• Aucun résultat trouvé

Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings

N/A
N/A
Protected

Academic year: 2021

Partager "Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings"

Copied!
9
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 14079

To link to this article : doi:

10.1016/j.electacta.2012.09.061

URL :

http://dx.doi.org/10.1016/j.electacta.2012.09.061

To cite this version : Amand, Sylvain and Musiani, Marco and

Orazem, Mark E. and Pébère, Nadine and Tribollet, Bernard and

Vivier, Vincent Constant-phase-element behavior caused by

inhomogeneous water uptake in anti-corrosion coatings. (2013)

Electrochimica Acta, vol. 87. pp. 693-700. ISSN 0013-4686

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Constant-phase-element

behavior

caused

by

inhomogeneous

water

uptake

in

anti-corrosion

coatings

Sylvain

Amand

a

,

Marco

Musiani

b,∗

,

Mark

E.

Orazem

c

,

Nadine

Pébère

a

,

Bernard

Tribollet

d

,

Vincent

Vivier

d

aUniversitédeToulouse,CIRIMAT,UPS/INPT/CNRS,ENSIACET,4,alléeEmileMonsoBP44362,31030ToulouseCedex4,France bIstitutoperl’EnergeticaeleInterfasi,ConsiglioNazionaledelleRicerche,35127Padova,Italy

cDepartmentofChemicalEngineering,UniversityofFlorida,FL32611,USA

dLaboratoireInterfacesetSystèmesElectrochimiques,UPR15duCNRS,UniversitéPierreetMarieCurie,75252ParisCedex05,France

Keywords: CPE

Effectivemediumtheory Impedance

Porosity Resistivity

a

b

s

t

r

a

c

t

Theimpedanceofasubstrate/coating/electrolytesystemwascalculatedwiththeassumptions:(i)the coatinguptakeselectrolytetoanextentthatprogressivelydecreasesfromthecoating/electrolyte inter-facetothesubstrate/coatinginterfacewhereitbecomesnegligible;(ii)thevolumefractionof the electrolytevariesalongthecoatingthicknessaccordingtoapower-law;(iii)theresistivityand per-mittivityprofilesoftheelectrolyte-penetratedcoatingcanbecalculatedthroughaneffectivemedium theory(EMT)formulacorrespondingtoaparallelcombinationofthetwomedia(electrolyteand coat-ingmaterial);and(iv)someporesextendfromthecoating/electrolyteinterfacetothesubstrate/coating interface,providingalowresistancepath.Theimpedanceplotsthuscalculatedexhibitedaconstant phaseelement(CPE)behaviorinalargefrequencyrange.Someexperimentalresultsobtainedwith2024 aluminumalloy/hybridsol–gelcoatingsamplesimmersedinaNaClsolutionwereanalyzedwith refer-encetotheabovedescribedmodel.Theextensionoftherecentlydevelopedpower-lawCPEmodelto anti-corrosioncoatingsisshowntoyieldinsightintothedistributionofresistivityandassociatedwater uptake.Evaluationofmixingrulesforconductivitiesandpermittivitiesofthetwomedia(coatingand electrolyte)showedthatthelinearcombinationprovidedresultsthatwereconsistentwiththeobserved impedanceresponse;whereas,distributionsresultingfromaseriescombinationofthetwomedia,an EMTformulaproposedintheliterature,andtheMaxwellapproximationwereincompatiblewiththe observedCPEimpedanceresponse.

1. Introduction

Electrochemicalimpedancespectroscopyisapopulartechnique for the assessment of the corrosion protection performance of organiccoatings,whichhasbeen usedforsome decades[1–5]. Byfollowingtheevolutionoftheimpedanceresponse ofa sub-strate/coating/electrolytesystemoveranextendedperiodoftime, manyresearchgroupshavebeenabletomonitorthedegradationof thecoatingmaterialandtheonsetofcorrosionprocesses.The anal-ysisoftheimpedancedataisoftenbasedontheclassicalequivalent circuitproposedbyBeaunieretal.in1976[2]oritsvariants. Beau-nier’scircuitconsistsoftheuncompensatedelectrolyteresistance inserieswithaparallelconnectionof(i)thecoatingcapacitanceand (ii)abranchincludingtheresistanceoftheelectrolyte-penetrated coating,assumedtobeidenticaltotheresistanceoftheelectrolyte insideitspores,inserieswithaparallelconnectionofthedouble

∗ Correspondingauthor.

E-mailaddress:m.musiani@ieni.cnr.it(M.Musiani).

layercapacityatthebaseofthepores(coating/substrateinterface) andanimpedancerepresentingthecorrosionprocess.Inthemain variantofBeaunier’scircuit,thecoatingcapacityisreplacedbya constantphaseelement(CPE);additionalmodificationsinvolvethe replacementofthedoublelayercapacitybyasecondCPEand/orthe inclusionofadditionalelements.SubstitutingCPEsforcapacities maygreatlyimprovethequalityofthefittingbetweenthe experi-mentaldata,whichoftenshowaCPEbehavior,andtheequivalent circuit,butcreatesambiguitiesinthephysicalinterpretationofthe results,sincetheCPEmoduluscannotbesimplyidentifiedwiththe coatingcapacity(orthedoublelayercapacity)andthecalculationof theeffectivecapacityfromtheCPEparametersrequiresadetailed knowledgeonthephysicalreasonsfortheCPEbehavior[6].Thus, thepricetopayforimprovingthefittingisthelossofinformation onthecoatingcapacity,aparameterthat,followingthepioneering workofBrasherandKingsbury[7],hasbeenusedfordecadesto calculatetheelectrolyteuptakeinthecoating.

The physical origin of the CPE behavior is still incom-pletely understood, but it is generally agreed that it must be ascribed to inhomogeneous physical properties of the system

(3)

= 1 Electrolyte Coa"ng Substrate Rpore

R

pore

R

e

Z

c

CPE

(a)

(b)

Fig.1.(a)Schematicrepresentationofasubstrate/coating/electrolytesystem.(b)Equivalentcircuit;theupperboxcorrespondstoEq.(7)andthecompletecircuitistheone usedforregression.TheCPEinthelowerboxwasincludedtoaccountforanoxidelayerexistingonthealuminumalloyelectrode.

[8].With anoriginal experimentalapproach,Kittel et al. [9,10] demonstrated marked variations in the impedance of organic coatings along their thickness, and concluded that accurate models for substrate/coating/electrolyte systems should inte-grategradientsofpropertiesover thethicknessof thecoatings. However, those authors did not propose any specific resis-tivity or permittivity profiles. Inhomogeneities in the coating properties have been considered by Hinderliter et al. [11,12] who related these inhomogeneities with electrolyte uptake in the coating and, taking into account various geometries for the electrolyte-filled coating defects, developed physical mod-elsofsubstrate/coating/electrolytesystems. Rocheetal.[13,14] observed the formation of an interphase region, next to the substrate/coatinginterface,withpropertiessignificantlydifferent from those of the bulk coating material. Such an inter-phase affected the mechanical and adhesion properties of the system.

Ourgrouphasrecentlyshown thattheimpedanceofalayer exhibitsaCPEbehavioriftheresistivityofthematerialvariesalong thelayerthicknessaccordingtoa power-lawandits permittiv-ityiseitherindependentoftheposition[15]orvariesalongthe layerthicknessonlyinthelow-impedancepartsofthelayer[16]. This“power-lawmodel”hasbeenappliedtosystemsasdiverseas passiveoxidesandhumanskin[17].Inthepresentpapera possi-bleextensionofthepower-lawmodeltoanti-corrosioncoatingsis explored.Thehypothesesaremadethatinhomogeneitiesinthe coatingmorphologycauseaninhomogenouselectrolyte uptake, strongernearthecoating/electrolyteinterfaceand weakernear thesubstrate/coatinginterface,andthat thedependence ofthe electrolytevolumefractiononthepositionalongthecoating thick-nessobeysapower-law.Theprofilesofresistivityandpermittivity resultingfromtheelectrolyteuptakeprofilearecalculatedforsome effectivemediumtheory(EMT)formulas,andthen usedto cal-culatetheimpedance of thesystem.It is shown that only one oftheseformulasleadstoCPEbehavior. Finally,thetheoretical impedanceexpression is compared to experimentalimpedance dataobtainedwithhybridsol–gelcoatingsexposedtoa0.5MNaCl solution.

2. Theory

Aschematicrepresentation ofa substrate/coating/electrolyte systemispresentedinFig.1a.Thecoatingthicknessisdenotedı

andthepositionalongthecoordinateperpendiculartothe sub-strate/coating and coating/electrolyte interfaces is expressedin dimensionlesscoordinatesas

=x

ı (1)

wherexisthedistancefromthesubstrate/coatinginterface. Thecoatingwasassumedtobepenetratedbytheelectrolyte whichfillsanumberofpores,thelateraldimensionofwhichmay bedistributed and not necessarily independentof . InFig. 1a, the poresare represented as being straight, although theyare obviouslytortuousinnature.Allporeshaveamouthatthe coat-ing/electrolyteinterfaceand,mostofthemarenotasdeepasthe coating.Thus,differentplanes paralleltotheinterfaces,located withinthecoatingatdifferentpositions,crossdifferentnumbers ofpores,anddifferentelementallayersofthecoating,dthick,have differentlocalelectrolytevolumefractions().Somepores(only oneisshownintherightsideofFig.1a)mayextendthroughout thecoatingandprovidealow-resistivitypathbetweenthe elec-trolyteandthesubstrate.Thus,theelectricalequivalentcircuitof thesubstrate/coating/electrolytesystemconsistsoftheelectrolyte resistanceinserieswiththeparallelcombinationoftwo compo-nents:a resistance(Rpore), representingthethrough pores,and

animpedance(Zc),representingtheelectrolyte-modifiedcoating.

SuchacircuitisrepresentedintheupperboxshowninFig.1b. Thelowerbox,containingaCPE,accountsfortheseriesimpedance responseoftheoxidelayeronthesubstratesurface.Thescheme inFig.1a,inwhichthelocalelectrolytevolumefractionincreases asincreases,issimilartotheoneproposedbyHinderliteretal. [11]who,however,clearlyseparatedanouterelectrolyte-affected coatingregionfromaninnerpristinecoatingregionandtherefore didnotconsiderporesthatreachthesubstrate.

Variouseffectivemediumtheory(EMT)formulashavebeen pro-posedthatmaybeusedtocalculateresistivityandpermittivity profilescausedbyadistributionof().Takingintoaccountthat, ineachelementallayerparalleltotheinterfaces,eachpositionis occupiedbyeitherthecoatingmaterialortheelectrolyte,thesetwo mediamaybeassumedtobeinparalleltoeachother.Therefore,the overallconductivity(=−1)andpermittivity(ε)maybeobtained

aslinearcombinationsoftheconductivitiesandpermittivitiesof thetwomedia(coatingandelectrolyte)withcoefficientsequalto therespectivevolumefractions[11],i.e.,

(4)

and

ε()=εw()+εc[1−()] (3)

wherethesubscriptswandcrefertotheelectrolyteandthecoating material,respectively.Sinceusually()≪1and−1

c ≪−1w,()−1

dependslinearlyon().

Itwasrecentlyshown[15]thataCPEbehaviorcouldbedueto avariationof()accordingtoapower-law.ForaCPEimpedance writtenas

ZCPE=

1

(jω)˛Q (4)

thepower-lawexponent andtheCPEexponent˛arelinkedby therelationship

˛= −1

(5)

Inthepresentwork,thehypothesisismadethat()changes from(0)=0at=0to(ı)at=1accordingtoapower-law,i.e., ()= (ı)

1+(ı)( 1) (6)

The condition (0)=/ 0 was not considered because Rpore

accountsforthecontributionofthroughpores,andthereforeonly theporesnotreachingthesubstrate/coatinginterfaceneedtobe consideredforcalculatingZc.Theelectrolytevolumefraction()

ispresentedasafunctionofpositioninFig.2forsometypical cases.ThesewerecalculatedfollowingEq.(6)fordifferent(ı) val-uesbetween0.001and0.1.Anexponent =5wasassumed,which correspondsto˛=0.8,atypicalvaluefoundwithsystems exhibit-ingamarkedCPEbehavior.Assumptionofadifferentvalueof wouldproducequalitativelysimilarresults.

Theresistivity()anddielectricconstantε()profiles, calcu-latedaccordingtoEqs.(2)and(3)forthesamew,c,εwandεc

valuesasthoseconsideredinRef.[11],areshowninFig.3.With (ı)=0.1(correspondingtoameanelectrolytepartialvolume<2%), theresistivityvariationacrossthecoatingisca.8ordersof magni-tude.Evenwith(ı)aslowas0.001,(ı)is5ordersofmagnitude lowerthan(0).Incontrast,thepermittivityvariationsare mod-erate:for(ı)=0.1,ε(ı)islargerthanε(0)byonlyafactorofca. 2.Atlowvalues,i.e.,closetothemetal/coatinginterface,Fig.3a showsahighresistivityregioncompatiblewiththeassumptionof aninterphasewithpropertiessignificantlydifferentfromthoseof thebulkcoating[13,14].

Undertheassumptionthateachelementallayermaybe rep-resentedbyaparallel combinationofa resistance()d and a

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.02

0.04

0.06

0.08

0.10

= 0.1

= 0.05

= 0.01

= 0.001

( ) /

dimensionless

/ dimensionless

Fig.2. Wateruptakeprofileswith(ı)asaparameter,calculatedaccordingtoEq.

(6)with(0)=0and =5. 0.0 0.2 0.4 0.6 0.8 1.0 103 106 109 1012 = 0.1 = 0.05 = 0.01 = 0.001

(

)

/

cm

/ dimensionless

a

0.0 0.2 0.4 0.6 0.8 1.0 8 10 12 14 16 = 0.1 = 0.05 = 0.01 = 0.001

)

/

d

im

e

n

s

io

n

le

s

s

/ dimensionless

b

Fig. 3.Resistivity (a)and permittivity (b) profileswith (ı)as aparameter, calculatedaccording to Eqs. (2) and (3) respectively,with c=2×1011cm, w=330cm,εc=8,εw=82,(0)=0,and =5.

capacitanceε()ε0/d,theimpedanceoftheelectrolyte-penetrated

coating(Zc)iscalculatedas Zc(ω)=ı 1

Z

0 1 ()−1+jωε()ε0 d (7)

Plotscorrespondingtofourdifferent(ı)valuesareshownin Fig.4,bothinBodecoordinates,currentlyusedinthecoating com-munity,andinNyquistcoordinates.Clearly,thecoatingimpedance becomessmallerwhen(ı)increases(andthemeanelectrolyte partialvolumeincreases).However,theshapeoftheplotsis insen-sitivetothevalueof(ı).Theplotofthephaseangleclearlyshows aCPEbehaviorinahigh-frequencyrange,approximatelybetween 100Hzand 10kHz. TheCPEbehavioris alsovisiblein thehigh frequencybranchoftheNyquistplots.

Thefrequencydependenceofthedlog|Z′′

c|/dlogfderivativeis

showninFig.5.Inafrequencyrangewherethesystemexhibits aCPEbehavior,dlog|Zc′′|/dlogf =−˛[18].Theplots

correspond-ingtofourdifferent(ı)valuescompletelyoverlapwithavalueof −0.8(correspondingto˛=0.8)inthehighfrequencyrange. Corre-spondingly,theconstant-phase-anglevalueinFig.4bisgivenby 0.8×90◦=72.

To obtain the overall impedance Z of the sub-strate/coating/electrolyte system, the pore resistance Rpore in

parallel with Zc and the electrolyte resistance in series with

the parallel combination of Rpore and Zc should be considered.

(5)

10-2 10-1 100 101 102 103 104 105 103 104 105 106 107 108 = 0.1 = 0.05 = 0.01 = 0.001

|Z

c

|

/

cm 2

f

/ Hz

a

10-2 10-1 100 101 102 103 104 105 0 30 60 90 = 0.1 = 0.05 = 0.01 = 0.001

/

d

e

g

re

e

f / Hz

b

0 1x107 2x107 3x107 0 1x107 2x107 3x107

= 0.1

= 0.05

= 0.01

= 0.001

-Z

c"

/

cm

2

Zc' /

cm

2

c

1.259 Hz

Fig.4.Impedanceplotswith(ı)asaparameter,inBodecoordinates(a)and(b) andNyquistcoordinates(c),calculatedaccordingtoEq.(7)withı=20mmandthe conductivityandpermittivityprofilesshowninFig.3,i.e.,with(0)=0and =5.

negligible, and henceforth will be disregarded. Thus Zmay be simplycalculatedas

Z(ω)=



Zc(ω)−1+R−1pore



−1

(8) Fig.6 showsimpedanceplotscalculated accordingtoEq. (8) for variousRpore values and for theresistivity and permittivity

10-1 101 103 105 -1.0 -0.5 0.0 0.5 1.0 = 0.1 = 0.05 = 0.01 = 0.001

d

lo

g

|Z

c

"|

/d

lo

g

(f

)

f / Hz

= 0.8

Fig.5.Frequencydependenceofdlog|Zc"|/dlogf,calculatedwiththesame param-etersasforFig.4.

profilescorrespondingto(0)=0,(ı)=0.1and =5.Aslongas Rpore>Zc(0),whereZc(0)=ı

1

Z

0

()disthezerofrequencylimitof Zc,ithasonlyaslighteffectontheoverallimpedance.WhenRpore

becomesprogressivelysmaller,theimpedancemodulusdecreases andtendstoapproachRpore,asshown inFig.6a;thetransition

fromaCPEtoaresistivebehaviorisshiftedtohigherfrequency, asshowninFig.6b;andtheshapeoftheNyquistplotsbecomes moresymmetricalwithrespecttothemaximumofZ”,asshownin Fig.6c.

Hinderliteretal.[11]consideredothereffectivemedium theo-ries,inadditiontoEqs.(2)and(3).Assuminganelectrolyteuptake describedbyEq.(6),(0)=0, (ı)=0.1and =5,resistivityand permittivityprofileswerecalculatedcorrespondingto

(i) aseriescombinationofthetwomedia[11],i.e.,

()=wϕ()+c[1−ϕ()] (9) ε()=



1−() εc + () εw



−1 (10) (ii)anEMTformulaproposedbyBrasherandKingsbury[7],i.e.,

log[()−1]=() log[−1

w]+[1−()] log[c−1] (11)

log ε()=ϕ()logεw+[1−ϕ()] logεc (12)

and

(iii)theMaxwellapproximation[19],i.e.,

()−1=−1c −1 w +2−1c +2ϕ()(w−1−−1c ) w−1+2c−1−ϕ()(−1w −c−1) (13) ε()=εcεw +2εc+2ϕ()(εw−εc) εw+2εc−ϕ()(εw−εc) (14) TheresultsareshowninFig.7.Eqs.(9),(11)and(13)giveriseto muchsmootherresistivityprofilesthandoesEq.(3).The(0)/(ı) ratioiscloseto10fortheBrasherandKingsburyformula,andbelow 2forboththeseriescombinationandtheMaxwellapproximation, inagreementwithHinderliteretal.[11].Thepermittivityprofiles computedaccordingtoEqs.(10),(12)and(14)arealsosignificantly smootherthanthatcalculatedaccordingtoEq.(3).Theprofiles cal-culatedaccordingtoEqs.(9)–(14)wereusedtoobtaintheNyquist plotsshowninFig.8a,togetherwithaplotcorrespondingtoa sim-pleRCparallelcombinationwithR=cı,andC=εcε0/ı. Allplots

haveanalmostperfectsemicircularshape,i.e.,thereisnoevidence ofaCPEbehavior.Thisresultisconfirmedbythelogarithmicplots

(6)

10-2 10-1 100 101 102 103 104 105 102 103 104 105 106 107 108 Infinite Rpore Rpore = 108 cm2 Rpore = 107 cm2 Rpore = 106 cm2

|

Z

| /

cm 2

f / Hz

a

10-2 10-1 100 101 102 103 104 105 0 30 60 90 Infinite Rpore Rpore = 108 cm2 Rpore = 107 cm2 Rpore = 106 cm2

/ degree

f / Hz

b

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Infinite Rpore

Rpore = 108 cm2 Rpore = 107 cm2 Rpore = 106 cm2

-Z

"/

R

p

/

dimensionless

Z'/Rp / dimensionless

c

25.12 Hz 3.162 Hz 1.585 Hz 1.259 Hz

Fig.6.ImpedanceplotswithRporeasaparameter,inBodecoordinates(a)and(b) andNyquistcoordinates(c),calculatedaccordingtoEq.(8)with(0)=0,(ı)=0.1, and =5.Tofacilitatethecomparisonoftheshapeofthediagrams,theimpedance isnormalizedbythepolarizationresistanceRp.

ofZ”asafunctionoffrequency,showninFig.8b.Owingtothe mod-eratevariationofresistivityacrossthecoating,theimpedancesare comparabletothatofacoatingthathasuptakennoelectrolyte, andaremorethan10timeslargerthanthatshowninFig.4for thesameıand(ı)value.Thus,thedistributionsresultingfrom aseriescombinationofthetwomedia[11],describedbyEqs.(9) and(10);theEMTformulaproposedbyBrasherandKingsbury[7], describedbyEqs.(11)and(12);andtheMaxwellapproximation [19],described byEqs.(13)and(14)areincompatible withthe observedCPEimpedanceresponse.

In the next two sections a preliminary test of the theory describedaboveispresented.

0.0 0.2 0.4 0.6 0.8 1.0 103 105 107 109 1011

/

cm

/ dimensionless

Eq. 2, parallel Eq. 9, series Eq. 11, Brasher-Kingsbury Eq. 13, Maxwell

a

0.0 0.2 0.4 0.6 0.8 1.0 8 10 12 14 16

b

Eq. 3, parallel Eq. 10, series Eq. 12, Brasher-Kingsbury Eq. 14, Maxwell

/ dimensionless

/ dimensionless

Fig.7.Resistivity(a)andpermittivity(b)profilescalculatedfor(0)=0,(ı)=0.1, and =5,accordingtotheequationsindicatedonthefigure.

3. Experimental

Thesol–gelcoatingwaspreparedbyusingapolyaminoamide (PAA), 3-glycidoxypropylethoxysilane (GLYEO), tetraethylortho-silicate (TEOS), butanol and an additional epoxy resin. The compoundswereintroducedwithaGLYEO/TEOS/PAA/Epoxyratio of 1:1:10:8. The complete chemical structures of the various components cannot be reported herebecause they are partof proprietaryformulations.Thesol–gelfilmdidnotcontainany pig-mentsorfillers.

Thecoatingsweredepositedontoa2024T3aluminum alloy currentlyusedintheaerospaceindustry.Thespecimensconsisted of125mm×80mm×1.6mmplatesmachinedfromrolledplate. Beforepainting,thesamplesweredegreasedinanalkalinebath at 60◦C (pH=9) for 15min, rinsed twice with distilled water,

then etched in an acid bath at 52◦C for 10min, and rinsed

again with distilled water. The liquid paints were applied by air spraying and cured at 100◦C for 1h. The coating

thick-ness was measured at several locations from the observation of the cross-sections of the samples by SEM and found to be 20±1mm.

Athree-electrodeelectrochemicalcell,filledwith0.5MNaCl, wasusedinelectrochemicalimpedancemeasurements.Acoated specimenwasusedasworkingelectrode.AcylindricalPlexiglas tubewasassembledontopofthecoatedsample(exposedsurface areaof24cm2).Thiscellconfiguration(recessedsystem)allowed

eliminationofthefrequencydispersionduetocurrentand poten-tialdistributionsatthediskelectrode[20].Alargeplatinumsheet andasaturatedcalomelelectrodewereusedascounterand ref-erenceelectrodes,respectively.Theelectrochemicalcellwaskept atroomtemperatureandopentoair.Electrochemicalimpedance measurementswerecarriedoutusingaBiologic VSPapparatus. Theimpedancediagramswereobtainedunderpotentiostatic con-ditionsatthecorrosionpotentialoverafrequencyrangeof60kHz

(7)

0

1x108 2x108 3x108 4x108

0

1x108 2x108 3x108 4x108

-Z

"

/

cm

2

Z' /

cm

2

Eq. 9 and 10, series

Eq. 11 and 12, Brasher-Kingsbury Eq. 13 and 14, Maxwell

No electrolyte uptake

a

1.259 Hz 10-2 10-1 100 101 102 103 104 105 103 104 105 106 107 108

Eq. 9 and 10, series

Eq. 11 and 12, Brasher-Kingsbury

Eq. 13 and 14, Maxwell

No electrolyte uptake

-Z

"

/

cm 2

f / Hz

b

Fig.8.Impedanceplots,inNyquist(a)andlogZ”vs.logf(b)coordinates,calculated accordingtoEq.(7),fortheresistivityandpermittivityprofilesshowninFig.7.The solidlineisthecoatingimpedanceintheabsenceofelectrolyteuptake.

to10mHzwith6pointsperdecade,usinga20mVpeak-to-peak sinusoidalpotential.

The impedance data analysis was performed using a non-commercialsoftware developed at the LISECNRS, Paris, which allowedregressionofamodelconsistingofacombinationof pas-sivecircuitelementsandanalyticalexpressions.Thissoftwaredid notprovideconfidenceintervals.

4. Resultsanddiscussion

Theimpedance of a 2024T3 aluminum alloy/hybridsol–gel coating/0.5MNaClsolutionsystemwasmeasuredat the corro-sionpotentialasafunctionoftheimmersiontime.Asanexample, theimpedancerecordedafter72hispresentedinFig.9(points)in BodeandNyquistformats.Thehigh-frequencyloopwasattributed tothecoating,andthelow-frequencyquasi-verticalstraightline wasattributedtoanoxidefilmpresentatthesurfaceofthealloy [21,22].Theexperimentaldatawereanalyzedwithreferencetoa modelconsistingofaseriescombinationofanimpedancedescribed byEq.(8),correspondingtothecoating,andaCPE,corresponding totheoxidefilm.Anequivalentcircuitforsuchamodelisshown inFig.1b(allcircuitelements).Theoxideresistancewasassumed tobeverylarge,inagreementwiththequasi-capacitiveblocking behaviorobservedatlowfrequencyinallexperiments,therefore, noresistancewasconsideredinparallelwiththeCPEassociated withtheoxidelayershowninFig.1b.Suchabehaviorsuggests that,fortheimmersiontimesexploredinthepresentwork,the

10-2 10-1 100 101 102 103 104 104 105 106

Experiment

Fit

|Z

|

/

cm 2

f / Hz

a

10-2 10-1 100 101 102 103 104 0 30 60 90

Experiment

Fit

θ

/

d

e

g

re

e

f / Hz

b

0 1x105 2x105 3x105 0 1x105 2x105 3x105

Experiment

Fit

Z

"

/

cm 2

Z'

/

cm2

c

260.4 Hz 5.208 Hz 0.1045 Hz

Fig.9.Impedanceplotsrecordedwith2024aluminumalloy/hybridsol–gelcoating, aftera72-himmersionin0.5MNaClsolution.Theexperimentaldata(points)are comparedwiththeregressionresults(solidline).

coating-oxideensembleeffectivelyprotectstheunderlyingmetal fromcorrosion,andcircuitelementsaccountingforcorrosion reac-tionsneednotbeconsidered.Duetotheresistivityoftheelectrolyte (22cm)andtheelectrodesize(24cm2),theelectrolyteresistance

couldbeneglected.

Intheregression procedure, , (ı)andRporeweretheonly

adjustableparametersforthecoating;whereas,w,c,εwandεc

weregivenfixedvalues(w=2.22×101cm,

(8)

Table1

Dependenceof(ı), andRporeonthedurationoftheimmersionofthe2024aluminumalloy/hybridsol–gelcoatingsamplein0.5MNaCl.

Immersiontimein0.5MNaCl(h) (ı)(dimensionless) (dimensionless) Rpore(cm2)

24 1.46×10−5 3.5 1.04×106 48 2.24×10−5 3.4 3.12×105 72 3.21×10−5 3.1 2.11×105 168 1.16×10−4 3.0 5.15×104 0.0 0.2 0.4 0.6 0.8 1.0 105 106 107 108 109 1010 1011 1012 24 h 72 h 168 h

/

cm / dimensionless

Fig.10.Resistivityprofilesinanelectrolyte-penetratedhybridsol–gelcoating, cal-culatedaccordingtoEqs.(2)and(3),withthebestfitted and()valuesobtained forthethreeimmersiontimesreportedonthefigure.

εw=82 and εc=8). The adjustable parameters for the oxide, Q

and ˛, are not discussed here as theyare not relevant tothe modelpresentedaboveforthecoating.Theregressionresultsare shown in Fig.9 as solid lines.The agreementwiththe experi-mentaldata wasgoodover theentirefrequency range,both in NyquistandBodecoordinates.The(ı) andRporevalues

mea-suredfor fourimmersiontimes arereportedin Table1.Asthe coating degradation proceeded, the electrolyte uptake became progressivelystronger,althoughit remainedatlow levels((ı) justexceeded1×10−4after168h),andR

porebecamesmaller.In

Fig.9,thelow-frequencylimitofthecoatingimpedanceisclose toRpore,i.e.,thepseudo-diameterofthehigh-frequencyloopmay

beidentifiedwiththeporeresistanceasfor theclassical Beau-nier’scircuit[2],and,therefore,thehigh-frequencyloopisalmost symmetrical with respect to the Z” maximum (compare with Fig.6c).

The()–dependencecalculatedwiththebestfitted and (ı)valuesisshowninFig.10forthreedifferentimmersiontimes. Sharp resistivityprofiles wereobtained, even for thesmall fit-tedvalues of (ı).The ε()–dependence wasalso calculated; however, the permittivity underwent only negligible variation (between 8 and 8.009, for 168h) and, therefore, no plot is shown.

Themodel didnotfit aswell forsomeotherhybrid sol–gel coatingswith different formulations, tested in electrolytes less aggressivethan0.5MNaCl.Presumably,amoresophisticated inter-pretationisneededforthosesystems,andworkisunderwayto refinethemodel.Theaboveresults,however,providea prelimi-naryvalidationofthemodelproposedinthepresentmanuscript. Theresultsconfirmtheassumptionthatthevalueofεinthe power-lawmodelcanbeconsideredasaconstantparameter.Theuseofthe power-lawmodelshowsthatthewateruptakethroughthecoating inducesaCPEbehaviorwithoutsignificantvariationofthe per-mittivity.EISdatarelevanttoothersubstrate/coating/electrolyte systemsarebeingexaminedandwillbedescribedinafollowing paper.

5. Conclusions

Observation of a CPE behavior in the impedance of a substrate/coating/electrolytesystemmaybeexplainedbyan inho-mogeneouselectrolyteuptakegivingrisetoapower-law()– profile,ifthelocalresistivityandpermittivityvaluesateach posi-tionalongthecoatingthickness,()andε(),arecalculatedbyan EMTformulacorrespondingtotheparallelcombinationofthe coat-ingmaterialandtheelectrolyte.Sincetheindividualresistivitiesof thetwomedia,candw,typicallydifferbyseveralordersof

mag-nitude,theelectrolyteuptakecausesmarkedresistivityvariations acrossthecoating.Incontrast,thepermittivityundergoesonlya mildvariationsincetheindividualpermittivities,εcandεw,differ

byafactorofabout10.Theseresultsallowtheextensionofa pre-viouslyderivedmodel[15,16],appliedsofartopassiveoxidesand humanskin[17],toanti-corrosioncoatings.

Whenexperimental EIS datarecorded with2024 aluminum alloycoatedwithhybridsol–gelcoatings,immersedin aqueous NaClsolution,wereanalyzedwithreferencetothemodeldescribed in thepresent work,goodqualityfitting wasobtainedusingas adjustableparametersforthecoatingonly ,(ı)andRpore.The

fitted(ı)valueswerequitelow(oftheorderof10−4 orlower),

butsufficienttocauseresistivityvariationsoveratleast5orders ofmagnitude(andvirtuallynovariationofpermittivity).The coat-ingdegradationwascausedbythecombinedeffectofincreasing (ı)andincreasingthenumberand/orcross-sectionofthethrough pores,witnessedbythedecreasingRporevalues.

Acknowledgments

Theexperimentaldatawereobtainedintheframeworkofthe SMILEproject(SurfaceMonoInnovativeLayerforEnvironment), withthefinancial supportof theDGCIS(Direction Généralede laCompétitivité,del’IndustrieetdesServices).S.AmandandN. Pébère thanks the partners of the project: Mapaero(Pamiers), Rescoll(Bordeaux),Airbus(Toulouse),Dassault(Paris),EADSIW (Suresnes),l’Electrolyse(Bordeaux),andthelaboratoriesLCPOand US2B(UniversitédeBordeaux).M.Musianiacknowledgesfinancial supportfromtheCNRShortTermMobilityprogram.M.E.Orazem acknowledgesfinancialsupportfromtheCharlesA.Stokes Profes-sorship.

References

[1] Y.N.Mikhailovskii,V.V.Leonov,N.D.Tomashov,Korr.Met.Spanov202,1965, 202(BritishLendingLibraryTranslation).

[2] L.Beaunier,I.Epelboin,J.C.Lestrade,H.Takenouti,Etudeélectrochimiqueet parmicroscopeélectroniqueàbalayageduferrecouvertdepeinture,Surface Technology4(1976)237.

[3]F.Mansfeld,M.W.Kending,S.Tsai,Evaluationofcorrosionbehaviorofcoated metalswithACimpedancemeasurements,Corrosion38(1982)478. [4]F.Mansfeld,Electrochemicalimpedancespectroscopy(EIS)asanewtoolfor

investigatingmethodsofcorrosionprotection,ElectrochimicaActa35(1990) 1533.

[5]P.L.Bonora,F.Deflorian,L.Fedrizzi,Electrochemicalimpedancespectroscopy asatoolforinvestigatingunderpaintcorrosion,ElectrochimicaActa41(1996) 1073.

[6] B. Hirschorn,M.E.Orazem, B. Tribollet,V. Vivier,I. Frateur,M.Musiani, Determinationofeffectivecapacitanceand filmthicknessfrom constant-phase-elementparameters,ElectrochimicaActa55(2010)6218.

(9)

[7]D.M. Brasher, A.H. Kingsbury, Electrical measurements in the study of immersedpaintcoatingsonmetal.I.Comparisonbetweencapacitanceand gravimetricmethodsofestimatingwater-uptake,JournalofAppliedChemistry 4(1954)62.

[8]M.E.Orazem,B.Tribollet,ElectrochemicalImpedanceSpectroscopy,JohnWiley &Sons,Hoboken,NJ,2008.

[9]J.Kittel,N.Celati,M.Keddam,H.Takenouti,Newmethodsforthestudyof organiccoatingsbyEIS-Newinsightsintoattachedandfreefilms,Progressin OrganicCoatings41(2001)93.

[10] J.Kittel,N.Celati,M.Keddam,H.Takenouti,Influenceofthecoating-substrate interactionsonthecorrosionprotection:characterisationbyimpedance spec-troscopyoftheinnerandouterpartsofacoating,ProgressinOrganicCoatings 46(2003)135.

[11] B.R.Hinderliter,S.G.Croll,D.E.Tallman,Q.Su,G.P.Bierwagen,Interpretation ofEISdatafromacceleratedexposureofcoatedmetalsbasedonmodelingof coatingphysicalproperties,ElectrochimicaActa51(2006)4505.

[12]O.A.Stafford,B.R.Hinderliter,S.G.Croll,Electrochemicalimpedance spec-troscopyresponseof wateruptakein organiccoatingsby finiteelement methods,ElectrochimicaActa52(2006)1339.

[13] A.A.Roche,M.Aufray,J.Bouchet,Theroleoftheresidualstressesofthe epoxy-aluminuminterphaseontheinterfacialfracturetoughness,JournalofAdhesion 82(2006)861.

[14]M.Aufray,A.A.Roche,Residualstressesand practicaladhesion:effectof organo-metalliccomplexformationandcrystallization,JournalofAdhesion ScienceandTechnology20(2006)1889.

[15]B. Hirschorn, M.E.Orazem,B. Tribollet, V. Vivier,I. Frateur,M.Musiani, Constant-Phase-Element behavior caused by resistivity distributions in films. I. Theory, Journal of the Electrochemical Society 157 (2010) C452.

[16]M. Musiani, M.E. Orazem, N. Pébère, B. Tribollet, V. Vivier, Constant-Phase-Element behavior caused by coupled resistivity and permittivity distributions in films,Journal of theElectrochemical Society 158 (2011) C424.

[17]B. Hirschorn, M.E.Orazem,B. Tribollet, V. Vivier,I. Frateur,M.Musiani, Constant-Phase-Element behavior caused by resistivity distributions in films. II. Applications, Journalof theElectrochemical Society 157 (2010) C458.

[18]M.E.Orazem,N.Pébère,B.Tribollet,Enhancedgraphicalrepresentationof elec-trochemicalimpedancedata,JournaloftheElectrochemicalSociety153(2006) B129.

[19] R.E.DeLaRue,C.W.Tobias,Ontheconductivityofdispersions,Journalofthe ElectrochemicalSociety106(1959)827.

[20] I.Frateur,V.M.-W.Huang,M.E.Orazem,N.Pébère,B.Tribollet,V.Vivier,Local electrochemicalimpedancespectroscopy:considerationsaboutthecell geom-etry,ElectrochimicaActa53(2008)7386.

[21] J.-B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet, CPE analysis by local electrochemical impedance spectroscopy, Electrochimica Acta 51 (2006) 1473.

[22]G.Boisier,N.Portail,N.Pébère,Corrosioninhibitionof2024aluminiumalloy bysodiumdecanoate,ElectrochimicaActa55(2010)6182.

Figure

Fig. 1. (a) Schematic representation of a substrate/coating/electrolyte system. (b) Equivalent circuit; the upper box corresponds to Eq
Fig. 2. Water uptake profiles with (ı) as a parameter, calculated according to Eq.
Fig. 5. Frequency dependence of d log|Z c &#34; |/d log f, calculated with the same param- param-eters as for Fig
Fig. 7. Resistivity (a) and permittivity (b) profiles calculated for (0) = 0, (ı) = 0.1, and 
 = 5, according to the equations indicated on the figure.
+3

Références

Documents relatifs

We focus on two theories: RST, which offers the model for the annotations of the RST treebank Carl- son, Marcu, and Okurowski 2002 and the Potsdam commentary corpus Stede 2004, and

Index Terms— frequency estimation, nonlinear least squares, Hankel matrices, Kronecker’s theorem, missing data, alternating direction method of

يهم لفط نأ نيبت ) تارثؤملا ىلع درلل أ. مهبايغ دنع هجاجتحا و هطخس نع برعي و , نيرخآ دارفأب قلعتلا هنكمي هنأ ةجردل ةيعامتجلاا 5 - لفطلا ىدل قلعتلا لحارم :

This paper contributes to the existing literature on immigration by in- vestigating the causality relationship between immigration and host country economic conditions (unemployment

In particular, the analysis of poor-prognosis cluster 2 patients showed that telomere-dysfunction parameters (short telomere length, high hTERT, low shelterin) were associated

Thus, the flexibility with which the industrial relations system manages work rules and work practices at the plant level will influence organizational effectiveness

We considered a general graph model in which nodes are located on the Euclidian plane and studied two related problems in which cuts are modeled as line segments or as circles..

It also documents a series of full-scale fire scenario tests conducted in the test facility using a fuel package consisting of a polyurethane foam sofa mock-up and wood cribs,