• Aucun résultat trouvé

Electrodeposited gold nanoparticles on glassy carbon: Correlation between nanoparticles characteristics and oxygen reduction kinetics in neutral media

N/A
N/A
Protected

Academic year: 2021

Partager "Electrodeposited gold nanoparticles on glassy carbon: Correlation between nanoparticles characteristics and oxygen reduction kinetics in neutral media"

Copied!
9
0
0

Texte intégral

(1)

Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

Identification number: DOI: 10.1016/j.electacta.2013.10.172

Official URL:

http://dx.doi.org/10.1016/j.electacta.2013.10.172

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 11357

To cite this version:

Gotti, Guillaume and Fajerwerg, Katia and Evrard, David and Gros, Pierre

Electrodeposited gold nanoparticles on glassy carbon: Correlation between

nanoparticles characteristics and oxygen reduction kinetics in neutral media.

(2014) Electrochimica Acta, vol. 128 . pp. 412-419. ISSN 0013-4686

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

(2)

Electrodeposited

gold

nanoparticles

on

glassy

carbon:

Correlation

between

nanoparticles

characteristics

and

oxygen

reduction

kinetics

in

neutral

media

Guillaume

Gotti

a,b,c,d

,

Katia

Fajerwerg

c,d,∗

,

David

Evrard

a,b,∗∗

,

Pierre

Gros

a,b,1 aUniversitédeToulouse,UPS,INPT,LaboratoiredeGénieChimique,118routedeNarbonne,F-31062Toulouse,France

bCNRS,LaboratoiredeGénieChimique,F-31062Toulouse,France

cCNRS,LCC(LaboratoiredeChimiedeCoordination),205routedeNarbonne,F-31077Toulouse,France dUniversitédeToulouse,UPS,INPT,LCC,F-31077Toulouse,France

Keywords:

Goldnanoparticleselectrodeposition Oxygenreductionreaction Neutralmedia

Koutecky–Levichanalysis Electrochemicalkinetics

a

b

s

t

r

a

c

t

Goldnanoparticles(AuNPs)weredepositedontoglassycarbon(GC)byconstantpotentialelectrolysis (CPE)usingvarioussetsofpotentialanddurationfrom−0.3to0.7V/SHEand10to1800s,respectively. Thephysico-chemicalcharacteristicsoftheas-obtaineddepositswereinvestigatedbycyclic voltam-metry(CV)inH2SO4,fieldemissiongunscanningelectronmicroscopy(FEG-SEM),andPbunderpotential

deposition(UPD).Theirperformancestowardtheoxygenreductionreaction(ORR)inaNaCl–NaHCO3

(0.15M/0.028M,pH7.4)neutralsolutionwereexaminedandcorrelatedtoAuNPssizeanddensity.The bestresultswereobtainedusingthedepositswhichexhibitedahighdensity(555±49mm−2)of rela-tivelysmallAuNPs(25±12nm).TheKoutecky–Levichtreatmentwassystematicallyappliedtoallthe depositsinordertodeterminethenumberofelectronsnexchangedfortheORRinthepotentialrange from0.1to−1.0V/SHE.Thevaluesofthecathodictransfercoefficientsˇnwerealsoextractedand com-paredtothevaluesreportedforunmodifiedGCandbulkAu.Amapoftheˇnvaluesasafunctionof AuNPselectrodepositionpotentialanddurationwasalsoprovided.

1. Introduction

Theoxygen(O2)reduction reaction(ORR) isprobablyoneof themoststudiedredoxprocessesintheliterature,bothfromthe mechanistic[1–3]andkinetic[4–8]pointsofview.Amongstthe numerous works dealing withthis electrochemical system, the DamjanovicmodelisofparticularinterestwhichdescribestheORR asamulti-electronreaction[9].Thus,O2reductionmaybeachieved byafour-electron“direct”pathway(Eq.(1))orviatwo succes-sivebielectronicstepsinvolvinghydrogenperoxide(H2O2)asan intermediatespecies(Eqs.(2)and(3))[10–12]:

O2+4H++4e−→ 2H2O E◦ =1.23V/SHE (1)

∗ Correspondingauthorat:CNRS,LCC(LaboratoiredeChimiedeCoordination), 205routedeNarbonne,F-31077Toulouse,France.Tel.:+33561333130; fax:+33561553003.

∗∗ Correspondingauthorat:UniversitédeToulouse,UPS,INPT,Laboratoirede GénieChimique,118routedeNarbonne,F-31062Toulouse,France.

Tel.:+33561556073;fax:+33561556139.

E-mailaddresses:Katia.Fajerwerg@lcc-toulouse.fr(K.Fajerwerg),

evrard@chimie.ups-tlse.fr(D.Evrard). 1 ISEMember.

O2+2H++2e H

2O2 E◦ =0.70V/SHE (2) H2O2+2H++2e−→H2O E◦ = 1.78V/SHE (3) GnanamuthuandPetrocellihavealsoanalyzedaseriesofmore complexreductionpathsforO2reductiononnoblemetals(Pt,Pd, Au)andalloys(Pd–AuandPt–Au)[13].

ThisstandinginterestinORRismainlyduetothewiderangeof applicationdomainsitisinvolvedin,fromchemicalorbiochemical analysis[14,15]toindustrialfieldssuchaspharmaceutics[16], cor-rosion[17]orenergystorageandconversion[18,19].Forinstance, O2maybeuseddirectlyasoxidationagentinfoodprocess[20].It maybealsoreducedintoH2O2whichcanbefurtherusedasa ster-ilizingagent[16].Morerecentlythedevelopmentoffuelcellsdrove aparticularemphasisonORRkineticstudyinacidicorbasicmedia onvariouscatalystsincludingcarbon-basedmaterials,enzymes, macrocyclesorcoordinationcomplexesoftransitionmetals[21]. Amongstthenumerousmaterialsused,nanoparticles(NPs),and especiallygoldnanoparticles(AuNPs)havebeenextensively stud-ied[22,23].Inacidicmedia,kineticdatahavebeenobtainedby electrochemicalimpedancespectroscopy[24],rotatingringdisk electrode[25]andscanningelectrochemicalmicroscopy[26].In manystudiestheAuNPselectrocatalyticactivitytowardORRhas beenfoundto besize [25–27]and crystal structure-dependent

(3)

[26].Indeed,thebestresultshavebeenobservedonsmall(around 20nmdiameter)[28]andverysmall(lessthan10–15nm)AuNPs

[26,27],andforhighAu(110)/Au(111)ratio,Au(100)facesbeing notpresentinsmallNPs[24].WainhaspostulatedthatsmallNPs possesshighfractionsof highindex steps,edgesand kinksites whichmayfavorelectrocatalysis[26].InalkalinesolutionORRis knowntobefasterthaninacidicmedia[3].Asimilartrendhasbeen reportedwithrespecttoAuNPsstructure,theactivitytowardO2 reductiondecreasingintheorderAu(100)≫Au(110)>Au(111)

[29].However,thesizeeffectisnotasclearasinthecaseofacidic media:Tangetal.havenoticedORRkineticstobe2.5timeshigher on3nmdiameterAuNPssupportedoncarbonthanon7nmones

[30],whereasLeeetal.haveobservedbetterresultson8nmNPs comparedto3and6nmones[31].El-Deabetal.havealsoreported aninterestingstudyinwhichrelativelybigAuNPs(ca.50–300nm) wereselectivelyenrichedinthemostactivecrystallographicfaces, namelyAu(100)andAu(110),andexhibitedbetterkineticactivity towardtheORRthansmaller(ca.10–40nm)NPs[32].AuNPsshape hasalsobeenreportedtohaveaninfluenceontheirelectrocatalytic response[33,34].Forinstance,Kuaietal.haveshownthat icosa-hedralAuNPs exhibitedenhanced electrocatalyticperformances towardORRandhaveproposedtheirmultiple-twinnedstructure tobemorechemicallyactivebecauseoftheirhighsurface-defect density[34].

Surprisingly,thereareveryfewreportsdealingwithORRon AuNPsinneutralmedia,althoughsuchstudieswouldbeofgreat interest for biological or medical topics [35,36]. Rajet al. have highlightedtheelectrocatalyticeffectofAuNPsanchoredby dif-ferent organiclayers onbare Auelectrodes toward theORR in phosphatebuffersolution(pH7.2)[37].InthecaseofAuNPs sta-bilized by cystamine,the2-electron reduction of O2 into H2O2 hasbeen foundtooccur ata potential130mV higher than on polycrystallineAuelectrode.Althoughtheresultingpeakcurrent wasenhanced 1.2 timescompared toan unmodified electrode, nokinetic feature hasbeenprovided inthis study.Shim et al. have reported the comparison of the ORR kinetics onbulk Au and AuNPs in phosphate buffer (pH 7.4) and have shown the influenceoftheelectrodepretreatment,i.e.200successive poten-tial scans in 1MH2SO4 [38]. A Koutecky–Levich mathematical treatmentofthesteady-statevoltammetriccurveshasbeen per-formedbutitsexploitationhasbeenlimitedtothedetermination ofthenumberofelectronsnexchanged.OnlyEl-Deabetal.have conducted a more detailed kinetic study upon ORR in neutral phosphatebuffersolutionbycombiningKoutecky–Levich analy-siswithrotatingPtringGCdiskelectrodemeasurements[39].The valuesofnhavebeenobtainedatvariouspotentialsandan inter-estingestimationoftheenergysavingsduringH2O2 production hasbeenproposed.Howeverthislatterworkdidnotgoasfaras thedeterminationofkineticparameterssuchascathodic trans-fercoefficients ˇn sothat there is alack for kineticdata upon ORR in neutralmedia. Veryrecently,we havereported a com-pletekineticstudyofORRinseveralneutralsolutionsonglassy carbon(GC)andbulk Au[40].Inthepresentwork,wedescribe theperformancesofAuNPsdepositedonGCbyconstantpotential electrolysis(CPE)usingvariousdepositiondurationsand poten-tialswithrespecttoORRinaNaCl–NaHCO3(0.15M/0.028M,pH 7.4)neutralmedium.Thedifferentdepositswerecharacterizedby cyclicvoltammetry(CV)inH2SO4andfieldemissiongunscanning electronmicroscopy(FEG-SEM).Furthermore,Pbunderpotential deposition(UPD) experimentswereconductedin order togain information on the structure of the AuNPs. The data obtained uponstructure,sizeanddensityofthedepositswerecorrelated to the cathodic transfer coefficients ˇn determined using the Koutecky–Levichmethod.Finally,theseˇnvalueswerecompared tothosepreviouslyobtainedinthesameneutralmediaonbulk materials.

2. Experimental

2.1. Chemicalsandapparatus

Allthesolutionswerepreparedusingultrapurewater(Milli-Q Millipore,18.2Mcm).HAuCl4·3H2O(proanalysisgrade)was pur-chasedfromAcrosOrganics.NaNO3(suprapurgrade)andPb(NO3)2 (analyticalgrade)wereobtainedfromMerck.95%H2SO4 (norma-purgrade)and37%HClweresuppliedbyVWRProlabo.70%HClO4 waspurchasedfromAldrich.NaClandNaHCO3(analyticalgrade) werefromFisherScientific.

Excepttheelectrodeactivationwhichwasperformedatroom temperature,all theexperimentswere performedat controlled temperatureusingaFisherScientificIsotempthermoregulator.

All the electrochemical experiments were carried out in a standardthree-electrodewater-jacketedcellusingam-AutolabII potentiostat(Metrohm) interfacedtoa personal computer con-trolledwithNOVA1.9softwarepackage(Metrohm).AMetrohm Ag/AgCl/KCl 3Melectrode, separated from the electrochemical cellbyaTeflonPTFEcapillarycontainingthesupportelectrolyte solutionand terminated bya ceramic diaphragm(Dtype), and aMetrohmglassycarbon(GC)wirewereusedasreferenceand counter electrodes, respectively. Allthepotentials given in the textand thefigures arereferred toSHE(EAg/AgCl/KCl3M=0.199V vs.SHE).WorkingelectrodeswereGC(d=3mm,A=7.069mm2) and Au (d=2mm, A=3.142mm2) rotatingdisk electrodesfrom Radiometer. Gold nanoparticles modified GC (AuNPs-GC) elec-trodeswerepreparedusingGCplatesfromOrigaLysElectroChem SAS(d=5.5mm,A=23.758mm2).Thecorrespondingvalueof geo-metricalsurfaceareaAwasusedtocalculatecurrentdensitiesfrom currents.Whennecessary,workingelectrodeswererotatedusing arotatingsystemModelEDI101interfacedwithaCTV101speed controlunitfromRadiometer.

Whenindicated,thesolutionsweredeaeratedusingaN2stream for15min.AN2atmospherewasalsomaintainedoverthesolution duringthecorrespondingexperiments.

2.2. Electrodepreparationandmodification

Alltheworkingelectrodeswerecarefullypolishedpriortouse. Allelectrodeswerefirstpolishedbysiliconcarbidegrindingpaper (grit1200)for10s.GCsurfaceswerepolishedsuccessivelybya 9mm,3mm,1mmand0.25mmdiamondsuspension(Presi)ona clothpolishingpadduring2minforeachsize.Auelectrodeswere polishedby5mm,1mmand0.3mmaluminaslurry(Presi)onacloth polishingpadduring2minforeachsize.Betweeneachpolishing step,thesurfaceswerecleanedwithMilliQwater.Finally,all elec-trodeswererinsedinanultrasonic96%ethanolbath(threetimes for10min)andcleanedwithMilliQwater.Afterdrying,the qual-ityofthepolishingstepwasverifiedbycheckingthesurfacestate usingaNikonEclipseLV150opticalmicroscope.

AuNPswereelectrodepositedat10◦ContoGCplatesusing con-stantpotentialelectrolysis(CPE)atagivenpotential(from−0.3V to0.7V)forvarioustimes(between10sand1800s)froma deae-rated0.1MNaNO3 solutioncontaining0.25mMHAuCl4(pH=3). TheresultingAuNPs-GCelectrodeswerethencarefullyrinsedusing MilliQwater andactivatedina deaerated0.5MH2SO4 solution by running30 scans between 0.2V and 1.6V at a scan rateof 100mVs−1.

2.3. AuNPscharacterization

TheAuNPs-GCsurfacewascharacterizedbyfieldemissiongun scanningelectronmicroscopy(FEG-SEM)usingQuanta250FEG FEIequipmentwithanacceleratingvoltageof5kVanda work-ingdistancebetween3and8mmdependingonthesample.Image

(4)

Fig.1.CVsrecordedonaGCelectrodeinadeaerated0.1MNaNO3solution con-taining0.25mMHAuCl4:(a)firstand(b)secondscan;(c)CVrecordedinthesame conditionsintheabsenceofHAuCl4.Scanrate:50mVs−1.

analysiswascarriedoutusingahomemadeprogramforparticles counting(densityestimation)andaveragediametermeasurement developedusingMatLabimageprocessingtoolboxsoftware.The densityandaveragesizeofAuNPswereevaluatedfroma85.3mm2 GCsurfaceanalysiscountingaminimumof40and4000particles (dependingonthechargeusedduringtheelectrodepositionstep). Foreachdeposit,theerrorwascalculatedfromtheanalysisofat leastthreedifferentSEMimagesusingtheadequatemagnification. Pb underpotential deposition (UPD) experiments were con-ductedina0.01MHClO4solutioncontaining10−3MPb(NO3)2.A potentialstepof−0.2Vwasappliedfor10sbeforestrippingfrom −0.2Vto0.6Vat50mVs−1.

2.4. Oxygenreduction

ElectrochemicalreductionofO2onunmodifiedandmodified electrodes wasperformed at 20◦C in an aerated NaCl/NaHCO

3 (0.15M/0.028M– pH7.4) solution by using linear sweep vol-tammetryanddifferentelectroderotationrates(from600rpmto 2600rpm).Theelectrodepotentialwassweptfromtheopen cir-cuitpotential(ocp)tothatcorrespondingtohydrogenevolutionat apotentialscanrateof1mVs−1.

3. Resultsanddiscussion

3.1. AuNPselectrodeposition

Thecyclicvoltammogram(CV)ofadeaerated0.1MNaNO3 solu-tioncontaining0.25mMHAuCl4 wasrecordedonGCinorderto choosetheparametersforAuNPselectrodeposition(Fig.1).NaNO3 wasusedassupportingelectrolyteinordertoavoidcoalescence phenomena,aspreviouslyreportedintheliterature[41].Onthe firstforward scan (Fig.1, solid line),one singlereduction peak wasnoticedat 0.63Vwhich was absentwhen recordingCV in Au(III)-freeNaNO3solution(Fig.1,dottedline).Itisrelatedtothe well-knownthree-electronreductionprocessofAu(III)whichleads totheformationofmetallicAuNPsontheelectrodesurface(Eq.(4))

[42–45]:

AuCl4−+3e−→ Au+4Cl− E◦ =1.00V/SHE (4) Onthesecondforwardscan(dashedline),thispeakwasshifted 110mV tohigher potentialvalues, in accordancewith thermo-dynamicswhichpredictsaneasiergrowthofpreviouslyformed AuNPsthannucleationofnewAuNPsonGCelectrode[44–47].It

Fig.2.Lastofthe30consecutivescansrecordedbyCVina0.5MH2SO4 solu-tiononAuNPs-GCelectrodespreparedbyCPEusingthefollowingconditions:(a) −0.3V/1800s;(b)−0.3V/10s;(c)0.7V/1800s;(d)0.7V/10s.Scanrate:100mVs−1.

hastobenotedthatthisphenomenonwasnotaccompaniedbya currentcrossoveronthefirstbackwardscan,contrarytowhathas beendescribedinmanyreportsincludingourownworks[42–45]. Thismaybeexplainedtakingintoaccountfirst,therelativelylow differenceofenergyrequiredforthereductionofAuonGCandon Au(asshownbythelittlepotentialshiftofAu(III)reductionpeak betweenfirstandsecondforwardscans,respectively)andsecond, theverycathodicinversionpotential(−0.3V)whichinducedan importantcontributionofthediffusionaccordingtoCottrell’slaw (currentproportionaltot−1/2).

In this work, AuNPs were electrosynthesized using CPE, consideringourpreviousworkshowingthatitisthebest electrode-positionmodetogetNPswithcontrolledsizeanddensity[45].To getdifferentAuNPsdeposits,bothelectrolysispotentialand dura-tionwerevaried.FromtheanalysisofFig.1,CPEwereperformedat two“extreme”potentials,i.e.−0.3Vand0.7Vfor10sand1800s.

3.2. AuNPscharacterization

The four different AuNPs deposits were first activated and characterized by recording CV in 0.5M H2SO4 [43,48]. Fig. 2 presentsthelastof the30 consecutivescans recordedfor each deposit.Atthisstageoftheexperiment,noevolutionwasnoticed betweenoneandfollowingscan.Whatevertheelectrodeposition conditions,two phenomenawereobserved: first,theformation of Au“oxides” between 1.3 and 1.6V during the forwardscan andsecond,thereductionoftheselatteraround1.13Vduringthe backwardscan. These globalconsiderationsareconsistentwith previouslyreportedresults[44,45,48].Thechargescorresponding toAuNPs formation (QAu(III)), electrodepositedAuNPs oxidation (QAu(0))andAuoxide-likereduction(Qoxides)aresummarizedin

Table1.Fromthesevalues,itclearlyappearsthatthemostefficient depositionisCPEat−0.3Vfor1800sconsideringtheamountof depositedAu(QAu(III)=9.7mC).Moreover,foragivenCPEduration, themostefficientdepositionoccurredat−0.3V.Inotherwords,the mostefficientdepositionmoderequiresthehighestcathodic over-potentialwiththelongesttime.Thishasalreadybeenobserved by several authors [43,48,49] and is consistent with literature datawhichreportsthathighoverpotentialsfavorinstantaneous nucleation[42].Thus,CPEat−0.3Vallowstheformationofmore numerous nuclei than when performed at 0.7V whatever the electrolysisduration.Asaconsequence,theAuactivesurfacearea ismuchmoreimportantwhendepositingat−0.3V,ascanbeseen bycomparingcurves(a)and(c),and(b)and(d)fromFig.2andthe

(5)

Table1

CharacteristicofAuNPsonGCandcathodictransfercoefficientˇnfortheORRforeachelectrodepositionconditions.

Depositno. Electrodeposition parameters

QAu(III)(mC)a QAu(0)(mC)b Qoxides(mC)c Density(mm−2)d Averagediameter (nm)d ˇn 1 0.7V/10s 0.07 0.7 0.2 9±2 86±20 0.45±0.03 2 0.7V/1800s 2.2 1.1 0.7 0.5±0.1 315±89 0.29±0.03 3 −0.3V/10s 0.2 0.7 1.0 465±30 10±5 0.38±0.19 4 −0.3V/1800s 9.7 7.3 8.3 555±49 25±12 0.61±0.03 aQ

Au(III)isthechargeconsumedduringtheelectroreductionstepbyCPEin0.1MNaNO3containing0.25mMHAuCl4. bQ

Au(0)isthechargeconsumedinthepotentialrangefrom1.35and1.6duringtheformationofAuoxide-likeonAuNPsdepositsin0.5MH2SO4. c Q

oxidesisthechargecorrespondingtothereductionofAuoxide-likein0.5MH2SO4. dSeeSection2fordetailsonNPsdensityandaveragediameterestimation.

correspondingQoxidesvaluesfromTable1.Itisnoteworthythatthe amountsofchargeconsumedforAuoxide-likeformationandtheir reductionexhibitedcomparablevaluesforeachdepositexceptthe oneperformedat0.7Vfor10s.Inthislattercase,theQoxidesvalue wasfoundtobe3.5timeslowerthanthecorrespondingQAu(0), thussuggestinganinstabilityofthesenuclei.Itmaybeassumed thatthesenucleirearrangewhileoxidizedorevendissolvebefore theirreductiontakesplaceduringthebackwardscan.

AlltheseresultswereconfirmedbyFEG-SEManalyses(Fig.3). ThefourmicrographsshowedthatCPEat−0.3Vaffordedmuch moredensedepositsofsmallerAuNPsthanCPEat0.7V(seeTable1

forquantitativefeaturesuponsizeanddensity).Intheformercase, theAuNPswererelativelysmallandalmosthemispherical-shaped, and homogeneously distributed on the GC surface. Whatever theelectrolysistimeat−0.3V,thedepositswereverydense,in accordancewiththefactthathighcathodicoverpotentialsfavor nucleationprocesses [42]. TheAuNPs density forboth deposits wasinthesameorderof magnitude(465and555mm−2 for10 and1800s,respectively).Ithastobenoticedthatthelittle differ-enceindensitybetweenthe10sand1800sdepositsmaynotbe duetolongerreductiondurationbuttotheimpossibilityforthe countingsoftwaretodetectverysmallnuclei.Anyway, increas-ingtheelectrodeposition timeledtoslightly biggerAuNPs and stillhomogeneousdeposits.Thisisconsistentwithourwork[45]

andFinotetal.’sone[49]whoshowedtheinfluenceofthe over-potential on nucleation/growth processes. In the former work, lowcathodicoverpotentialassociatedtolongelectrolysisduration ledto“popcorn-like”aggregates,whereasinthelatteronehigh cathodicoverpotentialaffordedmorehomogeneousdepositsthan lowone[49].Onthecontrary,performingelectrodepositionat0.7V ledtoverysparsedepositsofbigAuNPs,evenforlow electroly-sistime.Increasingtheelectrolysisdurationinducedasignificant increaseinparticlesdiameter,leadingtotheformationofverybig, raspberry-likeAuNPs(Fig.3b,inset).

InordertogetmoreinformationuponAuNPsstructuration,Pb underpotentialdeposition(UPD)experimentswereperformedin HClO4[50–52].Thistechniqueconsistsinthedepositionofa mono-layerorsubmonolayerofPbonanothermetalatapotentialmore positivethanthatofbulkPbdeposition.Itisstructuresensitiveand allowscrystallographicfacesinformationtobeobtained[53].Inour case,adepositionpotentialof−0.2Vwaschosen.Thistechnique hasbeenrecentlyusedbyseveralauthorstoidentifythe crystal-lographicfacesofAuNPs.Thestrippingpeakscanbeassignedby comparisonwiththeliteraturedataforsinglecrystalsand polycrys-tallinegold[33,54–56].ThestrippingstepsforeachAuNPsdeposit aresummarized inFig.4. Theveryweakresponseobtainedfor theAuNPsdepositedbyCPEat0.7Vfor10sisconsistentwiththe

QAu(III)valuecorrespondingtoelectrodeposition(Table1)anddid

Fig.3. FEG-SEMimagesofAuNPs-GCelectrodespreparedfromadeaerated0.1MNaNO3solutioncontaining0.25mMHAuCl4byCPEat0.7Vfor(a)10sand(b)1800sand at−0.3Vfor(c)10sand(d)1800s.

(6)

Fig.4.StrippingstepofPbunderpotentialdepositionrecordedina0.01MHClO4 solutioncontaining10−3MPb(NO

3)2onAuNPs-GCelectrodespreparedbyCPEat −0.3Vfor(a)1800sand(b)10sandat0.7Vfor(c)1800sand(d)10s.Pbdeposition conditions:−0.2Vfor10s;scanrate:50mVs−1.

notallowanyinformationtobeextracted.TheAuNPsdeposited at−0.3Vforthesametimeexhibitedawell-definedpeakat0V typicalof(111)-orientedterraces[51,52].Althoughtheglobal elec-trochemicalresponse islittle,theobservationofthis peakis in accordancewiththelargeamountdepositionofPbonAu(111) facesreportedbyseveralauthors[50,56].TheAuNPs deposited at0.7Vfor1800sexhibitedthesamepeakat0Vassociatedtoa smallshoulderat0.02V.Theselatterwerepoorlydefineddueto thelowsizeofthesurfacedomains[55].Howeverthesplitofthe peakat0Visindicativeofdifferentsizedomains,thepeakitself beingassociatedtowideAu(111)faceswhereastheshoulderis ratherrelatedtonarrowerAu(111)domains[55].Duetoamuch greateramountofdepositedAu(seetheQAu(III)valuesinTable1), theAuNPsdepositedat−0.3Vfor1800sexhibitedawell-defined electrochemicalresponse,theglobalshapeofwhichbeing consis-tentwithapolyorientedAudeposit[57].Aclear,splitpeakat0V wasnoticedfortheAu(111)facestogetherwithtwobroad sig-nalscenteredat−0.15Vand0.23V,respectively.Bycomparison withliteraturedata,thissignalmaybeattributedtoAu(110)faces

[54,55].Thebroadsignalaround−0.15Vhasbeenobserved sev-eraltimesforpolyorientedAu[33,54,57]buthasneverbeenclearly attributed.Interestingly,nocharacteristicsignalofAu(100)faces around0.05V[52]wasobservedonthevoltammograms,whatever thedepositconsidered.Finally,itwasverifiedthatunmodifiedGC surfacesdidnotundergoanyelectrochemicalresponsetowardPb UPD(notshown).

3.3. KineticsstudyofORRonAuNPs-GCelectrodes

Fig.5comparesthesteady-statevoltammogramsrecordedin anaeratedNaCl–NaHCO3 (0.15M/0.028M–pH7.4)solutionon bulkAu,unmodifiedGC,andAuNPs-GCelectrodespreparedbyCPE at−0.3Vand0.7Vfor1800s.Forthesakeofclarity,the voltam-mogramsobtainedusingAuNPsdepositswithshorterelectrolysis durationwerenotprovided.Ithastobenoticedthattheselatter depositsexhibitedpoorrepeatability.Intheneutralmediumused thetwoconsecutivetwo-electronreductionstepsofO2occurred atveryclosehalf-wavepotentialsonbulkAu(Fig.5a),ca.−0.1V and−0.4VforO2andH2O2reduction,respectively.Inparticular, thesecondwaveassociatedtoH2O2 evolutionwasrelatively ill-defined,startingfrom−0.2V.Onthecontrary,onunmodifiedGC electrodeO2 and H2O2 reductionreactionswerenoticedat dis-tinctpotentials,ca.−0.6Vand−1.2V,respectively(Fig.5b).The

Fig. 5. Steady-state voltammograms recorded in an aerated NaCl–NaHCO3 (0.15M/0.028M,pH7.4)solutionon:(a)bulkAu;(b)unmodifiedGC;AuNPs-GC electrodespreparedbyCPEfor1800sat:(c)−0.3V;(d)0.7V.Scanrate:1mVs−1.

largecathodicshiftobservedclearlyillustratedtheslower hetero-geneouselectronictransferkineticsofORRonGC.Theseresults havebeenextensivelydiscussedinourrecentwork[40]. AuNPs-GCelectrodesexhibitedsignificantlyenhancedkineticsfortheORR comparedtounmodifiedGC(Fig.5candd),inaccordancewith theresultspreviouslyreportedbyEl-Deabetal.[39].Itis note-worthythatthekineticspropertiesofthefunctionalizedelectrodes werefoundtobestronglydependentontheAuNPssizeand den-sity.TheAuNPs-GCelectrodepreparedbyCPEat0.7Vexhibited onesingle4-electronwaveforO2 reductioncenteredat−0.55V (Fig.5d)whereasontheAuNPs-GCelectrodepreparedbyCPEat −0.3Vtwobielectronicwavesat−0.1Vand−0.6Vwerenoticed, respectively(Fig.5c).Thislatterelectrodeaffordedfasterkinetics thantheformeroneandpropertiesveryclosetobulkAu(Fig.5a). ThisisconsistentwiththeobservationthatdecreasingAuNPssize inducesadecreaseincathodicoverpotential[27,38]andabetter selectivityforthetwoconsecutivebielectronicoxygenreduction waves.Indeed,comparedtobulkmaterial,thetwowavesofORR appearedinourcaseslightlybetterseparated.

To go into further detail steady-state voltammograms were recordedonbothAuNPs-GCelectrodespreparedbyCPEat−0.3V and0.7Vfor1800satvariouselectroderotationratesω(Fig.6Aand Brespectively).Fromtheocppotentialtoaroundtheearlystageof theO2reductionwavethecurrentwasfoundtobeindependent onωwhatevertheelectrodeconsidered,indicatingacharge trans-ferlimitedreactionrate.Forlowerpotentialsthecathodiccurrent increasedwhileincreasingωinaccordancewiththeLevich equa-tion(proportionaltoω1/2).Forbothelectrodes(Fig.6AandB)the currentplateauoftheO2reductionwavecorrespondingtomass transferlimitationwaspoorlydefinedasanevidenceforamixed kinetic-diffusioncontrolmechanismfortheORR.Allthese obser-vationscomparefavorablywithourpreviousresultsobtainedon bulkAu[40].Theill-defineplateaumayalsobeduetoavariation ofthenumberofelectronsnconsumedbythereductionreaction whiledecreasing thepotential,assuggested byseveralauthors

[28,58].ThedataobtainedfromFig.6AandBwereanalyzedusing theKoutecky–Levichrelation[59]:

1 j = 1 jk + 1 jd =− 1 nFkC− 1 0.62nFD2/3ω1/2

v

−1/6C

where jk and jd are the kinetic limited and mass trans-fer controlled current densities, respectively, F is the Faraday constant (96,500Cmol−1), k is the potential-dependent charge transfer rate constant, C is the dioxygen bulk concentration (0.24×10−6molcm−3 underatmosphericpressure)[60],Disthe

(7)

Fig.6. (A)Steady-statevoltammogramsrecordedinanaeratedNaCl–NaHCO3(0.15M/0.028M,pH7.4)solutionusingdifferentelectroderotationratesωonAuNPs-GC electrodespreparedbyCPEfor1800sat−0.3V.Scanrate:1mVs−1.(B)Steady-statevoltammogramsrecordedinanaeratedNaCl–NaHCO

3(0.15M/0.028M,pH7.4)solution usingdifferentelectroderotationratesωonAuNPs-GCelectrodespreparedbyCPEfor1800sat0.7V.Scanrate:1mVs−1.(C)Variationofthenumberofelectronsexchanged duringtheORRasafunctionoftheelectrodepotential.ValuesextractedfromtheKoutecky–Levichtreatmentappliedtothesteady-statevoltammogramsrecordedinan aeratedNaCl–NaHCO3(0.15M/0.028M,pH7.4)solution(Fig.5)onAuNPs-GCelectrodespreparedbyCPEfor1800sat:(a)−0.3V;(b)0.7V.(D)Variationofthe kinetic-limitedcurrentdensityLnjkoftheORRasafunctionofthepotentialappliedtotheelectrode.Valuesdeducedfromthesteady-statevoltammogramsrecordedinanaerated NaCl–NaHCO3(0.15M/0.028M,pH7.4)solutiononAuNPs-GCelectrodespreparedbyCPEfor1800sat:(a)−0.3V;(b)0.7V.

diffusion coefficient (1.96×10−5cm2s−1) [61,62], and  is the kinematic viscosityof theaqueous solution(0.01cm2s−1)[63]. Accordingtothislatterequationtheinverseofthecurrent den-sityj−1wasplottedasafunctionofω−1/2fordifferentpotentialsin therangefrom0.05Vto−1V(notshown).Allthesecurves exhib-itedalineartrend,theslopeofwhichallowedthetotalnumber ofelectronstobedeterminedforeachpotential(Fig.6C).Thetwo AuNPs-GCelectrodesclearlypresenteddifferentbehaviortoward theORR.ForthedepositpreparedbyCPEat−0.3V,thenumberof electronsconsumedreached2asearlyas−0.05V,indicatingthat theH2O2productionstepwaslimitedbymasstransferfromthis potential(Fig.6A).From−0.2Vthenumberofelectronsincreased upto4atpotentialaround−0.5Vasaconsequenceofthe comple-tionofthereductionprocessleadingtotheformationofH2O.The valuesofthenumberofelectronsslightlyhigherthan4whichwere observedfrom−0.5Vto−0.65Vmaybeassumedtoresultfrom waterreductionwhichstartsinthispotentialrange.Onthe con-trary,usingthedepositpreparedbyCPEat0.7V,theORRstartedat morecathodicpotential(ca.−0.05V)andthenumberofelectrons directlyincreasedupto4forpotentialaround−0.25V,confirming thatnointermediarytwo-electronstepoccurredonthiselectrode (Fig.6B).

FromtheinterceptsoftheKoutecky–Levichplotsthekinetic limitedcurrent densitiescontributionjkwereobtainedforboth AuNPs-GCelectrodes.ThecorrespondingplotsofLnjkasafunction ofthepotential(Fig.6D)allowedthecathodictransfercoefficient ˇntobecalculatedfromthechargetransferrateconstantk:

k=kexp



−ˇnF RT (E−E ◦ ′)



wherek(cms−1)istheintrinsicchargetransferrateconstant,Ris thegasconstant(8.31Jmol−1K−1),andE◦ ′istheapparentstandard

potential.Thevaluesfoundfortheˇnwere0.61and0.29forthe AuNPsdepositspreparedbyCPEat−0.3Vand0.7Vrespectively. Consideringthenumberofelectronsexchangedineachcase(as shownin Fig.6C)theeffectiveˇvalues are0.30and 0.07.This makesevidenceforthebetterkineticsresultsobtainedfortheORR usingthemostcathodicdeposits.Theˇnvaluescalculatedforthe shortelectrolysisdurationdepositsarealsopresentedinTable1, althoughthepoorrepeatabilityofthevoltammogramsmadethem hardtoobtain.Thislackofrepeatabilitymaybeattributedto rear-rangementsoftheAuNPsduringthevoltammetricmeasurements duetopotentiodynamicperturbation,oreventodissolutionofthe smallestAuNPs[45,64,65].Thecomparisonofallfourdeposits rein-forcesthecorrelationbetweenlow-sizeAuNPsobtainedbyvery lowdepositionpotentialsandbetterkineticsresults(seeˇnvalues inTable1).Thevaluesobtainedfortheˇnalsocomparefavorably withthosewereportedinthesameneutralmediumonbulkAu andunmodifiedGCelectrodes,ca.0.39and0.24respectively[40].

FinallyamorecompletesetofAuNPsdepositswaspreparedby varyingthepotentialappliedforCPEevery0.25Vfrom−0.3Vto 0.7Vandusingelectrolysisdurationof10,60,300,600and1800s. Foreachexperimentalconditionthecorrespondingˇnvaluewas calculatedaspreviouslydescribed.Fig.7depictsagraphical repre-sentationofthesevaluesasafunctionofbothelectrolysispotential andduration.Fromthisrepresentation,a well-definedareawas noticedwhichcorrespondstothehigherˇn values.Thisareais clearlypositionedinthepartofthegraphcorrespondingtothe lowestelectrolysispotentialsand thelongestelectrolysistimes, confirmingthetrendobservedwiththefirsttwodeposits.Thus, from the kinetic point of view the best results were obtained forelectrodeswhichexhibiteddensedepositsofrelativelysmall AuNPs.Thisis inaccordancewithourpreviousworksin which weassumedthatinsuchacasethedepositmaybeviewedasan arrayofspherical-shapedAu“nanoelectrodes”whichacttogether

(8)

Fig.7.EvolutionofthecathodictransfercoefficientˇncorrespondingtotheORRin anaeratedNaCl–NaHCO3(0.15M/0.028M,pH7.4)solutiononAuNPs-GCelectrodes asafunctionofthepotential(xaxis)andduration(yaxis)usedtopreparethe depositsbyCPE.

[44,45].ThisisalsoconsistentwithWain’sworkwhoshowedthat thebestresultswithrespecttoORRwereobtainedonthesmallest AuNPs,whichexhibitedthehighestAu(110)/Au(111)ratio[26]. Inourcase,thepresenceofverysmallAuNPsorevennanoclusters

[66]whichwouldstronglycontributetotheglobalresponseofthe modifiedelectrodescannotbeexcluded[67],althoughthe magni-ficationoftheSEG-FEMmicrographswasnothighenoughtoallow theirobservation.

4. Conclusions

Inthiswork,AuNPswereelectrodepositedontoGCelectrodesby constantpotentialelectrolysis.BothAuNPssizeanddensitywere foundtobestrongly dependentonthe electrolysisparameters, thesmallestNPs(25nm)withhighestdensity(555mm−2)being obtainedwiththehighestcathodicoverpotential(E=−0.3V)and thelongestelectrolysistime(1800s).Theresponseofthedeposits towardtheORRwasexaminedinaNaCl–NaHCO3(0.15M/0.028M, pH7.4)neutralmedium.FromtheKoutecky–Levichtreatmentof thecurrent–potentialcurves,thevalueofthenumberofelectronsn

exchangedduringthereactionwasextracted.Theresultsrevealeda direct4-electronreductionpathwayforO2onAuNPs electrogener-atedbyCPEat0.7V,whereastwosuccessivebielectronicstepswere evidencedonAuNPsobtainedusinghighercathodicoverpotential. Inthislast casetheAuNPs-GCelectrodesexhibitedsignificantly enhancedkineticsforORRwithmuchhigherˇnvalues(0.61) com-paredtobulkAu(0.39)andunmodifiedGC(0.24).Thesevalues werefoundtobestronglycorrelatedtothephysico-chemical char-acteristicsoftheAuNPsdeposits.Thebestresultsareobtainedusing thedepositsexhibitingthesmallestNPsandthehighestdensity.On thebasisofthesedata,worksareinprogresswhichaimat develop-ingnewnanoparticle-basedsensorsforO2determinationinneutral media.

Acknowledgements

TheauthorsthankthePôledeRechercheetdel’Enseignement Supérieur (PRES) Toulouse and the Région Midi-Pyrénées for financialsupportandYannickHallezforhishelpinMATLAB pro-gramming.

References

[1]M.T.M.Koper,H.A.Heering,Comparisonofelectrocatalysisand bioelectro-catalysisofhydrogenandoxygenredoxreactionsinFuelcellscience,in:A. Wieckowski,J.K.Norskov(Eds.),Theory,fundamentalsandbiocatalysis,John Wiley&Sons,Hoboken,2010,p.71.

[2]J.A.Keith,T.Jacob,Computationalsimulationsontheoxygenreductionreaction inelectrochemicalsystems,Mod.AspectElectrochem.50(2010)89.

[3]P.Quaino,N.B.Luque,R.Nazmutdinov,E.Santos,W.Schmickler,Whyisgold suchagoodcatalystforoxygenreductioninalkalinemedia?Angew.Chem.Int. Ed.Engl.51(2012)12997.

[4]A.Radoslav,RecentAdvancesintheKineticsofOxygenReduction,WileyVCH, NewYork,1998.

[5]J.Jacq,O.Bloch,Réductionélectrochimiquedel’oxygèneeneauoxygénée. Etablissementdel’équationdelacourbedepolarisation:applicationau cal-culdesparamètresthermodynamiquesetcinétiquesdesétapesélémentaires, Electrochim.Acta1515(1970)1945.

[6]R.W.Zurilla,R.K.Sen,E.Yeager,Thekineticsoftheoxygenreductionreaction ongoldinalkalinesolution,J.Electrochem.Soc.125(1978)1103.

[7]A.J.Appleby,Electrocatalysisofaqueousdioxygenreduction,J.Electroanal. Chem.357(1993)117.

[8]I.Kazeman,M.Hasanzadeh,M.Jafarian,N.Shadjou,B.Khalilzadeh,Oxygen reductionreactiononarotatingAg-GCdiskelectrodeinacidicsolution,Chin. J.Chem.28(2010)504.

[9]A.Damjanovic,V.Brusic,J.O.M.Bockris,Mechanismofoxygenreductionrelated toelectronicstructureofgold-palladiumalloy,J.Phys.Chem.71(1967)2741.

[10]D.T.Sawyer,G.Chiericato,T.TsuchiyaJr.,C.T.Angelis,E.J.NanniJr.,Effectsof mediaandelectrodematerialsontheelectrochemicalreductionofdioxygen, Anal.Chem.54(1982)1720.

[11]E.Yeager,Electrocatalystsformolecularoxygenreduction,Electrochim.Acta 29(1984)1527.

[12]E.Yeager,Dioxygenelectrocatalysis.Mechanismsinrelationtocatalyst struc-ture,J.Mol.Catal.38(1986)5.

[13]D.S.Gnanamuthu,J.V.Petrocelli,AgeneralizedexpressionfortheTafelslope andthekineticsofoxygenreductiononnoblemetalsandalloys,J.Electrochem. Soc.114(1967)1036.

[14]J.W.Severinghaus,P.B.Astrup,HistoryofBloodGasAnalysis,Little,Brown,and Co.Inc.,SanFrancisco,1987.

[15]J.W.Severinghaus,HistoryofmeasuringO2andCO2responses,Adv.Exp.Med.

Biol.605(2008)3.

[16]G.Strukul,CatalyticOxidationswithHydrogenPeroxideasOxidant,Springer, Dordrecht,1992.

[17]D.Brondel,R.Edwards,A.Hayman,D.Hill,S.Mehta,T.Semerad,Corrosionin theoilindustry,OilfieldRev.6(1994)4.

[18]A.J.Appleby,F.R.Foulkes,FuelCellHandbook,VanNostrandReinhold,New York,1989.

[19]B.Wang,Recentdevelopmentofnon-platinumcatalystsforoxygenreduction reaction,J.PowerSources152(2005)1.

[20]L.Lessing,T.G.Watson,Applicationofoxygentohighlyaerobicfermentations, SouthAfr.FoodRev.9(1982)S107.

[21]A.A.Gewirth,M.S.Thorum,Electroreductionofdioxygenforfuel-cell applica-tions:Materialsandchallenges,Inorg.Chem.49(2010)3557.

[22]N.Alonso-Vante,Tailoringofmetalcluster-likematerialsforthemolecular oxygenreductionreaction,PureAppl.Chem.80(2008)2103.

[23]V.Mazumder,Y.Lee,S.Sun,Recentdevelopmentofactivenanoparticle cata-lystsforfuelcellreactions,Adv.Funct.Mater.20(2010)1224.

[24]G.Vázquez-Huerta,G.Ramos-Sánchez,R.Anta ˜no-López,O.Solorza-Feria, Elec-trocatalysisofoxygenreductiononAunanoparticles,ECSTrans.20(2009) 259.

[25]J.S.Jirkovsky,M.Halasa,D.J.Schiffrin,Kineticsofelectrocatalyticreductionof oxygenandhydrogenperoxideondispersedgoldnanoparticles,Phys.Chem. Chem.Phys.12(2010)8042.

[26]A.J.Wain,Imagingsizeeffectsontheelectrocatalyticactivityofgold nanopar-ticlesusingscanningelectrochemicalmicroscopy,Electrochim.Acta92(2013) 383.

[27]T.Inasaki,S.Kobayashi,Particlesizeeffectsofgoldonthekineticsoftheoxygen reductionatchemicallypreparedAu/Ccatalysts,Electrochim.Acta54(2009) 4893.

[28]M.S.El-Deab,T.Ohsaka,Hydrodynamicvoltammetricstudiesoftheoxygen reductionatgoldnanoparticles-electrodepositedgoldelectrodes,Electrochim. Acta47(2002)4255.

[29]T.J.Schmidt,V.Stamenkovic,M.Arenz,N.M.Markovic,P.N.RossJr.,Oxygen electrocatalysisinalkalineelectrolyte:Pt(hkl),Au(hkl)andtheeffectof Pd-modification,Electrochim.Acta47(2002).

[30]W.Tang,H.Lin,A.Kleiman-Shwarsctein,G.D.Stucky,E.W.McFarland, Size-dependentactivityofgoldnanoparticlesforoxygenelectroreductioninalkaline electrolyte,J.Phys.Chem.C112(2008)10515.

[31]Y.Lee,A.Loew,S.Sun,Surface-andstructure-dependentcatalyticactivity ofAunanoparticlesforoxygenreductionreaction,Chem.Mater.22(2010) 755.

[32]M.S.El-Deab,T.Sotomura,T.Ohsaka,Ohsaka,Sizeandcrystallographic ori-entationcontrolsofgoldnanoparticleselectrodepositedonGCelectrodes,J. Electrochem.Soc.152(2005)C1.

[33]J. Hernández, J. Solla-Gullón,E.Herrero,J.M. Feliu,A. Aldaz,Insitu sur-facecharacterizationandoxygenreductionreactiononshape-controlledgold nanoparticles,J.Nanosci.Nanotechnol.9(2009)2256.

(9)

[34]L.Kuai,B.Geng,S.Wang,Y.Zhao,Y.Luo,H.Jiang,Silverandgoldicosahedra. One-potwater-basedsynthesisandtheirsuperiorperformanceinthe elec-trocatalysisforoxygenreductionreactioninalkalinemedia,Chem.Eur.J.17 (2011)3482.

[35]F.King,M.J.Quinn,C.D.Litke,OxygenreductiononcopperinneutralNaCl solution,J.Electroanal.Chem.385(1995)45.

[36]C.E.W.Hahn,Electrochemicalanalysisofclinicalblood-gases,gasesandvapors, Analyst123(1998)57R.

[37]C.R.Raj,A.I.Abdelrahman,T.Ohsaka,Goldnanoparticle-assisted electroreduc-tionofoxygen,Electrochem.Commun.7(2005)888.

[38]J.H.Shim,J.Kim,C.Lee,Y.Lee,Electrocatalyticactivityofgoldandgold nanopar-ticlesimprovedbyelectrochemicalpretreatment,J.Phys.Chem.C115(2011) 305.

[39]M.S.El-Deab,T.Okajima,T.Ohsaka,Electrochemicalreductionofoxygenon goldnanoparticle-electrodepositedglassycarbonelectrodes,J.Electrochem. Soc.150(2003)A851.

[40]G.Gotti,K.Fajerwerg,D.Evrard,P.Gros,Gros,Kineticsofdioxygenreduction ongoldandglassycarbonelectrodesinneutralmedia,Int.J.Electrochem.Sci. 8(2013)12643.

[41]Y.Wang,J.Deng,J.Di,Y.Tu,Electrodepositionoflargesizegoldnanoparticleson indiumtinoxideglassandapplicationasrefractiveindexsensor,Electrochem. Commun.11(2009)1034.

[42]L.Komsiyska,G.Staikov,ElectrocrystallizationofAunanoparticlesonglassy carbonfromHClO4solutioncontaining[AuCl4],Electrochim.Acta54(2008)

168.

[43]A.P.O’Mullane,S.J.Ippolito,Y.M.Sabri,V.Bansal,S.K.Bhargava,Premonolayer oxidationofnanostructuredgold:Animportantfactorinfluencing electrocat-alyticactivity,Langmuir25(2009)3845.

[44]T.Hezard,K.Fajerwerg,D.Evrard,V.Collière,P.Behra,P.Gros,Gold nanoparti-cleselectrodepositedonglassycarbonusingcyclicvoltammetry:Application toHg(II)tracedetermination,J.Electroanal.Chem.664(2012)46.

[45]T.Hezard,K.Fajerwerg,D.Evrard,V.Collière,P.Behra,P.Gros,Influenceofthe goldnanoparticleselectrodepositionmethodonHg(II)traceelectrochemical detection,Electrochim.Acta73(2012)15.

[46]G.Gunawardena,G.Hills,I.Montenegro,B.Scharifker,Electrochemical nuclea-tionPartI.Generalconsiderations,J.Electroanal.Chem.138(1982)225.

[47]D.Grujicic,B.Pesic,Electrodepositionofcopper:thenucleationmechanisms, Electrochim.Acta47(2002)2901.

[48]M.S.El-Deab,OnthepreferentialcrystallographicorientationofAu nanoparti-cles:Effectofelectrodepositiontime,Electrochim.Acta54(2009)3720.

[49]M.O.Finot,G.D.Braybrook,M.T.McDermott,Characterizationof electrochem-icallydepositedgoldnanocrystalsonglassycarbonelectrodes,J.Electroanal. Chem.466(1999)234.

[50]A.Hamelin,Leadadsorptionongoldsinglecrystalsteppedsurfaces,J. Elec-troanal.Chem.101(1979)285.

[51]A.Hamelin,Underpotentialdepositionofleadonsinglenanocrystalfacesof gold,J.Electroanal.Chem.165(1984)167.

[52]A.Hamelin,J.Lipkowski,Underpotentialdepositionofleadongoldsingle crys-talfaces.PartIIGeneraldiscussion,J.Electroanal.Chem.171(1984)317.

[53]E.Herrero,L.J.Buller,H.D.Abru ˜na,Underpotentialdepositionatsinglecrystal surfacesofAu,Pt,Agandothermaterials,Chem.Rev.101(2001)1897.

[54]J.Hernández,J.Solla-Gullón,E.Herrero,A.Aldaz,J.M.Feliu,Characterization ofthesurfacestructureofgoldnanoparticlesandnanorodsusingstructure sensitivereactions,J.Phys.Chem.B109(2005)12651.

[55]C.M.Sánchez-Sánchez,F.J.Vidal-Iglesias,J.Solla-Gullón,V.Montiel,A.Aldaz, J.M.Feliu,E.Herrero,Scanningelectrochemicalmicroscopyforstudying elec-trocatalysisonshape-controlledgoldnanoparticlesandnanorods,Electrochim. Acta55(2010)8252.

[56]S.Hebié,L.Cornu,T.W.Napporn,J.Rousseau,B.K.Kokoh,Insightonthesurface structureeffectoffreegoldnanorodsonglucoseelectrooxidation,J.Phys.Chem. C117(2013)9872.

[57]C.Mitchell,M.Fayette,N.Dimitrov,Homo-andhetero-epitaxialdeposition ofAubysurfacelimitedredoxreplacementofPbunderpotentiallydeposited layerinone-cellconfiguration,Electrochim.Acta85(2012)450.

[58]G.Vázquez-Huerta,G.Ramos-Sánchez,A.Rodríguez-Castellanos,D. Meza-Calderón,R.Anta ˜no-López,O.Solorza-Feria,Electrochemicalanalysisofthe kineticsandmechanismoftheoxygenreductionreactiononAunanoparticles, J.Electroanal.Chem.645(2010)35.

[59]J.Koutecky,Thepolarographiccurrentduetoanelectrodeprocessprecededby achemicalreactioninsolutionbetweenreactantsdifferingintheirdiffusion coefficients,Chem.ListyVeduPrum.47(1953)1758.

[60]B.B.Benson,D.J.Krause,Theconcentrationandisotopicfractionationof oxy-gendissolvedinfreshwaterandseawaterinequilibriumwiththeatmosphere, Limnol.Oceanogr.29(1984)620.

[61]A.J.vanStroe,L.J.J.Janssen,Determinationofthediffusioncoefficientofoxygen insodiumchloridesolutionswithatransientpulsetechnique,Anal.Chim.Acta 279(1993)213.

[62]M.Jamnongwong,K.Loubiere,N.Dietrich,G.Hebrard,Experimentalstudyof oxygendiffusioncoefficientsincleanwatercontainingsalt,glucoseor surfac-tant:Consequencesontheliquid-sidemasstransfercoefficients,J.Chem.Eng. (Amsterdam,Netherlands)165(2010)758.

[63]F.J.Millero,F.Huang,A.L.Laferiere,Solubilityofoxygeninthemajorsea saltsasafunctionofconcentrationandtemperature,Mar.Chem.78(2002) 217.

[64]G. Sandmann,H.Dietz, W.Plieth, Preparationofsilver nanoparticles on ITOsurfacesbya double-pulsemethod,J. Electroanal.Chem.491 (2000) 78.

[65]M.Ueda,H.Dietz,A.Anders,H.Kneppe,A.Meixner,W.Plieth,Double-pulse techniqueasanelectrochemicaltoolforcontrollingthepreparationofmetallic nanoparticles,Electrochim.Acta48(2002)377.

[66]R.Jin,Y.Zhu,H.Qian,Quantum-sizedgoldnanoclusters:Bridgingthegap betweenorganometallicsandnanocrystals,Chem.Eur.J.17(2011)6584.

[67]W.Chen,S.Chen,Oxygenelectroreductioncatalyzedbygoldnanoclusters: strongcoresizeeffects,Angew.Chem.Int.Ed.Engl.48(2009)4386.

Figure

Fig. 2. Last of the 30 consecutive scans recorded by CV in a 0.5 M H 2 SO 4 solu- solu-tion on AuNPs-GC electrodes prepared by CPE using the following conditions: (a)
Fig. 3. FEG-SEM images of AuNPs-GC electrodes prepared from a deaerated 0.1 M NaNO 3 solution containing 0.25 mM HAuCl 4 by CPE at 0.7 V for (a) 10 s and (b) 1800 s and at −0.3 V for (c) 10 s and (d) 1800 s.
Fig. 5 compares the steady-state voltammograms recorded in an aerated NaCl–NaHCO 3 (0.15 M/0.028 M – pH 7.4) solution on bulk Au, unmodified GC, and AuNPs-GC electrodes prepared by CPE at −0.3 V and 0.7 V for 1800 s
Fig. 7. Evolution of the cathodic transfer coefficient ˇn corresponding to the ORR in an aerated NaCl–NaHCO 3 (0.15 M/0.028 M, pH 7.4) solution on AuNPs-GC electrodes as a function of the potential (x axis) and duration (y axis) used to prepare the deposit

Références

Documents relatifs

Colorectal cancer cell-derived microvesicles are enriched in cell cycle- related mRNAs that promote proliferation of endothelial cells. Direct detection of nano-

We study composites made of gold NPs of diameter D = 6 nm in smectic oily streaks composed of an array of different kinds of dislocations in order to confront the respective roles of

Un radiom`etre multicanal comportant jusqu’`a six canaux dans la fenˆetre spectrale de l’infrarouge thermique `a 10 µm, a ´et´e conc¸u pour r´ealiser des mesures, sur le terrain

We then use these rankings to predict separately by gender (a) the probability that a worker moves to a better firm, i.e., a firm that makes higher profits,

We mention that the passage from the one-dimensional to the infinite dimensional case needs new techniques; for example the methods used in [2] to prove the Itˆo’s formula are

( 2014 ) that the first two PeV neutrino events observed by IceCube, IC 14 and IC 20, are of blazar origin, by performing a CLS for an excess muon neutrino flux from the six

ةينقت نويزفلتلا سيل ،ةهج نمف .دارفلأا سفنو ءاضفلا سفن وه امهيف كرتشملا لماعلا ماد ام ةنيعم ةيعضو ةرسلأا لخاد هعضومت امنإو طقف يدام زاهجو - دارفلأا ىلع

En 2015, soit deux ans après son lancement, près de la moitié des ergothérapeutes in- terrogés (n=125) avaient consulté l’Algo et 14 % d’entre eux l’avaient intégré dans leur