• Aucun résultat trouvé

Decision Support System for Infrastructure Networks Vulnerability to Natural Disaster

N/A
N/A
Protected

Academic year: 2021

Partager "Decision Support System for Infrastructure Networks Vulnerability to Natural Disaster"

Copied!
2
0
0

Texte intégral

(1)

Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 10875

To cite this version:

Kamissoko, Daouda and Pérès, François and Zaraté, Pascale Decision Support

System for Infrastructure Networks Vulnerability to Natural Disaster. (2013) In:

Congrès EDSYS, 16 April 2013 (Tarbes, France)

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

(2)

Decision Support System for Infrastructure

Network Vulnerability to Natural Disaster

Daouda KAMISSOKO - Phd Student - University of Toulouse (LGP/IRIT)

daouda.kamissoko@enit.fr

François PÉRÈS

- Supervisor- University of Toulouse (LGP)

Pascale

ZARATÉ - Supervisor- University of Toulouse (IRIT)

Methods

Relation identification

Influence

Dependence

Interdependence modelling

Abstract

In a high industrialization context, our

societies depend

more and

more

on

networks such as power grid, water, gas and

telecommunications systems. The number

and the variety of events such as snowfall in

Paris in winter 2010, or the tsunami in Japan

in

March

2011

demonstrated

the

infrastructures’ vulnerability against natural

disasters. In addition the various materials,

services,

energies

and

information

exchanged may aggravate or mitigate the

consequences.

Because

of

the

interdependencies, the malfunction of a

network’s entity is likely to spread to the

others; to a scale exceeding one of a country,

making difficult any risk analysis.

The VESTA project aims to propose a

methodology of analysing infrastructure

network risk and vulnerability in the field of

prevention or reduction of the natural

disaster consequences. This model will lead

to a decision support system multi-view,

multi-stakeholder,

and

communication’s

protocols in crisis situation.

Scientific issues

 Modelling interdependent critical

infrastructure,

 Modelling risk,

 Modelling interdependences,

 Structural and functional vulnerability

analysis,

Correlation between hazard’s intensity and

damage to the stakes,

 Design of a decision support system for

disaster management

.

Results

 Network vulnerability

 Territorial vulnerability

 Component type vulnerability

 Stake vulnerability

 Flow vulnerability

 Vulnerability induced by interdependences

 Worse Scenarios

14 th Doctoral Congress, 16 April 2013, Tarbes

Vulnerability sets

Population Territory Hazard Vulnerability

Vulnerability is "a stake’s inability to resist the hazard’s occurrence and to recover effectively it nominal functioning for a given period of time"

Vulnerability assessment

𝑉 = 𝑃(𝐻𝑎𝑧𝑎𝑟𝑑) × ϑ

ϑ is the overall vulnerability induced by network

components

𝜗 = 1 − (1 − 𝜗

𝑛

)

𝑁

𝑛=1

𝜗

𝑛

is the vulnerability of component n

𝜗

𝑛

= (1− 𝑅

𝑏

)(1− 𝑅

𝑠

)

𝑅

𝑠

is the robustness and 𝑅

𝑏

is the resilience.

R

s

= 1 −

t

2

t

1

t

2

is the cumulated time of the improper functioning

states while t

1

refers to the good running ones

𝑅

𝑏𝑖

= 𝑅

𝑏𝑠𝑖

× 𝑅

𝑏𝑑𝑖

𝑅

𝑏𝑑𝑝𝑖

is the dynamic robustness resulting of the

combination of a flow p transiting through a

component i

𝑅

𝑏𝑠𝑖

is the structural robustness of the component 𝑖

𝑅

𝑏𝑠𝑖

=

𝑁

2𝑖

𝑁

1𝑖

𝑁

1𝑖

is the failure rate before the feared event while

𝑁

2𝑖

is that after the feared event

𝑅

𝑏𝑑𝑝𝑖

= 1 −

𝐶

𝑝2i

− 𝐶

𝑝1i

𝐶

𝑝1i

+ 𝐶

𝑝2i

𝐶

𝑝1i

is the component 𝑖 consumption in flow 𝑝

before the feared event and 𝐶

𝑝2i

it consumption

after the feared event.

References

[1] J. Johansson, H. Jonsson, et H. Johansson, « Analysing the vulnerability of electric distribution systems: a step towards incorporating the societal consequences of disruptions », International

Journal of Emergency Management, vol. 4, no 1, p. 4 - 17, 2007.

[2] S. M. Rinaldi, J. P. Peerenboom, et T. K. Kelly, « Identifying, understanding, and analyzing critical infrastructure interdependencies », Control Systems, IEEE, vol. 21, no 6, p. 11-25, 2001.

[3] D. Kamissoko, F. Pérès, et P. Zaraté, « Infrastructure Network Vulnerability », presented at the 20th IEEE International conference on Collaboration Technologies and Infrastructures, Paris, 2011.

[4] M. Merad, Aide à la décision et expertise en gestion des risques. Tec & Doc Lavoisier, 2010.

[5] M. Schläpfer et J. L. Shapiro, « Modeling Failure Propagation in Large-Scale Engineering Networks », in Complex Sciences, vol. 5, Springer Berlin Heidelberg, 2009, p. 2127-2138.

[6] D. E. Snediker, A. T. Murray, et T. C. Matisziw, « Decision support for network disruption mitigation », Decis. Support Syst., vol. 44, no 4, p. 954–969, mars 2008.

[7] « The Mathematics of Averting the Next Big Network Failure | Wired Science | Wired.com »,

Wired Science. [Online]. Available:

http://www.wired.com/wiredscience/2013/03/math-prevent-network-failure/. [Accessed: 08-avr-2013].

[8] P. Zaraté, Tools for Collaborative Decision-Making. John Wiley & Sons, 2013.

Références

Documents relatifs

Based on the updated risk prioritization, new risk mitigation actions are suggested and tested, including: (1) classical mitigation actions, but applied to risks with

Lourdes vulnerability analysis involves many decisions decision makers: City of Lourdes, prefecture, the National Engineer Scholl of Tarbes, and networks

These tools are designed as heuristics which enable reformulations, semiotic transfer (texts to diagrams), and comparison between texts. Security, The formulation in

In these articles, the authors defined the equivalent bend- ing rigidity of a chain of magnetic spheres by calculating the magnetic energy needed for bending a straight chain of

Encore ce supposé dévoilement, qui n'est pas sans rappeler le procédé de la Shamela, n'est-il qu'un bien arti ciel pacte d'écriture avec le lecteur, dans la mesure où la Paméla

Le modèle est composé de 17 variables de décision (nombre d’ouvriers, type de traitement des déchets…) qui influencent trois objectifs : coût, délais et

Using the latest available data and crop models we have captured the sensitivity of the key crops to climate change, integrated exposure from natural hazards which affect

• Employer un marqueur interrogatif (ex. : Que, Quand, Combien) et ajouter est-ce que à la phrase modèle (sauf si l’interrogation porte sur le sujet).. Modèle de base : Tes amis