• Aucun résultat trouvé

A Bayesian approach for parameter identification in elastoplasticity

N/A
N/A
Protected

Academic year: 2021

Partager "A Bayesian approach for parameter identification in elastoplasticity"

Copied!
38
0
0

Texte intégral

(1)

A Bayesian approach for parameter identification in elastoplasticity

Hussein Rappel, Lars Beex, Jack Hale, St´ephane Bordas

hussein.rappel@uni.lu

(2)

Introduction Mathematical model Parameters Solver Discretisation Computational

(3)

Introduction

Mathematical model

Computational

model Model reliability

(4)

Error minimisation

Least squares method

(conventional approach): σ = E  J = 12 N P i =1 (σi− E i)2 E = argmin E J (E ) σ  E 1

(5)
(6)

Frequentist inference

(7)

Frequentist inference

(8)

Frequentist inference: Young’s modulus identification

 σ

(9)

Frequentist inference: Young’s modulus identification σ πnoise(ω) =2πS1 noise exp− ω2 2S2 noise 

(10)

Frequentist inference: Young’s modulus identification σm= E  + Ω Ω ∼ πnoise(ω)  σ σm

(11)

Frequentist inference: Young’s modulus identification

Method of maximum likelihood (ML):

π(σm|E ) = √ 1 2πSnoise exp− m− E )2 2Snoise2 

(12)

Frequentist inference: Young’s modulus identification

Method of maximum likelihood (ML):

π(σm|E ) = √ 1 2πSnoise exp− m− E )2 2S2 noise 

and for M measurments:

π(σm|E ) = 1 (2πSnoise2 )M2 exp− M P i =1 im− E i)2 2Snoise2  σm =hσ1, σ2, · · · , σM i

(13)
(14)

Bayesian inference Original belief Observations New belief π(cause|effect) = prior z }| { π(cause)× likelihood z }| { π(effect|cause) π(effect) | {z } evidence

(15)

Bayesian inference: Young’s modulus identification σ πnoise(ω) =2πS1 noise exp− ω2 2S2 noise 

(16)

Bayesian inference: Young’s modulus identification σm= E  + Ω Ω ∼ πnoise(ω)  σ σm

(17)

Bayesian inference: Young’s modulus identification

Bayes’ formula:

(18)

Bayesian inference: Young’s modulus identification

Bayes’ formula:

π(E |σm) = π(E )π(σπ(σmm)|E ) =⇒

π(E )π(σm|E )

(19)

Bayesian inference: Young’s modulus identification Bayes’ formula: π(E |σm) = π(E )π(σπ(σmm)|E ) =⇒ π(E )π(σm|E ) C π(E |σm) ∝ π(E )π(σm|E )

(20)

Bayesian inference: Young’s modulus identification π(E |σm) ∝ exp−(E − E ) 2 2S2 E  exp− m− E )2 2S2 noise 

(21)

Bayesian inference: Young’s modulus identification π(E |σm) ∝ exp−(E − E ) 2 2SE2  exp− m− E )2 2Snoise2 

and for M measurements:

π(E |σm) ∝ M Y i =1 exp−(E − E ) 2 2SE2  exp− m i − E i)2 2Snoise2 

(22)

Bayesian inference: Young’s modulus identification π(E |σm) ∝ exp−(E − µ) 2 2S2 post  with µ = f (σi, E , Snosie, SE, i) Spost = f (σi, E , Snosie, SE, i)

(23)

Bayesian inference: Young’s modulus identification : 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 :(E) :(Ej<m)

Least squares method

< (G P a) 0 0.05 0.1 0.15 0.2 0.25 0.3

95% credible region curves Measured value Mean

(24)

Bayesian inference: linear elastic-perfectly plastic model identification 250 E (GPa) 200 0.2 <y0(GPa) 0.25 1 0.8 0.6 0.4 0.2 0 0.3 #10!3 : #10-4 0 1 2 3 4 5 6 7 8 0 #10!3 0 0.5 1 1.5 2 2.5 < (G P a) 0 0.05 0.1 0.15 0.2 0.25 0.3

95% credible region curves Measured value Mean

(25)

Bayesian inference: linear elastic-linear hardening model identification 240 220 0.25 90 20 30 40 50 60 70 80 0.3 H (G P a) #10-3 0.5 1 1.5 < (G P a) 0.05 0.1 0.15 0.2 0.25 0.3 0.35

95% credible region curves Measured value Mean

(26)

Bayesian inference: linear elastic-nonlinear hardening model identification 0 #10!3 0 1 2 3 4 5 < (G P a) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

95% credible region curves Measured value Mean

(27)

Bayesian inference: Young’s modulus identification with double uncertainty σm= E  + Ωσ m=  + Ωσ and Ω ∼ πnoise(ω) σ πnoise(ω) σm

(28)

Bayesian inference: Young’s modulus identification with double uncertainty E (GPa) 0 100 200 300 400 500 : 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 :(E) :(Ej<m; 0m) :(Ej<m) Least squares method

0 #10!3 0 0.2 0.4 0.6 0.8 1 1.2 < (G P a) 0 0.05 0.1 0.15 0.2 0.25 0.3

95% credible region curves Measured value Mean

(29)

Bayesian inference: linear elastic-perfectly plastic with double uncertainty < (G P a) 0.05 0.1 0.15 0.2 0.25 0.3

95% credible region curves Measured value Mean < (G P a) 0.05 0.1 0.15 0.2 0.25 0.3

95% credible region curves Measured value Mean

(30)

Bayesian inference: linear elastic-linear hardening with double uncertainty 0 #10!3 0 0.5 1 1.5 2 2.5 < (G P a) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

95% credible region curves Measured value Mean single uncertainty 0 #10!3 0 0.5 1 1.5 2 2.5 < (G P a) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

95% credible region curves Measured value Mean

(31)

Bayesian inference: linear elastic-nonlinear hardening with double uncertainty < (G P a) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

95% credible region curves Measured value Mean < (G P a) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

95% credible region curves Measured value Mean

(32)

Conclousion

‘Closed form expression’ of the posterior for:

linear elasticity,

elastoplasticity with perfect plasticity, elastoplasticity with linear hardening, and elastoplasticity with nonlinear hardening.

(33)

Conclousion

‘Closed form expression’ of the posterior for:

linear elasticity,

elastoplasticity with perfect plasticity, elastoplasticity with linear hardening, and elastoplasticity with nonlinear hardening.

The results of BI cannot directly be compared to those of the least squares method.

(34)

Conclousion

‘Closed form expression’ of the posterior for:

linear elasticity,

elastoplasticity with perfect plasticity, elastoplasticity with linear hardening, and elastoplasticity with nonlinear hardening.

The results of BI cannot directly be compared to those of the least squares method.

(35)

Conclousion

‘Closed form expression’ of the posterior for:

linear elasticity,

elastoplasticity with perfect plasticity, elastoplasticity with linear hardening, and elastoplasticity with nonlinear hardening.

The results of BI cannot directly be compared to those of the least squares method.

The selected prior distribution has a significant effect on the results. BI leads to a distribution for the considered parameters, however the

(36)

Future work E (GPa) 160 180 200 220 240 260 : 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Specimen elastic modulus PDF Posterior PDF

(37)

A special acknowledgement

(38)

Références

Documents relatifs

Based on literature, it may not be obvious how to employ Bayesian inference for parameter identification of elastoplastic models, if one is only familiar with identification

Hussein Rappel, Lars Beex, Jack Hale, Stephane

An alternative identification method is the Bayesian approach which explicitly accounts for the experimental noise and consequently gives a probabilistic estimation of the

We concentrate on two algorithms, namely EGO (for Efficient Global Optimization) and IAGO (for Informational Approach to Global Optimization), and describe how they can be used

Signalons ici que l’´ etude de la r´ egularit´ e ponctuelle des fonctions a ´ et´ e compl` etement transform´ ee par l’introduction des m´ ethodes d’ondelettes, et

Error minimisation cannot take statistical info of measurement device into account..

A is the reach water surface (in m 2 ) and τ denotes the unknown time-delay between the inflow rate and the downstream water level. The time-delay between the outflow rate and

A Bayesian technique is introduced to handle this closed-loop system identification problem, in the case of arbitrarily short and non-informative data records.. To our best