• Aucun résultat trouvé

Identification of the metallurgical parameters explaining the corrosion susceptibility in a 2050 aluminium alloy

N/A
N/A
Protected

Academic year: 2021

Partager "Identification of the metallurgical parameters explaining the corrosion susceptibility in a 2050 aluminium alloy"

Copied!
11
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/

Eprints ID : 14698

To link to this article : DOI :

10.1016/j.corsci.2015.10.020

URL :

http://dx.doi.org/10.1016/j.corsci.2015.10.020

To cite this version : Guérin, Mathilde and Alexis, Joël and Andrieu,

Eric and Laffont-Dantras, Lydia and Lefebvre, Williams and Odemer,

Grégory and Blanc, Christine Identification of the metallurgical

parameters explaining the corrosion susceptibility in a 2050 aluminium

alloy. Corrosion Science, Vol.102. pp.291-300. ISSN 0010-938X

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

(2)

Identification

of

the

metallurgical

parameters

explaining

the

corrosion

susceptibility

in

a

2050

aluminium

alloy

Mathilde

Guérin

a,b

,

Joël

Alexis

b

,

Eric

Andrieu

a

,

Lydia

Laffont

a

,

Williams

Lefebvre

c

,

Grégory

Odemer

a

,

Christine

Blanc

a,∗

aUniversitédeToulouse,InstitutCARNOTCIRIMAT,UPS/CNRS/INPT,ENSIACET,4alléeEmileMonso,31030Toulouse,France bUniversitédeToulouse,LGP,ENIT/INPT,47Avenued’Azereix,65016,Tarbes,France

cUniversitédeRouen,GPM—UFRSciencesetTechniques,Avenuedel’Université—BP12,76801,SaintEtienneduRouvray,France

Keywords: Alloy Aluminium STEM Intergranularcorrosion Interfaces

a

b

s

t

r

a

c

t

Thecorrosionbehaviourofa2050aluminiumalloywasstudiedinaNaClsolution.Thestructureof precipitationdidnotfullyexplainthesusceptibilitytointergranular(inthe-T34state)and intragran-ularcorrosionfortheagedstate(the-T8state).Arelationshipbetweenthenatureofinterfaces,the grainscharacteristics(size,internalmisorientationandorientationaccordingtotheplaneexposedto theelectrolyte)ononehandandthecorrosionsusceptibilityofthealloyontheotherhandwasclearly established.Galvaniccouplingbetweengrainswithdifferentinternalmisorientationshelpedtoexplain theintergranularcorrosionsusceptibilityofthe-T34state.

1. Introduction

NewgenerationofAl–Cu–Li–Xalloysshowsremarkable combi-nationofdensity,mechanicalpropertiesandcorrosionresistance. Althoughotherphasescanbeobservedinthesealloys,the pre-cipitationofT1–Al2CuLiphaseiscommonlyconsideredasamajor

parameter to explain the corrosion behaviour of these alloys

[1–9].Thisintermetallicphasepossessesamorenegative

corro-sionpotentialthanthematrix[2,6].Whenthematerialisexposed toanaggressivemedium,agalvaniccouplingbetweentheT1phase

andthematrixoccursinfavourofthematrix.Inthe-T34 metallur-gicalstate,becauseofthepresenceofT1particlesonlyatthegrain

boundaries,galvaniccouplingleadstothedissolutionofthegrain boundarieswithamorenegativecorrosionpotentialthanforthe grains.Todesensitisethealloytointergranularcorrosion,anaging treatmentisappliedtothematerial.Thisleadstothe precipita-tionofT1particlesbothinthegrainsandatthegrainboundaries,

leavingtheagedstate(-T8).Fora-T8sample,becauseofthis struc-tureofprecipitation,thecorrosionpotentialsofthematrixandthe

∗ Correspondingauthorat:UniversitédeToulouse,CIRIMAT,UPS/CNRS/INPT,4 alléeEmileMonso,BP44362,31030ToulouseCedex4,France.

Fax:+330534323498.

E-mailaddress:christine.blanc@ensiacet.fr(C.Blanc).

grainboundariesarequitesimilar.Consequently,galvaniccoupling doesnotoccurbetweenthegrainandthegrainboundariesandthe materialissusceptibletointragranularcorrosion[2–4].

Ourresultsfrompreviousworkconfirmedthesusceptibilityof anAA2050alloytointragranularcorrosionafteranageing treat-mentat155◦Cfor30hand correlatedthistothehomogeneous

distributionofT1 phaseparticles inthegrainsand atthegrain

boundaries[9].For theAA2050-T34 alloy,susceptible to inter-granularcorrosion,amajorpartofcorrodedgrainboundariesdid notevidencethepresenceofT1precipitates.Thisresultsuggested

thatthepresenceoftheT1 phasewasnotnecessarytoinducea

susceptibilitytointergranularcorrosioninanAA2050-T34alloy. Furthermore,forboth-T8and-T34alloys,preferentialdissolution ofsomegrains andgrainboundarieswasrespectivelyobserved while,for-T8alloyforexample,homogeneousdistributionofT1

precipitateswasobservedbothinthegrainsandatthegrain bound-aries.Theseresultssuggestedthatparametersdifferentthanthe structureofprecipitationshouldcontributetoexplainthe corro-sionbehaviouroftheAA2050alloy.Thisshouldbeinagreement withresultsfoundinliterature.Forexample,Luoetal.showedthat arelationshipexistsbetweenthedislocationdensityinagrainand theabilityofthegrainboundarytobecorroded[10].Kimetal. showedthatthegrainboundarycharacterdistribution(GBCD)has agreateffectonintergranularcorrosionsusceptibilityofaluminum inHCl[11].Ralstonetal.workedontheinfluenceofthegrainsizeon

(3)

Fig.1. MethodologyusedforstudyingtheimpactofdifferentmetallurgicalparametersatthepolycrystalscaleonthecorrosionbehaviourofAA2050.

Fig.2. Opticalmicroscopeobservationsof(a)intergranularcorrosioninthe-T34sampleand(c)intragranularcorrosioninthe-T8sample.Bright-fieldTEMimagesof(b) the-T34sampleand(d)the-T8sample.

thecorrosionsusceptibilityofamaterialandnoticedthatthe‘grain size—corrosionresistance’relationshipiscomplex.Theysuggested thatthiscomplexitycouldbeincreasedduetotheheterogeneityof thegrainsizeinasample[12].

Theaimofthisstudywastodeterminetheoriginofthe suscepti-bilitytointergranularandintragranularcorrosionforAA2050-T34

andAA2050-T8alloysrespectively.Thestructureofprecipitation wasconsidered.However,attentionwasalsopaidto microstruc-turalparametersatthepolycrystalscale:thismeansthatthenature oftheinterfaces(eithergrainboundariesorsubgrainboundaries correspondingtothelevelofmisorientationattheinterfaces),the internalmisorientationandsizeofthegrains,andtheirorientation

(4)

Fig.3.HAADFSTEMobservationofGPzonesalonga<110>axisoftheAlmatrixintheAA2050-T34alloy.

withrespecttotheplaneexposedtotheelectrolytewere consid-eredaspotentialcriticalmetallurgicalparametersinfluencingthe corrosionsusceptibilityoftheAA2050alloy.Tostudytheimpactof thesemicrostructuralparameters,electronbackscatterdiffraction (EBSD)analyseswereperformedonhealthyandcorrodedsamples. 2. Experimentalprocedure

2.1. Material

The material used for this study was an aluminium–copper–lithiumAA2050-T34alloy(Albase,3.86%Cu, 0.86%Li,wt.%)providedbyConstellium(France).Thematerialwas receivedasa50mmthickplateformedbyhotrollingandfollowed by solutionheat treatment, water quenching and stretchingto achieve the final -T34 metallurgical state.A piece of theplate wasaged and corresponds to a -T8 metallurgicalstate. Dueto therollingprocess,themicrostructureofboththe-T34and-T8 samplesexhibitedahighdegreeofanisotropy.Observationsusing opticalmicroscopy(OM)ofthethickplateshowedthatthegrains werehighlyelongatedintherollingdirection.Theaveragesizesin thetransverse(LT)andshorttransverse(ST)directionswere350 and60mm,respectively,withalargediscrepancyinsizefromone graintoanother.Inthelongitudinal(L)direction,thediscrepancy issuchthatthecalculationofameanvalueismeaningless.Further EBSDanalysisrevealedtwopopulationsofgrains:onepopulation oflargepolygonisedgrains(withsizesvarying from350mmto 5mmintheLdirection)andanotherpopulationofrecrystallised grainswithsmallerdimensions(between5mmand20mminthe Ldirection).

2.2. StudyofthestructureofprecipitationoftheAA2050alloy Inordertotakeintoaccountthestructureofprecipitationin thecorrosionsusceptibilityoftheAA2050alloy,atransmission electronmicroscope(TEM)inthescanningtransmissionelectron microscopy(STEM)mode,whichhasahighdegreeoflocal pre-cision,wasused.STEMobservationswererecordedusingaJEOL ARM200FequippedwithaSchottkyFEG(fieldemissiongun)and aprobeCs-correctoroperatingat200kV.TheHAADF-STEM(High

AngleAnnularDarkField)andLAADF-STEM(LowAngleAnnular DarkField)imageswererecordedwitha0.1nmFWHMelectron

probesizeof30mradsemi-convergenceangle.Thedetectorranges weresetto54–220mradforHAADFand24–54mradforLAADF.The HAADFandLAADFsignalsaredominatedbyZ-contrastand diffrac-tioncontrast,respectively.Forthesetechniques,thesampleswere preparedusingmechanicalpolishingtoobtaina100mm-thickslice followedbyelectrolyticpolishingtomakeaportionofthesample transparenttoelectrons.

2.3. Studyofthecriticalmicrostructuralparametersatthe polycrystalscale

EBSDanalyseswereperformedforthe-T34 and-T8samples usingaJEOL7000Ffieldemissionscanningelectronmicroscope equippedwithaNordlysIIF+cameraatanacceleratingvoltage of15kV.TheEBSDanalyseswerehelpfulinboth analysingthe microstructureofthealloyandcharacterisingthecorrosion dam-ageafterthetests.Allofthecorrosiontestswereperformedover 72handwereconductedinacontinuousimmersionatopencircuit potentialina0.7MsolutionofNaCl,whichwaspreparedby dis-solvingNormapurchemicalsaltsindistilledwater.Duringthetests, thesolutionwasstirredandopenedtotheair.Thetemperaturewas maintainedat25◦CusingaJulaborefrigeratedcirculator.Foreach

sample,EBSDmapswereperformedonthesame1.5mm×3mm areawithastepsizeof1–2mminthe(LT-ST)planebothbeforeand afterthecorrosiontests.Duringthecorrosiontests,onlythiszone wasexposedtotheelectrolyte(avarnishwaspaintedontoprotect therestofthesurface).Thesurfaceexposedtotheelectrolytewas largeenoughtoobtainrepresentativeresults.Overall,foreach sam-ple,morethan250grainswereanalysed.TheEBSDdatawerethen post-processedusingthecommercialorientationimagingsoftware packageOxfordChannel5.Tominimisemeasurementerrors,all grainscomprisinglessthan3pixelswereautomaticallyremoved fromthemapspriortodataanalysis.Inaddition,toeliminate spuri-ousboundariescausedbyorientationnoise,alowerlimitboundary misorientationcut-offof2◦wasused.Theanalysespermittedthe

determinationoftheorientationofthegrains(seeFig.1,map1) andthenatureoftheinterfaces(seeFig.1,map2).Inthiswork, theword‘interfaces’referstothegrainboundariesindependentof theirlevelofmisorientation.A10◦criterionwasusedto

differenti-atelowanglegrainboundaries(i.e.subgrainboundaries)andhigh anglegrainboundaries(i.e.grainboundaries).Thismisorientation waschosenbasedondataavailableforpurealuminium[13].Two

(5)

Fig.4. HAADFSTEMimagesofsubgrainboundariesintheAA2050-T34alloy(Z-contrast).

Fig.5.(a)HAADFSTEM(i.e.Z-contrast)and(b)LAADFSTEM(i.e.diffractioncontrast)imagesofthesameregionintheAA2050-T34alloy.Theregiontotherightisinperfect <110>orientationwhereasthecrystalorientationslightlychangesacrossthesubgrainboundaryidentifiedbythealignmentofdislocationsin(a).Thisslightchangeofcrystal orientationisclearlyvisibleonthehighermagnificationHAADFSTEMimagesdisplayedin(c)and(d),whichshowprecipitatesindicatedbyawhitedottedsquarein(a).

categories of grainboundaries were distinguished: coincidence sitelatticegrainboundaries(CSL)andrandomgrainboundaries. Incoincidentsite latticegrainboundaries,thedegreeoffit (6) betweenthestructuresofthetwograinsisdescribedbythe recip-rocaloftheratioofcoincidencesitestothetotalnumberofsites orientedinoppositiontotherandomgrainboundarieswherethe structurewasobservedasbeingdisorganised.Thegrainsizewas quantifiedbymeasuringthegrainareaandcalculatingthe equiv-alentgraindiameter assumingeach grain asa circle. Afterthe corrosiontests,allthecorrodedinterfacesandgrainsinthesame

zonewereanalysed.Thisrepresentedapproximately50interfaces (forthe-T34metallurgicalstate)and15grains(forthe-T8 metal-lurgicalstate)ineachsample.Theanalysiswasreproducedtwice foreachmetallurgicalstateleadingtosimilarconclusions.Afterthe testing,thecorrosionproductswereremovedusinggentle mechan-icalpolishing.ThecorrodedzonewasanalysedusingSEM with theelectronbackscatterdetectortoeasilyidentifyanycorrosion defects(seeFig.1,map3a).Thecorrosiondefectswereisolated usingimageanalysis(ImageJsoftware,seeFig.1,map3b).Thislast mapwassuperimposedonmap1ormap2toobtainacorrosion

(6)

map(seeFig.1,map4).Themisorientationlevelforeachcorroded interfaceandthecharacteristicsoftheadjacentgrains(forthe-T34 metallurgicalstate)orofthecorrodedgrains(forthe-T8 metallur-gicalstate)wereextractedfrommap4.Thegraincharacteristics studiedoverthisareaincludedthesize,theinternalmisorientation andtheorientationrelativetotheplaneexposedtotheelectrolyte. 3. Experimentalresultsanddiscussion

Asalreadydiscussed,a previousstudyonthesamematerial revealedasusceptibilitytointergranularcorrosionformaterialin the-T34state(Fig.2a)andtointragranularcorrosioninthe-T8 state(Fig.2c)[9].TEMobservationsfor-T8samplesagreedwith theliterature;theT1phaseprecipitateswereobservedbothinthe

grainsandatthegrainboundaries,explainingthesusceptibilityto intragranularcorrosion(Fig.2d).Forthe-T34samples,noT1

pre-cipitatewasobservedinthemajorpartsofthegrainboundaries (Fig.2b).

3.1. CorrosionbehaviouroftheAA2050-T34alloy

The corrosion behaviour of the system investigated being stronglydependentonthestructureofprecipitationassuggested bytheliterature[1–9],it isnecessarytodeterminewhetherT1

and/oru′precipitates,thatarealsoexpectedinsuchanalloy,can

beobservedintheT34state.BecausepreviousTEMobservations didnotallowthepresenceofT1precipitatestobeevidencedinthe

majorpartofthegrainboundaries,HAADFSTEMobservationswere performed.TheyrevealedfirstthatonlyCu-richGPzonesare iden-tifiedinthematrix(Fig.3)awayfromsubgrainorgrainboundaries, asexpected.ThelengthoftheseGPzonesmeasuredbyprojection alonga<110>axisisrangingbetween1and3nm.

Specialattentionwaspaidtothecharacterizationofsubgrain boundariesandHAADFSTEMimages(Fig.4)indicatedthat precip-itateswerealreadypresentalongtheseinterfaces.However,the densityofprecipitationwasfoundtostronglyvaryfromone sub-grainboundarytoanotheroralongthesameinterface.Inorder torevealelasticdistorsionsinducedbythedislocationsassociated totheseinterfaces,LAADFSTEMmodewasused.Suchamethod hasrevealeditsrelevancefortheimagingofdislocationsinSTEM

[14].In theAA 2050-T34alloy,thesameregionswere simulta-neouslyimagedinLAADF(Fig.5b)andHAADFSTEM(Fig.5a)to unambiguouslydissociatethecontrastassociatedwithasubgrain boundary(i.e.thealignmentofdislocationsacrosswhichthecrystal orientationisslightlytitled)totheZ-contrastrevealingthe even-tualpresenceofprecipitates.Fig.5showsasubgrainboundaryina nearly<110>orientation.Precipitateswereclearlyvisibleinsome regionsofthisinterfaceandweredisplayedinlargermagnification inFig.5candd.Acrossthesetwoimages,fromrighttoleft,the lossoflatticeresolutionintheAl-matrixwasduetoasmall dis-orientationofthelatticeacrossthesubgrainboundary.InFig.5c, theprecipitateinthelowerpartoftheimageexhibitedatypical contrastofaT1precipitatealong<110>zoneaxisofaluminium,as

reportedintheliterature[15,16].TheCu-richplanardefectslying along{111}planesofaluminiuminFig.5dcouldnotbeclearly identified.TherecentworkbyGaoetal.[17]hasreportedGP-T1

zones,whichstructuredidnotcorrespondtotheCu-richplanar defectsinFig.5.TheGP-T1zonesreportedbyGaoetal.actually

dis-playtwoCu-richplanesparallelto{111}Al,separatedbyaregion withacompositionthatcouldnotbedeterminedunambiguously thoughitscontrastseemstoindicatethatit consistsofasingle planeofaluminium.Ourobservationsweremoreconsistentwith thosemadebyAraullo-Petersetal.byatomprobetomography[18]. TheseauthorshavedemonstratedacomplexcouplingbetweenMg andCusegregationsalongdislocationswiththeformationofplanar

defectsenrichedinCu,identifiedasT1precursors.Nevertheless,the

mechanismofformationofT1precipitatesfallsoutsidethescope

ofthispaper,whichpurposeistorelatemicrostructural character-izationtothecorrosionbehaviouroftheAA2050-T34alloy.

Themainresultherewasthat,intheT34state,thealloyalready containedT1precipitatesandotherplanardefectsenrichedin

cop-peralongsubgrainboundaries.Lithiumcouldalsobepresentin theinterfaces but,due toits lowamount,it wasimpossible to detectthiselement.Despitethefactthatnou’precipitatecould beobserved,wecannotexcludethatsomeoftheseprecipitates werepresentintheAA2050-T34alloyalonginterfaces.The den-sityofprecipitatesand planardefectsstronglyvariedfromone subgraintoanotherandwemadetheassumptionthatthese varia-tionswereduetothenatureofdislocationspresentinthesubgrain boundaries.Assuggestedbyseveralauthors,agrainboundarywith ahighdegreeofatomicdisarrangementshouldreactmorewith impuritiesoralloyingelementsthanagrainboundarywithhigh coincidenceleveloreventhanagrainboundaryoflowangle mis-orientation[19–21].Thissuggestedthatthelevelofmisorientation ofinterfacescouldbecorrelatedtotheircorrosionsusceptibility.A detailedinvestigationwashencerequiredtoestimatethe possibil-ityofsuchacorrelation.Thisinvestigation,whichwasperformed usingEBSDanalyses,ispresentedhereafter.

TheresultsoftheEBSDanalysesperformedpriortocorrosion testsfortheAA2050-T34samplearepresentedinFig.6.The dis-tributionofinterfacesaccordingtotheirlevelofmisorientationis showninFig.6a.Thelevelofmisorientationofeachinterfacewas determinedbymeasuringthemisorientationbetweenthegrains situated onboth sidesof theinterface.Theresultsshowedthat 85% ofinterfaceswere subgrainboundariesand only15% were grainboundaries.Amongthegrainboundaries,20%wereCSLgrain boundariesand80%wererandomgrainboundaries.63interfaces representedthemajorityoftheCSL(35%,Fig.6b).Therefore,during analysisofthecorrodedsamples,onlythe63CSLgrainboundaries wereconsidered.

AftercompletingthecorrosiontestsintheAA2050-T34sample, thecorrodedinterfaceswerelocated,andthelevelsof misorien-tationwererecorded(Fig.1).Theanalysiswasperformedon50 corrosiondefects,andledtotheestablishmentofarelationship betweenthelevelofmisorientationofaninterfaceandits suscep-tibilitytocorrosion.Fig.6ashowsthecorrodedinterfacefrequency accordingtotheirmisorientationlevel.Thedistributionwas differ-entfromthedatatakenpriortothecorrosiontest.Atotalof70%of thecorrodedinterfacesweregrainboundarieswhereasonly30% ofthecorrodedinterfacesweresubgrainboundaries.Considering thehighproportionofsubgrainboundaries,theseresultssuggesta higherresistancetocorrosionofthesubgrainboundaries. More-over, amongthecorrodedgrainboundaries,theresultsshowed thatthemostmisorientedinterfacestendedtobemore suscepti-bletocorrosion.Thestrongreactivityofthegrainboundarieswith ahighlevelofmisorientationmaybelinkedtotheirdisarranged structureandcorrelatedwiththeirhighenergy[19].Onthe con-trary,theresistancetocorrosionofthesubgrainboundariesshould beassociatedwiththeirlowenergy.Theseresultswereconsistent withotherworkonvariousmetals[20,22–24].Itshouldbenoted thattheinterfacesusceptibilitytocorrosion,andinparticularof somesubgrainboundariescompared totheothers,mayalsobe explainedbytheirchemicalcompositionandstructureof precipi-tation,ashighlightedintheSTEM-HAADFobservations.Itwillbe interestingtostudytherelationshipbetweenthechemical com-position/structureofprecipitationofaninterfaceanditslevelof misorientationbutthisshouldbethesubjectoffuturestudy. Con-cerningthesusceptibilitytocorrosionoftheCSLgrainboundaries, onlyfourcorrosiondefectsat63grainboundarieswereidentified. Anintergranularcorrosionsusceptibilityindexwasdeterminedby theratiooftheproportionofcorrosiondefectscorrespondingto

(7)

Fig.6. AA2050-T34alloy—(a)Distributionofthelevelofmisorientationoftheinterfacesbeforeandafterthecorrosiontests;(b)distributionoftheCSLgrainboundaries beforecorrosiontests.

Fig.7. AA2050-T34alloy—(a)Distributionofthegrainsurfaceareasbeforeandafterthecorrosiontestsforcorrosionatsubgrainboundariesandatgrainboundaries;(b) distributionofthegrainsurfacearearatioofthegrainssituatedonbothsidesofthecorrosiondefectsatthegrainboundaries.

Table1

StatisticalanalysisoftheintergranularcorrosionintheAA2050-T34alloybasedonthenatureoftheinterfacesatthepolycrystalscale.

Natureoftheinterfaces Subgrainboundaries Randomgrainboundaries CSLgrainboundaries

%Innon-corrodedspecimen(a) 85 12 3

%Incorrodedspecimen(b) 30 62 8

(8)

Fig.8.AA2050-T34alloy—(a)Relationshipbetweenthegrainsurfaceareaandtheinternalgrainmisorientation;(b)distributionoftheinternalgrainmisorientationbefore andafterthecorrosiontestsforcorrosionatthesubgrainboundaries.

acertaintype ofinterface(subgrain boundaries,randomorCSL grainboundaries)dividedbytheproportionofinterfacesofthis sametypeinthesample.TheresultsshowedthattheCSLgrain boundariesweretwo timesless sensitivetocorrosionthanthe randomgrainboundaries,whichwasasexpectedfromprevious observations(Table1).Moreover,thecalculatedindicesshowed thatsubgrainboundariesweretheleastsensitiveinterfaces.This resultwaspartiallyconsistentwiththeliteratureevenifCSLgrain boundarieswereoftenconsideredmoreresistantthansubgrain boundaries[20].Thistrendmustbefurtherconfirmedduetothe lownumberof63studied.

Inlightofthepreviousresults,itwasimportanttodistinguish corrosionatgrainboundariesandatsubgrainboundariesforthe AA2050-T34alloy.Inbothcases,thecharacteristicsofthegrains situatedoneachsideofacorrosiondefect(inthecaseof corro-sionatthegrainboundaries)orcontainingcorrosiondefects(in thecase of corrosion atthe subgrainboundaries)should influ-encethereactivityoftheinterface.Therefore, thepropertiesof thegrainswerealsoinvestigated.Theanalysesperformedprior tothecorrosiontestsshowedthatmostofthegrainswereless than10,000mm2inarea(Fig.7a).Moreprecisely,50%ofthegrains

measuredlessthan100mm2.Afterthecorrosiontests,thegrains

containingcorrodedsubgrainboundariesintheAA2050-T34 sam-pleswereidentifiedandtheirareaswererecorded.Fig.7ashows thatthecorrosionatsubgrainboundariesoccurredingrainswith alargearea(>10,000mm2,andmoreprecisely>80,000mm2).This

wasbestexplainedbythepresenceofmanysubgrainboundaries and dislocations insidethe largepolygonizedgrains, leadingto asignificantamountof storedenergyandconsequently,astate ofnon-thermodynamicequilibrium inthesegrains.Theanalysis of corrosion at thegrain boundaries of theAA 2050-T34 sam-pleincludedexaminingthegrainssituated onboth sidesofthe corrosion defects and recording theirareas. Fig. 7a shows the distributionof thegrains experiencing corrosion attheir inter-faces. Results highlighted that intergranular corrosion at grain boundariesoccurredattheinterfacebetweengrainsofvariable surfaceareas.Butbydrawingthedistributionofthearearatio, which representstheareaof thesmallestgraindivided bythe area of the largest grain (for the grains situated on each side of a corrosion defect), a dominant group of corrosion defects for a low area ratio (0–0.2, Fig. 7b) was observed. This result

meansthatintheAA 2050-T34sample,intergranularcorrosion developedmainlybetweengrainswithdisparateareas:agalvanic couplingbetweenasmallgrainandalargegrainshouldexplainthis resultbecausethereisastrongerreactivityattheirshared inter-face.Indeed,severalworkshaveshownthatthecorrosionpotential ofametalvariedwiththedislocationdensity[24,25]andthegrain

size[26,27].Itwaspossibletotransposethisresultonthe

poly-crystalscalebyconsideringthegalvaniccouplingbetweengrains ofdifferentsizesandpossessingdifferentdislocationdensities.

Therelationshipbetweenthegrainsizeanddislocationdensity isshowninFig.8aforanon-corrodedAA2050-T34samplewhere thedislocationdensityofagrainwasmeasuredthroughits inter-nalmisorientation.Fig.8ashowsthatthesmallestgrainshavethe smallestinternalgrainmisorientationinrelationtothelow dislo-cationdensity.Moreover,the-T34metallurgicalstateexhibiteda highproportionofgrainswithalowinternalmisorientation(<2◦,

Fig.8b).Afterthecorrosiontests,thegrainscontainingcorroded subgrainboundariesfortheAA2050-T34samplewereidentified andtheirinternalmisorientationsrecorded.Asexpected, corro-sionatthesubgrainboundariesoccurredingrainscontainingahigh internalmisorientation(Fig.8b).Whenconsideringthecorrosionat thegrainboundariesfortheAA2050-T34sample,theratiobetween theinternal misorientation of each grainsituated oneach side ofthecorrodedgrainboundariesmustbeexamined.Theresults showedthatthecorrodedgrainboundariescorrelatedtoahigh graininternalmisorientationratio,suggestingagainthatagalvanic couplingbetweenthegrains withdifferentinternal misorienta-tionsledtocorrosionattheirsharedinterface.Fig.9illustrates thisphenomenonofgalvaniccoupling.Intergranularcorrosionwas observedattheinterfacebetweenagrainwithlowinternal misori-entation(ontherightofthecorrosiondefectn◦1)andagrainwith

manysubgrainboundaries,whichassumedahighdegreeof inter-nalmisorientation(totheleftofthecorrosiondefectmarkedn◦1).

ItnotedthatdespiteoftheaveragebehaviourshowninFig.8a,the lowinternalmisorientationwithinagrainisnotnecessarily asso-ciatedwiththesmallsizeofthisgrain(identifiedasthegraintothe leftofcorrosiondefectmarkedn◦2).Therefore,toagreaterextent

thanthegrainsize,theinternalgrainmisorientationseemstobethe mostrelevantparametercapableofexplainingtheintergranular corrosionsusceptibilityoftheAA2050-T34alloy.

(9)

Fig.9. EBSD(IPF-Z0)micrographofthecorrosiondefectssituatedbetweengrainsshowinglargediscrepanciesofinternalmisorientationintheAA2050-T34alloyandthe correspondingSEMmicrograph.

3.2. CorrosionbehaviouroftheAA2050-T8alloy

ThesusceptibilitytointragranularcorrosionofAA2050-T8alloy waswell-correlatedtothehomogeneousdistributionofT1

pre-cipitatesbothinthegrainsandatthegrainboundaries.However, aspreviously noticed, sucha structure of precipitation didnot explainthepreferential dissolutionofsomegrainscomparedto theothers.ResultsobtainedfortheAA2050-T34alloysuggested thatmetallurgicalparametersatthepolycrystalscaleshould con-tributetoexplainthecorrosionsusceptibilityofAA2050-T8alloy also.First,attentionwaspaidtotheinfluenceofthegrainsizeon thecorrosionsusceptibility.AsfortheAA2050-T34alloy,astrong reactivityoflargegrainswasalsoobservedfortheAA2050-T8 sam-ple.Thedistributionofgrainsaccordingtotheirareaispresented inFig.10aforthis metallurgicalstate.Thedistributionobtained fortheAA 2050-T8samplewassimilartothatoftheAA 2050-T34samplebecausetheageingtreatmentdidnotmodifythesize ofthegrains.Forthe-T8state,whichissusceptibleto intragran-ularcorrosion, theanalysis performedafter thecorrosion tests showedthepreferentialdissolutionofgrainswithanareagreater than10,000mm2(Fig.10a).Thisresultwasinagreementwiththe

dataobtainedfortheAA2050-T34sampleforcorrosionat sub-grainboundariesandwasbetterexplainedbythepresenceofmany subgrainboundariesanddislocationsinsidethelargepolygonized grains,leadingtoasignificantamountofstoredenergyand con-sequently,astrongreactivity.Theliteraturereportsanevolution ofthecorrosionpotentialwiththedislocationdensitybutwithout anyidentifiedtrends[25].Itwasassumedinthepresentworkthat thegrainswiththehighestdislocationdensityhavethemost nega-tivecorrosionpotential.Incontrast,thesmallrecrystallisedgrains didnotexhibitsubgrainboundariesandtheircorrosionresistance wasconsequentlyhigher.

Then,theinfluenceoftheinternalmisorientationofagrainon itscorrosionsusceptibilitywasconsidered.Concerningthe rela-tionshipbetweenthegrainsizeanddislocationdensity,thesame resultwasobtainedforanAA2050-T8sampleasforanon-corroded AA 2050-T34 sample(Fig.8a), i.e. thesmallestgrains havethe smallestinternalgrainmisorientation.Moreover,asforthe-T34, thenon-corroded-T8metallurgicalstatesexhibitedahigh propor-tionofgrainswithalowinternalmisorientation(<2◦,Fig.10b).

Afterthecorrosiontests,resultsshowedthatintragranular corro-sionoccurredingrainscontainingahighinternalmisorientation (Fig.10b)showingthat themostrelevantparametercapableof explaining the intragranular corrosion susceptibility of the AA 2050-T8alloywastheinternalmisorientationofthegrains,asfor theintergranularcorrosionsusceptibilityoftheAA2050-T34alloy. AnotherparameterwasinvestigatedintheAA2050-T8sample: thegrain orientationrelated to theplaneexposed tothe elec-trolyte.Theanalysisperformedafterthecorrosiontestsonthe-T8 statesamplesshowedthatthemajorityofthecorrodedgrainsare orientedaccordingto(111)planesrelativetotheexposedplane (Fig.11).Itisworthnotingthatthe(111)planesarethedenser planesandtheyarethehabitplanesoftheT1phaseintheface

cen-trecubicstructureofaluminium.Theliteraturereportedthatthe dissolutionbehaviourofthegrainsdependedontheorientation ofthecrystalrelativetotheplaneexposedtotheelectrolyte[28]. Consequently,thepreferentialcorrosionofgrainsorientedwith the(111)planesexposedtotheelectrolytemaybeexplainedby amorenegativecorrosionpotentialthanforgrainsorientedtothe othercrystalplanes.Itissuggestedthatgalvaniccouplingbetween grainswithdifferentorientationsledtothepreferentialcorrosion ofsomegrains.Thishypothesisshouldbeadvancedtoexplainthe susceptibilityofthe-T34statetointergranularcorrosion.Inthis case,galvaniccouplingbetweengrainswithdifferentorientations

(10)

Fig.10.AA2050-T8alloy—(a)Distributionofthegrainsurfaceareasand(b)distributionoftheinternalgrainmisorientationbeforeandafterthecorrosiontestsfor intragranularcorrosion.

(11)

mayincreasethecorrosionsusceptibilityoftheirsharedinterface. FurthermeasurementsoftheVoltapotentialofthegrains accord-ingtotheircrystallineorientationusingKelvinForceMicroscopy shouldconfirmthishypothesis.

4. Conclusions

ThecorrosionbehaviourofAA2050wasstudiedforboth nat-urallyaged(-T34)andartificiallyaged(-T8)metallurgicalstates. Theimpactofthemicrostructuralparametersonbothintergranular (-T34)andintragranular(-T8)corrosionmechanismswas investi-gated.Theconclusionsareasfollows:

1Thestructureofprecipitationcontributedtoexplainthe suscepti-bilitytocorrosionoftheAA2050alloy.However,thepresenceof T1phaseprecipitatesatthegrainboundariesofa-T34alloywas

notnecessarytosensitisethealloytointergranularcorrosion. Theintragranularcorrosionofa-T8alloycanbeexplained par-tiallybyT1precipitateshomogeneouslydistributedinthegrains

andatthegrainboundariesbutsuchahomogeneousdistribution didnotexplainthestrongreactivityofsomegrainscomparedto others.

2Othermetallurgicalparametersatthepolycrystalscalewereto betakenintoaccounttoexplainthecorrosionmechanismsinthe AA2050alloy.

3Thenatureoftheinterfaceswasfoundtoplayadominantroleon theintergranularcorrosionsusceptibilityofthe-T34alloywitha highercorrosionresistanceforinterfacescharacterisedbyalow levelofmisorientation.

4Forboththe-T34and-T8samples,theinternalmisorientationof thegrainsisadrivingfactorintheintergranularand intragran-ularcorrosion mechanisms.Galvanic couplingbetweengrains withstronglydifferentinternalmisorientationshouldleadtothe corrosionoftheirsharedinterface.Grainswithhighinternal mis-orientationwerefoundtobethemostsusceptibletocorrosion. 5For-T8samples,grainsorientedinthe(111)planes,inwhichthe

T1phaseprecipitated,werethemostsusceptibletointragranular

corrosion. Acknowledgments

Thisworkwasfinanciallysupportedbythe“PRES/Région Midi-Pyrénées”.TheauthorswouldliketothanktheAirbusGroupfor manyfruitfuldiscussions,Constelliumforsupplyingthematerial. TheTEManalyseswereperformedwiththehelpofMarie-Christine Lafont.

References

[1]J.G.Rinker,M.Marek,Microstructure,toughnessandstresscorrosioncracking behaviorofaluminumalloy2020,Mater.Sci.Eng.64(1984)203–221. [2]R.G.Buchheit,J.P.Moran,G.E.Stoner,Localizedcorrosionbehaviorofalloy

2090-theroleofmicrostructureheterogeneity,Corrosion46(1990)610–617. [3]P.Niskanen,T.H.Sanders,J.G.Rinker,M.Marek,Corrosionofaluminumalloys

containinglithium,Corros.Sci.22(1982)283–304.

[4]V.Proton,J.Alexis,E.Andrieu,J.Delfosse,A.Deschamps,F.DeGeuser,M.C. Lafont,C.Blanc,Theinfluenceofartificialageingonthecorrosionbehaviour ofa2050aluminium–copper–lithiumalloy,Corros.Sci.80(2014)494–502.

[5]C.Kumai,J.Kusinski,G.Thomas,T.M.Devine,Influenceofagingat200◦Con

thecorrosionresistanceofAl–LiandAl–Li–Cualloys,Corros.Sci.45(1989) 294–302.

[6]R.G.Buchheit,J.P.Moran,G.E.Stoner,ElectrochemicalbehaviorofT1(Al2CuLi)

intermetalliccompoundanditsroleinlocalizedcorrosionofAl–2%Li–3%Cu alloys,Corrosion50(1994)120–130.

[7]J.E.Kertz,P.I.Gouma,R.G.Buchheit,Localizedcorrosionsusceptibilityof Al–Li–Cu–Mg–ZnalloyAF/C458duetointerruptedquenchingfrom solutionizingtemperatures,Metall.Mater.Trans.A33(2001)2561–2573. [8]H.Y.Li,Y.Tang,Z.D.Zeng,F.Zheng,ExfoliationcorrosionofT6-andT3-aged

AlxCuyLizalloy,Trans.NonFerrousMater.Soc.China18(2008)778–783. [9]M.Guérin,E.Andrieu,G.Odemer,J.Alexis,C.Blanc,Effectofvarying

conditionsofexposuretoanaggressivemediumonthecorrosionbehaviorof the2050Al–Cu–Lialloy,Corros.Sci.85(2014)455–470.

[10]C.Luo,X.Zhou,G.E.Thompson,A.E.Hughes,Observationsofintergranular corrosioninAA2024-T351:theinfluenceofgrainstoredenergy,Corros.Sci. 61(2012)35–44.

[11]S.H.Kim,U.Erb,K.T.Aust,G.Palumbo,Grainboundarycharacterdistribution andintergranularcorrosionbehaviourinhighpurityaluminium,Scr.Mater. 44(2001)835–839.

[12]J.G.Brunner,N.Birbilis,K.D.Ralston,S.Virtanen,Impactofultrafine-grained microstructureonthecorrosionofaluminiumalloyAA2024,Corros.Sci.57 (2012)209–214.

[13]M.Winning,A.D.Rollett,Transitionbetweenlowandhighanglegrain boundaries,ActaMater.53(2005)2901–2907.

[14]M.Tanaka,K.Higashida,K.Kaneko,S.Hata,M.Mitsuhara,Cracktip dislocationsrevealedbyelectrontomographyinsiliconsinglecrystal,Scr. Mater.59(2008)901–904.

[15]P.Donnadieu,Y.Shao,F.DeGeuser,G.A.Botton,S.Lazar,M.Cheynet,M.De Boissieu,A.Deschamps,AtomicstructureofT1precipitatesinAl–Li–Cualloys

revisitedwithHAADF-STEMimagingandsmall-angleX-rayscattering,Acta Mater.59(2011)462–472.

[16]C.Dwyer,M.Weyland,L.Y.Chang,B.C.Muddle,Combinedelectronbeam imagingandab-initiomodelingofT1precipitatesinAl–Li–Cualloys,Appl.

Phys.Lett.98(2011)201909.

[17]Z.Gao,J.Z.Liu,J.H.Chen,S.Y.Duan,Z.R.Liu,W.Q.Ming,C.L.Wu,Formation mechanismofprecipitateT1inAlCuLialloys,J.AlloyCompd.624(2015)

22–26.

[18]V.Araullo-Peters,B.Gault,F.deGeuser,A.Deschamps,J.M.Cairney, MicrostructuralevolutionduringageingofAl–Cu–Li–xalloys,ActaMater.66 (2014)199–208.

[19]M.Froment,Surlemécanismedelacorrosionintergranulairedesmatériaux métalliques,J.Phys.Colloq.36(1975)371–385.

[20]S.H.Kim,U.Erb,K.Aust,G.Palumbo,Grainboundarycharacterdistribution andintergranularcorrosionbehaviorinhighpurityaluminum,Scr.Mater.44 (2001)835–839.

[21]V.Keast,D.Williams,Grainboundarychemistry,Curr.Opin.SolidStateMater. Sci.5(2001)23–30.

[22]B.W.Bennett,H.W.Pickering,Effectofgrainboundarystructureon sensitizationandcorrosionofstainlesssteel,Metall.Trans.A18(1987) 1117–1124.

[23]S.R.Ortner,V.Randle,Astudyoftherelationbetweengrainboundarytype andsensitisationinpartially-sensitisedAISI304stainlessstellusingelectron back-scatteringpatterns,Scr.Metall.23(1989)1903–1908.

[24]C.Luo,X.Zhou,G.E.Thompson,A.E.Hughes,Observationsofintergranular corrosioninAA2024-T351:theinfluenceofgrainstoredenergy,Corros.Sci. 61(2012)35–44.

[25]S.R.Salimon,A.I.Salimon,A.M.Korsunsky,Theevolutionofelectrochemical, microstructural,andmechanicalpropertiesofaluminiumalloy2024-T4 (D16AT)duringfatiguecycling,Proc.Inst.Mech.Eng.PartG(2010)339–353. [26]K.D.Ralston,D.Fabijanic,N.Birbilis,Effectofgrainsizeoncorrosionofhigh

purityaluminium,Electrochim.Acta56(2011)1729–1736. [27]V.Proton,J.Alexis,E.Andrieu,J.Delfosse,M.-C.Lafont,C.Blanc,

Characterisationandunderstandingofthecorrosionbehaviourofthenugget ina2050aluminiumalloyfrictionstirweldingjoint,Corros.Sci.73(2013) 130–142.

[28]L.Lapeire,E.MartinezLombardia,K.Verbeken,I.DeGraeve,L.A.I.Kestens,H. Terryn,Effectofneighboringgrainsonthemicroscopiccorrosionbehaviorof agraininpolycrystallinecopper,Corros.Sci.67(2013)179–183.

Figure

Fig. 2. Optical microscope observations of (a) intergranular corrosion in the -T34 sample and (c) intragranular corrosion in the -T8 sample
Fig. 3. HAADF STEM observation of GP zones along a &lt;110&gt; axis of the Al matrix in the AA 2050-T34 alloy.
Fig. 4. HAADF STEM images of subgrain boundaries in the AA 2050-T34 alloy (Z-contrast).
Fig. 6. AA 2050-T34 alloy—(a) Distribution of the level of misorientation of the interfaces before and after the corrosion tests; (b) distribution of the CSL grain boundaries before corrosion tests.
+4

Références

Documents relatifs

The conceptual models of patterns and security risk management have allowed us to identify interesting concepts: security property, application domain/ asset

GFAT1 mRNA production following glucose shortage was strongly reduced in HBEC 3KT-RL cells upon silencing of ATF4, indicating that the effect of ATF4 likely occurs at

Let’s consider an adversary with access to the usernames, corresponding (password hash, number) lists and transcripts of successful login interactions. Using generic attacks,

This polymorphism exhibited a beneficial effect on cognitive function which was very similar to that observed for APOE ε4 allele (which is derived from the combination of

Le concept de système de culture (Sébillote, 1990) qui polarise l’analyse sur l’identification de la succession des cultures et l’identification de l’itinéraire technique

All MAS experiments were conducted using a hr-MAS Bruker probe in the same 300 MHz system as the relaxation experiments. After loading the MAS sample rotor, the sample

(D) Heat map of gene expression values of transcriptional and cell cycle CDKs in MYCN- amplified and nonamplified cells treated with THZ1 as in (A) vs. Rows show z- scores

case, the languages which most affect the children’s linguistic practices — and thus bear impact on the future of linguistic diversity — are not so much those of formal education,