesandassociated physiologicalchangesevenatadvancedstagesofripening.PostharvestBiol. Technol.26,125–133.

Huang,Z.,Zhang,Z.,Zhang,X.,Zhang,H.,Huang,D.,Huang,R.,2004.TomatoTERF1 modulatesethyleneresponseandenhancesosmoticstresstoleranceby activatingexpressionofdownstreamgenes.FEBSLett.573,110–116.

Liu,L.H.,Zabaras,D.,Bennett,L.E.,Aguas,P.,Woonton,B.W.,2009.EffectsofUV-C, redlightandsunlightonthecarotenoidcontentandphysicalqualitiesof tomatoesduringpost-harveststorage.FoodChem.115,495–500.

Liu,C.,Cai,L.,Han,X.,Ying,T.,2011.TemporaryeffectofpostharvestUV-Cirradiation ongeneexpressionprofileintomatofruit.Gene486,56–64.

Liu,M.,Diretto,G.,Pirrello,J.,Roustan,J.P.,Li,Z.,Giuliano,G.,etal.,2014.The chimericrepressorversionofanethyleneresponsefactor(ERF)familymember, Sl-ERF.B3,showscontrastingeffectsontomatofruitripening.NewPhytol.203 (1),206–218.

Livak,K.J.L.,Schmittgen,T.D.,2001.Analysisofrelativegeneexpressiondatausing real-timequantitativePCRandthe2DDCtmethod.Methods25,402–408.

Maharaj,R.,Arul,J.,Nadeau,P.,1999.Effectofphotochemicaltreatmentinthe preservationoffreshtomato(LycopersiconesculentumcvCapello)bydelaying senescence.PostharvestBiol.Technol.15,13–23.

Maharaj,R.,Arul,J.,Nadeau,P.,2014.UV-Cirradiationeffectsonlevelsofenzymic andnon-enzymicphytochemicalsintomato.Innov.FoodSci.Emerg.21,99–106.

Obande,M.A.,Tucker,G.A.,Shama,G.,2011.EffectofpreharvestUV-Ctreatmentof tomatoes(SolanumlycopersiconMill.)onripeningandpathogenresistance. PostharvestBiol.Technol.62,188–192.

Ohme-Takagi,M.,Shinshi,H.,1995.Ethylene-lnducibleDNAbindingproteinsthat lnteractwithanethylene-responsiveelement.PlantCell7,173–182.

Opiyo,A.M.,Ying,T.J.,2005.Theeffectsof1-methylcyclopropenetreatmentonthe shelflifeandqualityofcherrytomato(Lycopersiconesculentumvarcerasiforme) fruit.J.FoodSci.Technol.40,665–673.

Pan,I.C.,Li,C.W.,Su,R.C.,Cheng,C.P.,Lin,C.S.,Chan,M.T.,2010.Ectopicexpressionof anEARmotifdeletionmutantofSlERF3enhancestolerancetosaltstressand Ralstoniasolanacearumintomato.Planta232,1075–1086.

Pirrello,J.,Jaimes-Miranda,F.,Sanchez-Ballesta,M.T.,Tournier,B.,Khalil-Ahmad,Q., Regad,F.,etal.,2006.Sl-ERF2:atomatoethyleneresponsefactorinvolvedin ethyleneresponseandseedgermination.PlantCellPhysiol.47,1195–1205.

Pirrello,J.,Prasad,B.N.,Zhang,W.,Chen,K.,Mila,I.,Zouine,M.,etal.,2012. Functionalanalysisandbindingaffinityoftomatoethyleneresponsefactors provideinsightonthemolecularbasesofplantdifferentialresponsesto ethylene.BMCPlantBiol.12,190.

Pombo,M.A.,Rosli,H.G.,Martíneza,G.A.,Civello,P.M.,2011.UV-Ctreatmentaffects theexpressionandactivityofdefensegenesinstrawberryfruit

(Fragaria"ananassaDuch.).PostharvestBiol.Technol.59,94–102.

Rodriguez-Amaya,D.,2001.AGuidetoCarotenoidAnalysisinFoods.ILSIPress, Washington,pp.64.

SasInstitute,2002.StatisticalAnalysisSystem9.1forWindows.SASInstituteInc, Cary,NC.

Singh,K.B.,Foley,R.C.,Oñate-Sánchez,L.,2002.Transcriptionfactorsinplant defenseandstressresponses.Curr.Opin.PlantBiol.5,430–436.

Stevens,C.,Liu,J.,Khan,V.A.,Lu,J.Y.,Wilson,C.L.,Igwegbe,E.C.K.,etal.,1998. ApplicationofhormeticUV-CfordelayedripeningandreductionofRhizopus softrotintomatoes:theeffectoftomatineonstoragerotdevelopment.J. Phytopathol.146,211–221.

Syamaladevi,R.M.,Lupien,S.L.,Bhunia,K.,Sablani,S.S.,Dugan,F.,Rasco,B.,etal., 2014.UV-ClightinactivationkineticsofPenicilliumexpansumonpearsurfaces: influenceonphysicochemicalandsensoryqualityduringstorage.Postharvest Biol.Technol.87,27–32.

Tiecher,A.,Paula,L.A.,deChaves,F.C.,Rombaldi,C.V.,2013.UV-Ceffectonethylene, polyaminesandtheregulationoftomatofruitripening.PostharvestBiol Technol.86,230–239.

Tournier,B.,Sanchez-Ballesta,M.T.,Jones,B.,Pesquet,E.,Regad,F.,Latche,A.,etal., 2003.NewmembersofthetomatoERFfamilyshowspecificexpressionpattern anddiverseDNA-bindingcapacitytotheGCCboxelement.FEBSLett.550,149– 154.

VandePoel,B.,Bulens,I.,Markoula,A.,Hertog,M.L.,Dreesen,R.,Wirtz,M.,etal., 2012.Targetedsystemsbiologyprofilingoftomatofruitrevealscoordinationof theYangcycleandadistinctregulationofethylenebiosynthesisduring postclimactericripening.PlantPhysiol.160,1498–1514.

Vieira,S.M.,Theodoro,K.H.,Glória,M.B.,2007.Profileandlevelsofbioactiveamines inorangejuiceandorangesoftdrink.FoodChem.100,895–903.

Wang,H.,Huang,Z.,Chen,Q.,Zhang,Z.,Zhang,H.,Wu,Y.,etal.,2004.Ectopic overexpressionoftomatoJERF3intobaccoactivatesdownstreamgene expressionandenhancessalttolerance.PlantMol.Biol.55,183–192.

Wang,A.,Tan,D.,Takahashi,A.,Li,T.Z.,Harada,T.,2007.MdERFs,twoethylene responsefactorsinvolvedinapplefruitripening.J.Exp.Bot.58,3743–3748.

Yin,X.-R.,Allan,A.C.,Xu,Q.,Burdon,J.,Dejnoprat,S.,Chen,K.-S.,etal.,2012. DifferentialexpressionofkiwifruitERFgenesinresponsetopostharvestabiotic stress.PostharvestBiolTechnol.66,1–7.

Xu,Z.S.,Xia,L.Q.,Chen,M.,Cheng,X.G.,Zhang,R.Y.,Li,L.C.,etal.,2007.Isolationand molecularcharacterizationoftheTriticumaestivumL.ethylene-responsive factor1(TaERF1)thatincreasesmultiplestresstolerance.PlantMol.Biol.65, 719–732.

Xu,Z.S.,Chen,M.,Li,L.C.,Ma,Y.Z.,2008.FunctionsoftheERFtranscriptionfactor familyinplants.Botany86,969–977.

Xu,Z.S.,Chen,M.,Li,L.C.,Ma,Y.Z.,2011.FunctionsandapplicationoftheAP2/ERF transcriptionfactorfamilyincropimprovement.J.Integr.PlantBiol.53,570–585.

Zhang,H.,Huang,Z.,Xie,B.,Chen,Q.,Tian,X.,Zhang,X.,etal.,2004.The ethylene-jasmonate-,abscisicacid-andNaClresponsivetomatotranscriptionfactor JERF1modulatesexpressionofGCCboxcontaininggenesandsalttolerancein tobacco.Planta220,262–270.

Zhang,Z.,Zhang,H.,Quan,R.,Wang,X.-C.,Huang,R.,2009.Transcriptional regulationoftheethyleneresponsefactorLeERF2intheexpressionofethylene biosynthesisgenescontrolsethyleneproductionintomatoandtobacco.Plant Physiol.150,365–377.

Zhang,Z.,Li,F.,Li,D.,Zhang,H.,Huang,R.,2010.Expressionofethyleneresponse factorJERF1inriceimprovestolerancetodrought.Planta232,765–774.

Zhang,Z.,Huang,R.,2010.Enhancedtolerancetofreezingintobaccoandtomato overexpressingtranscriptionfactorTERF2/LeERF2ismodulatedbyethylene biosynthesis.PlantMol.Biol.73,241–249.

Zhou,J.,Tang,X.,Martin,G.B.,1997.ThePtokinaseconferringresistancetotomato bacterialspeckdiseaseinteractswithproteinsthatbindacis-elementof pathogenesisrelatedgenes.EMBOJ.16,3207–3218.

Figure

Fig. 1. Effects of UV-C treatment on relative accumulation of ACO1 (A) and ERF (B–O) gene transcripts in “MicroTom” tomato fruit after 6 h of storage
Fig. 2. Effects of UV-C treatment on ethylene production (A), ! Hue (B) and tomato fruits (C): (i) control, (ii) 1-MCP + UV-C, (iii) UV-C, in “MicroTom” tomato fruits stored for 12 d

Références

Documents relatifs

D’autant plus que l’installation brutale d’un symptôme ou l’identification d’un signe déficitaire neurologique étaient plus suspects d’AVC par la

Manuel d’assurance qualité avec une politique qualité COPIL qualité (direction, responsable qualité, pilotes) Gestion des FEI, suivi régulièrement EIG (évènement

As SNNs are still immature, it is interesting to be able to quickly modify the different elements in these networks, such as the learning methods, the neuron models, or the

Alors seulement serons-nous peut-être capables de lire ces éloges comme le Suisse de l’Académie les écoutait, à cette seule différence près : nous verrons dans cette

The setup is similar to a typical concatenative (acoustic-only) speech synthesis setup, with the difference that here, the units to be concatenated comprise of visual informa-

Ainsi, l’absorption d’un médicament dépend de la voie d’administration, la forme galénique (comprimé, gélule, forme liquide) qui va modifier la cinétique de libération

Dans cette section de la revue de la littérature nous tenterons de cerner J'image des femmes haïtiennes et de leur participation à la vie politique. Dans le livre de

The surface coverage values (θ) for various concentrations of the ligand in acid medium, obtained from the polarization curves, electrochemical impedance