• Aucun résultat trouvé

Simplicity and stability of the first eigenvalue of a nonlinear elliptic system

N/A
N/A
Protected

Academic year: 2021

Partager "Simplicity and stability of the first eigenvalue of a nonlinear elliptic system"

Copied!
11
0
0

Texte intégral

(1)

Title

:

system

Auteurs:

Authors

: Abdelouahed El Khalil, Said El Manouni et Mohammed Ouanan

Date: 2005

Type:

Article de revue / Journal article

Référence:

Citation

:

El Khalil, A., El Manouni, S. & Ouanan, M. (2005). Simplicity and stability of the first eigenvalue of a nonlinear elliptic system. International Journal of

Mathematics and Mathematical Sciences, 2005(10), p. 1555-1563. doi:10.1155/ijmms.2005.1555

Document en libre accès dans PolyPublie

Open Access document in PolyPublie

URL de PolyPublie:

PolyPublie URL: https://publications.polymtl.ca/3663/

Version: Version officielle de l'éditeur / Published versionRévisé par les pairs / Refereed Conditions d’utilisation:

Terms of Use: CC BY

Document publié chez l’éditeur officiel

Document issued by the official publisher

Titre de la revue:

Journal Title: International Journal of Mathematics and Mathematical Sciences (vol. 2005, no 10)

Maison d’édition:

Publisher: Hindawi

URL officiel:

Official URL: https://doi.org/10.1155/ijmms.2005.1555

Mention légale:

Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

(2)

SIMPLICITY AND STABILITY OF THE FIRST EIGENVALUE OF

A NONLINEAR ELLIPTIC SYSTEM

ABDELOUAHED EL KHALIL, SAID EL MANOUNI, AND MOHAMMED OUANAN

Received 8 July 2004 and in revised form 17 March 2005

We prove some properties of the first eigenvalue for the elliptic systempu=λ|u|α|v|βv

inΩ,qv=λ|u|α|v|βu inΩ, (u,v)∈W

1,p

0 (Ω)×W 1,q

0 (Ω). In particular, the first

eigen-value is shown to be simple. Moreover, the stability with respect to (p, q) is established. 1. Introduction

In this paper, we consider the nonlinear system

pu=λ|u|α|v|βv inΩ, qv=λ|u|α|v|βu inΩ, (u, v)∈W01,p(Ω)×W 1,q 0 (Ω), (1.1)

whereΩ is a bounded domain in RN,N1, p > 1, q > 1, and α, β are real numbers

satisfying (H) α > 0, β > 0, α + 1 p + β + 1 q =1. (1.2)

Note that the system (1.1) is of two second-order elliptic equations. It is weakly coupled in the sense that interaction is present only in the “source terms,” while the di fferen-tial terms have only one dependent variable. The differenfferen-tial operator involved is the so-called p-Laplacian, that is,pu= ∇ ·(|∇u|p−2∇u), which reduces to the ordinary

Laplace operator∆u when p=2. We mention that problem (1.1) arises in several fields of application. For instance, in the case wherep > 2, problem (1.1) appears in the study of non-Newtonian fluids, pseudoplastics for 1< p < 2, and in reaction-diffusion problems,

flows through porous media, nonlinear elasticity, and glaciology forp=4/3. We can cite

[5,6], for more details.

Here, we define the first eigenvalueλ1(p, q) of (1.1) as the least real parameterλ for

which both equations of (1.1) have a nontrivial solution (u, v) in the product Sobolev

spaceW01,p(Ω)×W 1,q

0 (Ω), with u≡0 andv≡0.

Copyright©2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:10 (2005) 1555–1563

(3)

Several special cases of problem (1.1) have been considered in literature. For the case

of the scalar equation, that is, (1.1) reduces to one equation when p=q and β=α=

(p−2)/2, the simplicity of the first eigenvalue was apparently first proved by Lindqvist,

see [10]. The radial case has been studied in [3] by de Th´elin when the case of smooth domains was investigated—see, for example, [1] and the references therein.

Other problems have been considered in this direction—we refer to [3,6,7].

Concerning systems of the type (1.1), a lot of papers have appeared in recent years

dealing with equations involvingp-Laplacian both in bounded and unbounded domains.

In particular, de Th´elin in [4] obtained the existence of the first eigenvalueλ1(p, q) by

considering more real parametersα, β satisfying the condition (H) and by considering

also smooth bounded domains. The study of system (1.1) in the wholeRNwas continued

in [9], where the authors considered systems of the form

pu=λa(x)|u|p−2u + λb(x)|u|α−1|v|β+1u inRN,

qv=λd(x)|u|q−2u + λb(x)|u|α+1|v|β−1v inRN, u, v > 0, lim

|x|→+∞u(x)=|xlim|→+∞v(x)=0.

(1.3)

In particular, they gave an extension and generalized the results of [4] to unbounded

domains. In both these papers, the first eigenvalueλ1(p, q) is proven to be positive and

simple.

Recently, in [2], the author showed the simplicity of the first eigenvalue by extend-ing the Saa’s inequality to the wholeRN. We mention that the stability question is not

discussed there.

In this note, we show the uniqueness of the eigenvector corresponding to λ1(p, q),

that is,λ1(p, q) is simple. In other words, positive solutions of (1.1) are unique modulo

scaling. Especially, by establishing sufficient conditions and via some modifications of [2], we prove the simplicity result, seeTheorem 3.2. The uniqueness result will be needed in the proof of the stability (continuity) ofλ1(p, q) with respect to (p, q).

On the other hand, note that the dependence with respect to the rheological exponent

was studied both in the scalar p-Laplacian and system of two second-order equations,

see, for example, [9,11]. Our purpose is also to extend these results to our case of system (1.1), seeTheorem 4.1. More precisely, we study the stability of the ground state when

the exponentsp and q vary in the following constrained way:

Iα,β= 

(p, q)∈]1 +[×]1 +[;p, q satisfies (H). (1.4) Generally, the main difficulty lies in the fact that the appropriate Sobolev spaces W1,p

0 (Ω)

andW01,q(Ω) change with the exponents p and q. Here, to overcome this obstacle, we use

a local argument based only on the variational characterization ofλ1(p, q) and use the

fact that the underlying domainΩ inRNhas the so-called segment property (a sufficient

(4)

Abdelouahed El Khalil et al. 1557

p≤N or q≤N, the situation

lim sup

(s,t)→(p,q)

λ1(s, t) < λ1(p, q), (1.5)

becomes possible. An example is given in [11] in the scalar case.

The rest of this paper is organized as follows. InSection 2, we establish some defini-tions, basic properties, and preliminary results. InSection 3, we prove the simplicity of

λ1, and in the last section, we prove the stability by using the segment property lemma. 2. Definitions and preliminaries

We define the following functionals onW01,p(Ω)×W 1,q 0 (Ω) by A(u, v)=α + 1 p  Ω|∇u| pdx +β + 1 q  Ω|∇v| qdx, B(u, v)=  Ω|u| α|v|βuv dx, (2.1)

where the Sobolev spaceW01,t(Ω) is the completion of C0(Ω), 1 < t < +equipped with

the norm φ = ∇φ t. It is well known thatA, B∈C1(W

1,p

0 (Ω)×W 1,q

0 (Ω)). We will

consider both equations of (1.1) in the weak sense.

2.1. Definition. We say thatλ∈ Ris an eigenvalue of (1.1), if there exists a pair of func-tionsu∈W01,p(Ω) and v∈W

1,q

0 (Ω) with u=0 andv=0 such that  Ω|∇u| p−2uφ dx=λ  Ω|u| α|v|βvφ dx,  Ω|∇v| q−2vψ dx=λ  Ω|u| α|v|βuψ dx, (2.2) whereφ∈W01,p(Ω) and ψ∈W 1,q

0 (Ω). The pair (u,v) is called an eigenvector. Observe

that the solutions (u, v) of (1.1) correspond to the critical points of the energy functional

A on the set  (u, v)∈W01,p(Ω)×W 1,q 0 (Ω); B(u,v)=1  . (2.3)

2.2. Basic properties. The system (1.1) possesses a first positive eigenvalue denoted by

λ1(p, q) (for indicate the dependence with respect to (p, q)) obtained by the

Ljusternick-Schnirelmann theory by minimizing the functionalA on the C1-manifold defined by

(2.3). So, we recall thatλ1(p, q) can be variationally characterized as λ1(p, q)=inf  A(u, v), (u, v)∈W01,p(Ω)×W 1,q 0 (Ω); B(u,v)=1  . (2.4)

According to advanced regularity result of [12], every minimizer of (2.4) belongs to

C1(Ω)×C1(Ω). In addition, from the maximum principle of V´azquez, see [12], we

de-duce that the corresponding eigenpair ofλ1(p, q), (u, v) are such that u, v > 0. Hereafter

(5)

2.3. The segment property. We begin by defining a class of domains for which the

boundary is smooth in order to guarantee that

W1,p(Ω)W1,s

0 (Ω)=W 1,p

0 (Ω) ∀s∈(1,p). (2.5)

Definition 2.1. An open subsetΩ ofRNis said to have the segment property if for any x∈∂Ω, there exists an open set Gx∈ RNwithx∈Gxand a pointyxofRN\{0}such that

ifz∈¯ Gxandt(0, 1), thenz + t yxΩ.

This property rules out thatΩ lies on both sides on parts of its boundary. It also allows us to push the support of a function inΩ via a translation.

The following results play an important role in the proof ofTheorem 3.2(cf. [10]). Lemma 2.2. LetΩ be a bounded domain inRNhaving the segment property. IfuW1,p(Ω)

∩W01,s(Ω) for some s(1,p), then u∈W 1,p

0 (Ω). 3. Simplicity

Before giving the main result of this section, we recall and prove the following lemma introduced in [8] which is needed below. We regive its proof for more convenience. First, we introduce Γp(u, φ)=  Ω|∇u| pdx + (p1)  Ω|∇φ| p |u| φ p dx −p  Ω|∇φ| p−2φu|u|p−2u φp−1  dx =  Ω|∇u| pdx +  Ω ∆ φp−1|u| pdx. (3.1)

Lemma 3.1. For all (u, φ)∈(W01,p(Ω)∩C1,ν(Ω))2withφ > 0 inΩ and ν∈(0, 1), we have

Γp(u, φ)≥0, that is,  Ω|∇u| p  Ω φp−1 |u|p, (3.2)

and ifΓp(u, φ)=0 there isc∈ Rsuch thatu=cφ. Proof. By Young’s inequality we have, for> 0,

∇u|∇φ|p−2φu|u|p−2 φp−1 ≤ |∇u||∇φ|p− 1|u| φ p−1 ≤pp|∇u|p+ p−1 pp  uφp|∇φ|p. (3.3)

Let =1, we have, by integration overΩ,

p  Ω|∇φ| p−2φu  |u|p−2u φp−1   Ω|∇u| p+ (p1)  Ω  uφp|∇φ|p. (3.4)

(6)

Abdelouahed El Khalil et al. 1559 Thus

Γp(u, φ)≥0. (3.5)

On the other hand, ifΓp(u, φ)=0, then we obtain p  Ω|∇φ| p−2φu|u|p−2u φp−1   Ω|∇u| p(p1)  Ω  φup|∇φ|p=0, (3.6)

and by choosing =1 in (3.3), we get

 Ω ∇u∇φ|∇φ|p−2u|u|p−2 φp−1 − |∇u||∇φ|p− 1|u| φ p−1 dx=0. (3.7)

By (3.6), we deduce that |∇u| = |(u/φ)∇φ|and from (3.7), it follows that∇u=η(u/ φ)∇φ, where|η| =1. HenceΓp(u, φ)=0 impliesη=1 and(u/φ)=0. Therefore, there

isc∈ Rsuch thatu=cφ and the lemma follows. 

Theorem 3.2. λ1(p, q) is simple.

Proof. Let (u, v) and (φ, ψ) be two eigenvectors associated to λ1(p, q) with (u, v) positive

(i.e.,u > 0, v > 0). Thanks to definition of λ1(p, q) and H¨older’s inequality, we have A(φ, ψ)=λ1(p, q)B(φ, ψ) ≤λ1(p, q)  Ωu α+1vβ+1|φ|α+1|ψ|β+1 uα+1vβ+1 ≤λ1(p, q)  Ωu α+1vβ+1 α + 1 p |φ|p up + β + 1 q |ψ|q vq ≤λ1(p, q)  Ω α + 1 p vβ+1 up−1 |φ|p+ β + 1 q uα+1vβ vq−1 |ψ|q ≤α + 1p  Ω pu up−1 |φ|p+ β + 1 q  Ω qv vq−1 |ψ|q. (3.8)

Now, byLemma 3.1, we have

A(φ, ψ)=α + 1 p  Ω pu up−1 |φ| p+β + 1 q  Ω qv vq−1 |ψ| q. (3.9) Thus  Ω|∇φ| p=  Ω pu up−1 |φ| p,  Ω|∇φ| p=  Ω qv vq−1 |φ| q. (3.10)

Again due toLemma 3.1, there existk1andk2inRsuch thatu=k1φ and v=k2ψ. This

(7)

4. Stability

Theorem 4.1. LetΩ be a bounded domain having the segment property, then the function

(p, q)−→λ1(p, q) (4.1)

is continuous fromIα,βintoR+.

Proof. Let (tn)n≥1,tn=(pn,qn) be a sequence inIα,βconverging tot=(p, q), with t∈Iα,β.

We claim that lim n→+∞λ1 pn,qn  1(p, q). (4.2)

Indeed, let (φ, ψ)∈C∞0(Ω)×C∞0(Ω) such that B(φ,ψ) > 0. Then by the variational

char-acterization ofλ1(p, q), we have λ1 pn,qn  (α + 1)/ pn  ∇φ pn pn+ (β + 1)/qn  ∇ψ qn qn B(φ, ψ) . (4.3)

Applying the dominated convergence theorem, we find

lim sup n→+ λ1 pn,qn (α + 1)/ p ∇φ pp+ (β + 1)/q ∇ψ qq B(φ, ψ) . (4.4)

By passing to infimum of the right-hand side of (4.4), we obtain lim sup n→+ λ1 pn,qn  ≤λ1(p, q). (4.5)

Let now,{pnk,qnk}k≥1be a subsequence of (tn)n≥1such that

lim k→+∞λ1 pnk,qnk  =lim inf n→+ λ1 pn,qn  . (4.6)

Fix0> 0 small enough so that for all ∈(0,0),

1< min(p− ,q− ), (4.7) max(p +,q +)< min (p− ), (q− ), (4.8)

(8)

Abdelouahed El Khalil et al. 1561 For eachk∈ N∗, let (u

(pnk,qnk),v(pnk,qnk))∈W

1,pnk

0 (Ω)×W 1,qnk

0 (Ω) be the first

eigenvec-tor associated toλ1(pnk,qnk), that is,u(pnk,qnk),v(pnk,qnk)> 0 with

Bu(pnk,qnk),v(pnk,qnk)  =1; (4.9) λ1 pnk,qnk  =α + 1 pnk  ∇u(pnk,qnk) pnk pnk+ β + 1 qnk  ∇v(pnk,qnk) qnk qnk. (4.10)

By using H¨older’s inequality, with ∈(0,0), we get simultaneously  ∇u(pnk,qnk) p−≤  ∇u(pnk,qnk) pnk|| (pnk−p+)/ pnk(p−),  ∇v(pnk,qnk) q−≤  ∇v(pnk,qnk) qnk|| (qnk−q+)/qnk(q−). (4.11) According to (4.10), we deduce  ∇u(pnk,qnk) p−≤ pnkλ1 pnk,qnk  α + 1 1/ pnk ||(pnk−p+)/ pnk(p−),  ∇v(pnk,qnk)   q−≤ q nkλ1 pnk,qnk  β + 1 1/qnk ||(qnk−q+)/qnk(q−). (4.12)

Due to (4.5), it follows that (λ1(pnk,qnk))k≥1is a bounded sequence. Then, from (4.12)

we conclude that (u(pnk,qnk))k≥1 (resp., (v(pnk,qnk))k≥1) is bounded inW

1,p−

0 (Ω) (resp.,

in W01,q−(Ω)). Therefore, by compactness and (4.8), we haveu(pnk,qnk) u weakly in

W01,p−(Ω), strongly in Lp+(Ω), and a.e in Ω (still denoted by u(pnk,qnk)). We have also

v(pnk,qnk)→v strongly in Lq+(Ω) and a.e in Ω (for a subsequence if it is necessary). Clearly u∈Lp(Ω) and vLq(Ω), and are independent of. On the other hand, the weak lower

semicontinuity of the norm implies that

∇u p−≤  p α + 1 1/ p lim k→+∞λ1 pnk,qnk 1/ p ||/ p(p−), ∇v q−≤  q β + 1 1/q lim k→+∞λ1 pnk,qnk 1/q ||/q(q−). (4.13)

Since|∇u|p−→ |∇u|pand|∇v|q−→ |∇v|qa.e onΩ, as →0+, then the Fatou lemma

yields with (4.13) ∇u pp≤ p α + 1klim+∞λ1 pnk,qnk  < +∞, ∇v qq≤ q β + 1klim+∞λ1 pnk,qnk  < +∞. (4.14)

Consequently, we haveu∈W01,p−(Ω)∩W1,p(Ω) and v∈W 1,q−

0 (Ω)∩W1,q(Ω).

This implies byLemma 2.2that

u∈W01,p(Ω), v∈W 1,q

(9)

Finally, from (4.10), (4.11), and from the weak lower semicontinuity of the norm, it fol-lows by lettingk tend to infinity that

1 ||/(p−) α + 1 p ∇u p p−+||1/(q−) β + 1 q ∇v q q−≤ lim k→+∞λ1 pnk,qnk  . (4.16)

Letting now →0+, the Fatou Lemma implies

α + 1 p ∇u p p+ β + 1 q ∇v q q≤ lim k→+∞λ1 pnk,qnk  . (4.17) Sinceu∈W01,p(Ω) and v∈W 1,q

0 (Ω), then by the variational characterization of λ1(p, q)

and the simplicity of the first eigenvector, we deduce that

λ1(p, q)≤ lim k→+∞λ1 pnk,qnk  = lim n→+∞λ1 pn,qn. (4.18)

Due to (4.5) and (4.18), we conclude that lim

n→+∞λ1

pn,qn1(p, q). (4.19)

This completes the proof. 

Remark 4.2. Observe that the segment property is used only to prove that λ1(p, q)≤lim inf n→+ λ1 pn,qn  . (4.20) References

[1] A. Anane, Simplicit´e et isolation de la premi`ere valeur propre dup-Laplacien avec poids [Simplic-ity and isolation of the first eigenvalue of thep-Laplacian with weight], C. R. Acad. Sci. Paris

S´er. I Math. 305 (1987), no. 16, 725–728 (French).

[2] K. Cha¨ıb, Extension of D´ıaz-Sa´a’s inequality in RNand application to a system ofp-Laplacian,

Publ. Mat. 46 (2002), no. 2, 473–488.

[3] F. de Th´elin, Sur l’espace propre associ´e `a la premi`ere valeur propre du pseudo-Laplacien [Some

properties of the eigenfunctions associated with the first eigenvalue of the pseudo-Laplacian],

C. R. Acad. Sci. Paris S´er. I Math. 303 (1986), no. 8, 355–358 (French).

[4] , Premi`ere valeur propre d’un syst`eme elliptique non lin´eaire [First eigenvalue of a

nonlin-ear elliptic system], C. R. Acad. Sci. Paris S´er. I Math. 311 (1990), no. 10, 603–606 (French).

[5] J. I. D´ıaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I. Elliptic Equations, Research Notes in Mathematics, vol. 106, Pitman, Massachusetts, 1985.

[6] A. El Khalil, Autour de la premi`ere courbe propre du p-Laplacien, Th`ese de Doctorat, 1999. [7] A. El Khalil, P. Lindqvist, and A. Touzani, On the stability of the first eigenvalue of Apu +

λg(x)|u|p−2u=0 with varyingp, Rend. Mat. Appl. (7) 24 (2004), no. 2, 321–336.

[8] A. El Khalil, M. Ouanan, and A. Touzani, Bifurcation of nonlinear elliptic system from the first

eigenvalue, Electron. J. Qual. Theory Differ. Equ. 2003 (2003), no. 21, 1–18.

[9] J. Fleckinger, R. F. Man´asevich, N. M. Stavrakakis, and F. de Th´elin, Principal eigenvalues for

some quasilinear elliptic equations onRN, Adv. Differential Equations 2 (1997), no. 6, 981–

1003.

[10] P. Lindqvist, On the equation div(|∇u|p−2u) + λ|u|p−2u=0, Proc. Amer. Math. Soc. 109

(10)

Abdelouahed El Khalil et al. 1563

[11] , On nonlinear Rayleigh quotients, Potential Anal. 2 (1993), no. 3, 199–218.

[12] J. L. V´azquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191–202.

Abdelouahed El Khalil: D´epartement de Math´ematiques et G´enie Industriel, Ecole Polytechnique de Montr´eal, Canada H3C 3A7

E-mail address:abdelouahed.el-khalil@polymtl.ca

Said El Manouni: 23 Biesentaler Street, 13359 Berlin, Germany

Current address: Department of Mathematics, Faculty of Sciences Dhar-Mahraz, P.O. Box 1796

Atlas, Fez 30000, Morocco

E-mail address:manouni@hotmail.com

Mohammed Ouanan: Department of Mathematics, Faculty of Sciences Dhar-Mahraz, P.O. Box 1796 Atlas, Fez 30000, Morocco

(11)

Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation

http://www.hindawi.com Volume 201

Mathematics

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 201

Mathematical Problems in Engineering

Hindawi Publishing Corporation http://www.hindawi.com

Differential Equations

International Journal of

Volume 201

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014 Mathematical Physics

Advances in

Complex Analysis

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 201

Optimization

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Combinatorics

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied Analysis Hindawi Publishing Corporation

http://www.hindawi.com Volume 201 International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporation http://www.hindawi.com Volume 201

The Scientific

World Journal

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Discrete Dynamics in Nature and Society Hindawi Publishing Corporation

http://www.hindawi.com Volume 201

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

#HRBQDSDĮ,@SGDL@SHBR

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation

http://www.hindawi.com Volume 201

Stochastic Analysis

Références

Documents relatifs

Avec des kilomètres de pistes cyclables, une coulée verte de 10 km qui traverse Valence d’est en ouest, et un réseau de vélos en libre-service répartis dans toute la ville (au prix

Côté assiette, le chef fait la part belle aux produits de saison et vous invite dans deux ambiances différentes : coté restaurant, dans l’esprit d’un bistrot gastronomique

C’est à ce moment que survient le boom des buildings à travers tout le pays (Vancouver, Calgary, Edmonton, Ottawa et Toronto, ainsi que Montréal dans une moindre mesure), mais

Quartier Art Déco, mer turquoise bordée d’une plage au sable banc éclatant parsemée de cabanons aux couleurs vives, la très animée Ocean Drive, la piétonne Lincoln Road et

Ses liens forts avec la ville lui viennent avant tout de sa femme, Francine Faure, qui est née à Oran, mais il reste avant tout algérois et on devine qu’il préfère Alger à

Entre océan Pacifique et mer des Caraïbes, entre ses trois cordillères andines majes- tueuses où se mêlent vallées verdoyantes et neiges éter- nelles, entre

Sans rentrer dans les détails, les roues sont considérées comme un investissement mais aussi peuvent améliorer notablement les qualités d’un vélo.. Un autre point à prendre

Si vous optez pour Manly, étendez votre visite en fin d’après-midi à North Head, en particulier North Head Scenic Drive, d’où vous pourrez admirer la baie de Sydney au coucher