• Aucun résultat trouvé

Snu Spaces, from Theory to Practice

N/A
N/A
Protected

Academic year: 2021

Partager "Snu Spaces, from Theory to Practice"

Copied!
1
0
0

Texte intégral

(1)

S

ν

Spaces, from Theory to Practice

KLEYNTSSENS Thomas

Institute of Mathematics, University of Li`ege, Belgium

tkleyntssens@ulg.ac.be

joint work with Samuel NICOLAY

Multifractal Analysis

• Study of very irregular functions ;

• We determine the ”size” of the set of points x which share the same ”irregularity” hf(x) ;

Df : h 7→ dimH({x : hf(x) = h});

it gives a geometrical idea of the repartition of the irregularity ;

• In practice, we use a numerically computable function which ”approximates” this size ;

we use a Multifractal Formalism. −10

0 10 20 30 40 50 60 70 80 0, 2 0, 4 0, 6 0, 8 1

For Functions

Definition 1. Let x ∈ R, s ∈ R+0 and f ∈ L∞loc. We denote f ∈ Cs(x)

if there exist a polynomial P of degree stricly smaller than s, a constant

C > 0 and a neighbourhood Ω of 0 such that

|f(x + l) − P (l)| ≤ C|l|s

for all l ∈ Ω.

Definition 2. Let x ∈ R and f ∈ L∞loc ; we denote the H¨older exponent

of f at a point x by

hf(x) = sup{s ∈ R+0 : f ∈ Cs(t)}.

For Measures

Definition 3. Let x ∈ R and µ a positive Borel measure on R. We denote

the H¨older exponent of µ at a point x by

hµ(x) = lim inf

r→0+

log (µ(B(x, r))

log(r) .

Wavelet

Take a mother wavelet ψ and {(ψj,k) : j ≥ 0, k ∈ {0, . . . , 2j − 1}}

an orthonormal basis of L2([0; 1]) associated to ψ. We denote by cj,k =

hf, ψj,ki the periodized wavelet coefficients of f ∈ L2([0; 1]).

Theorem 4 (Barral, Seuret). Let µ be a positive Borel measure on [0; 1].

If f is a function where cj,k = µ [k2−j; (k + 1)2−j[ then Df = Dµ.

S

ν

Spaces in Theory

Definition 5. We define the wavelet profil of a function f ∈ L2([0; 1])

by νfC(α) = lim →0+ lim sup j→+∞ ln(#Ej(C, α + )(f )) ln(2j) ! where Ej(C, α)(f ) = {k : |cj,k| ≥ C2−αj}.

Proposition 6. For all C1, C2 > 0, νC1

f = ν

C2

f := νf.

Definition 7. Take a function ν : R → {−∞} ∪ [0; 1] nondecreasing

and right-continuous and assume that there exists αmin ≥ 0 such that

ν(α) = −∞ for all α < αmin and ν(α) ∈ [0; 1] for all α ≥ αmin. We

define

Sν = {f ∈ L2([0; 1]) : νf(α) ≤ ν(α) ∀α ∈ R}.

Theorem 8 (Aubry, Bastin, Dispa). For all f ∈ Sν, the function

Dfν(h) =

(

h suph0∈]0;h] ν(h 0)

h0 if h ≤ hmax := infh≥αmin

h ν(h)

1 otherwise

is an upper bound of Df and the set of functions where Dfν = Df is

prevalent in Sν.

S

ν

Spaces in Practice

In practice, the constant C > 0 of νC(α) is not arbitrary because we have

only a finite number of wavelet coefficients :

• If C is too small, the detected value of νfC(α) will be 1 ;

• If C is too big, the detected value of νfC(α) will be −∞.

For α ∈ R, we construct the function C 7→ νfC(α).

In practice, if α ≥ αmin, this function is decreasing and stabilizes with an

approximation of the theoritical value of νf(α).

Spectrum of

p-Cantor measure

0 | 1 | I I0 | | r1 I1 | | r1 I00 | | r1r2 I01 | | r1r2 I10 | | r1r2 I11 | | r1r2 C0 C1 C2 . . .

Take (rj)j∈N such that sup rj < 12 and

limn→+∞ n1 log(r1 . . . rn) exists and is

finite. Define C := C((rj)j) = Tj Cj.

The p-Cantor measure on C is a

measure such that

µ Iw=(w1...wn)2 = pn−|w|2(1 − p)|w|2. 0 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 0, 7 0, 8 0, 9 1 0 1 2 p = 0.25 Theoretical Spectrum Sν

Spectrum of Cascades of Mandelbrot

Take W a positive random variable

such that E[W ] = 1 and Wj,k ∼i.i.d W .

Almost surely, the following

construc-tion defines a borel measure µ on [0; 1] :

c2,0 := c1,02W2,0 c2,1 := c1,0W2 2,1 c2,2 := c1,1W2 2,2 c2,3 := c1,1W2 2,3 c1,0 := c0,0W2 1,0 c1,1 := c0,02W1,1 c0,0 := 1 W2,0 W2,1 W2,2 W2,3 W1,0 W1,1 with µ [k2−j; (k + 1)2−j] = cj,k.

Take the example where W is a

log-normal : 0 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 0, 7 0, 8 0, 9 1 1 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8 1, 9 Superposition of spectra µ = −0.45 ln(2) and σ2 = 0.1 ln(2) µ = −0.33 ln(2) and σ2 = 0.02 ln(2) Sν References :

[1] J.-M. Aubry, F. Bastin, S. Dispa Prevalence of multifractal functions in Sν spaces, The Journal of

Fourier Analysis and Applications, 2007.

[2] J. Barral and S. Seuret, From multifractal measures to multifractal wavelet series, The Journal of Fourier Analysis and Applications, 2002.

Références

Documents relatifs

2) develop new theory by working with modelling within a subject area (exponential growth) they hadn’t worked with before; 3) work with a more complex and authentic problem for

In this paper we prove central limit theorems for bias reduced estimators of the structure function of several multifractal processes, namely mutiplicative cascades, multifractal

minimax theory, maxiset theory, Besov spaces, prevalence, wavelet bases, multifractal analysis, Frisch-Parisi conjecture..

Sur le plan thérapeutique, l’indication du drainage percutané s’est étendue ces dernières années aux collections rénales notamment l’abcès rénal, cette méthode

These results confirm those previously obtained using the WTMM methodology [32, 28,33]: observed universal MF properties are compatible with a log-normal model for the

This weak scaling exponent coincides with the H¨ older exponent in the case of cusp-like singularities, and this will explain why the multifractal formalism based on (21) yields

Elle, ou une autre du mˆeme type, est en fait obligatoire : dans la partie 4, en s’inspirant de l’exemple de Castella [3, section 9], on construit un op´erateur qui ne v´erifie

(a) 3D velocities using GNSS campaigns carried out seasonally (blue diamonds), 3D GNSS scaled velocities (factor 0.54) from the permanent station computed with the average