• Aucun résultat trouvé

Elaboration de l'oxyde de fer et détermination spectroscopique des ses grandeurs physiques

N/A
N/A
Protected

Academic year: 2021

Partager "Elaboration de l'oxyde de fer et détermination spectroscopique des ses grandeurs physiques"

Copied!
6
0
0

Texte intégral

(1)

يملعلا ثحبلا و يلاعلا ميلعتلا ةرازو

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique رضخل ةمح ديهشلا ةعـماج

يداولا

Université Echahid Hamma Lakhdar –EL OUED

Faculté de Sciences Exactes ةقيقدلا مولعلا ةيلك Département de Physique ءايزيفلا مسق Ref : ……… ………. :عجرملا

Thèse présentée en vue de l’obtention du diplôme de Doctorat LMD

Spécialité : Rayanemment, matière et énergie

SUJET DE LA THESE :

Elaboration de l'oxyde de fer et détermination spectroscopique

des ses grandeurs physiques

Présenté par :

M. Youcef MEFTAH

Soutenue le: 06/11/2019

Devant le jury composé de :

M :Mosbah DIFALLAH MCA Université d’El-Oued Président

M : Boubaker BEN HAOUA Professeur Université d’El-Oued Rapporteur

M : Mohammed Sadok MAHBOUB MCA Université d’El-Oued Examinateur

M : Said Ben RAMACHE Professeur Université deBiskra Examinateur

Melle : Malika DIAFI MCA Université de Biskra Examinateur

Melle : Soria ZEROUAL MCA Université d'El-Oued Examinateur

(2)

Table of contents i List of figures vi List of tables ix Abbreviations xii GENERAL INTRODUCTION I. Motivation 1

II. Organization of the Thesis 2

References 3

CHAPTAR I: BIBLIOGRAPHICAL STUDY

I.1. Introduction 6

I.2. Iron and iron oxides 6

I.2.1. Iron

6

I.2.2. Iron oxide 7

I.3. The phases of iron oxide 9

I.3.1. -Fe2O3 (Hematite) 10

I.3.2. -Fe2O3 11

I.3.3. -Fe2O3 (Maghemite) 12

I.3.4. -Fe2O3 13

I.3.5. Fe3O4 (Magnetite) 13

I.3.6. FeO (Wüstite) 14

I.4. Phase transitions 15

I.4.1. Introduction 15

I.4.2. Phase transitions 16

I.5. Physical and chemical properties 17

(3)

I.6.1. Crystal structure of magnetite and maghemite 17

I.6.2. Crystal structure of hematite 18

I.7. Optical properties of absorption 19

I.7.1. Introduction 19

I.7.2. Optical properties of absorption of hematite in UV and visible 20

I.8. Magnetic properties of iron oxides 22

I.8.1. Generalities on magnetism 22

I.8.2. Magnetic properties of magnetite 22

I.8.3. Magnetic properties of maghemite 22

I.8.4. Magnetic properties of hematite 23

I.9. Electrical properties 23

I.10. Applications of iron oxide 25

I.10.1. Biomedical applications 25

I.10.2. Applications to wastewater treatment 26

I.10.3. Catalytic applications 27

I.10.4. Application to gas sensors 27

I.10.5. Applications to lithium-ion accumulators 27 I.10.6. Decorative and cosmetic applications 27

I.10.7. pigments 27

Conclusions 28

References 29

CHAPITRE II: DEPOSITION PROCESSES & CHARACTERIZATION TECHNIQUES of α-Fe2O3

II.1. Introduction 36

(4)

II.2.1. Thin films Definition 37 II.3. Preparation Techniques for Thin Film Deposition 37

II.3.1 Physical Vapor Deposition (PVD) 37

II.3.1.1 Evaporation 38

II.3.1.2 Pulsed Laser Deposition (PLD) 38

II.3.1.3 Sputtering 39

II.3.2 Chemical Trend 40

II.3.2.1 Chemical Vapor Deposition (CVD) 40 II.3.2.2 Chemical Bath Deposition (CBD) 41

II.3.2.3 Sol-Gel Deposition 42

II.3.2.4 Ultrasonic Spray Deposition 42

II.4. Spray pyrolysis technique 43

II.5. Several studies for synthesis methods for iron oxides nanoparticles and thin films 45 II.6. Spray pyrolysis with moving nozzle (SPMN) 46

II.7. Characterization Methods 49

II.7.1. X-Ray Diffraction 49

II.7.2. Scanning Electron Microscope SEM 50 II.7.3. Fourier Transform Infrared Spectroscopy (FTIR) Analysis 51 II.7.4. Optical Characterization by Ultraviolet and Visible (UV-VIS)

Spectroscopy

52

Conclusion 53

References 54

CHAPTER III: ELABORATION OF α-Fe2O3 THIN FILMS BY SPMN & OBTAINED RESULTS

III.1. Introduction 59

(5)

III.2.1 The spray pyrolysis with moving nozzledeposition system (SPMN) 59

III.2.1 Substrate 60

III.2.3 Iron Source 60

III.2.4 Thin films preparation 61

III.2.5 Thin films characterization 61

III.3. Results and discussion 63

III.3.1. Structural properties 63

III.3.1.1 Crystalline Structure 63

III.3.1.2 Texture Coefficient TC(hkl) 63

III.3.1.3 Lattice Constants 64

III.3.1.4 Crystallite Sizes D 64

III.3.1.5 Surface morphology 66

III.3.2. Optical properties 68

III.3.2.1 Optical Transmission and Optical Band Gap 68

III.3.2.2 FTIR 69

Conclusion 70

References 71

CHAPTER IV: ELABORATION OF CO/α-Fe2O3 THIN FILMS & OBTAINED RESULTS

IV.1. Introduction 75

IV.2. Deposition of Cobalt doped (α-Fe2O3) Thin Films by spray pyrolysis 75

IV.2.1. Iron and Cobalt Sources 75

IV.2.2. Thin films preparation 76

IV.2.3. Antibacterial assay 76

IV.2.4. Thin films characterization 77

(6)

IV.3.1.1 Crystalline Structure 77

IV.3.1.2 Lattice Constants 78

IV.3.1.3 Crystallite Sizes D 79

IV.3.2. Optical properties 82

IV.3.2.1 Optical Transmission and Optical Band Gap 82 IV.3.2.2 Antibacterial Activity result 83

Conclusion 84 References 85 GENERAL CONCLUION General conclusion 88 Abstract Résumé صخلم

Références

Documents relatifs

Optical Absorbance of CuO Thin Films Deposed at Different volumes (S 1 or S 2 ) at T=500°C In order to appreciate the gap energy of CuO thin films, first, the experimental data

The X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectrophotometry were used to determinate the structural, morphological and optical properties

In this work, a copper oxide thin films were deposed by a simple and inexpensive technique (spray pyrolysis) on ordinary glass substrates at a fixed temperature T=500°C. and

The structural, optical and electrical, properties of the films were determined using X-ray diffraction, UV visible transmittance and Hall Effect measurements respectively.

The measurement of the thickness (h) by the method of the interference fringes, [11] and from the Figure.1 transmittance curve, we derive the physical constants

Abstract : Iron diselenide (FeSe) composite thin films have been formed onto ultrasonically and chemical cleaned glass substrates by thermal evaporation technique from powder..

Secondary phase is present as indicated by the small peak assigned to Sn 2 S 3 phase (according to JCPDS card number 75-2183). Thereafter, one can conclude from XRD results that

To achieve high quality of nanocomposites presenting well-controlled physical properties suitable for efficient and stable solar cells, we use laser pyrolysis, which enables