• Aucun résultat trouvé

Dawn simulation light impacts on different cognitive domains under sleep restriction.

N/A
N/A
Protected

Academic year: 2021

Partager "Dawn simulation light impacts on different cognitive domains under sleep restriction."

Copied!
9
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Behavioural

Brain

Research

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b b r

Research

report

Dawn

simulation

light

impacts

on

different

cognitive

domains

under

sleep

restriction

Virginie

Gabel

a,∗

,

Micheline

Maire

a

,

Carolin

F.

Reichert

a

,

Sarah

L.

Chellappa

a,b

,

Christina

Schmidt

a

,

Vanja

Hommes

c

,

Christian

Cajochen

a

,

Antoine

U.

Viola

a

aCentreforChronobiology,PsychiatricHospitaloftheUniversityofBasel,4012Basel,Switzerland bCyclotronResearchCenter,UniversityofLiège,Liège,Belgium

cITVitaLightI&DPCDrachten,PhilipsConsumerLifestyle,theNetherlands

h

i

g

h

l

i

g

h

t

s

•Weinvestigatedmorninglighteffectsoncognitionafteranightofsleeprestriction.

•Morninglighteffectsdependoncognitivedomain.

•Morninglighteffectsdependonindividualperformancelevels.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21October2014 Receivedinrevisedform 15December2014 Accepted19December2014 Availableonline27December2014

Keywords:

Dawnsimulationlight Sleeprestriction Cognitiveperformance

a

b

s

t

r

a

c

t

Chronicsleeprestriction(SR)hasdeleteriouseffectsoncognitiveperformancethatcanbecounteracted

bylightexposure.However,itisstillunknownifnaturalisticlightsettings(dawnsimulatinglight)can

enhancedaytimecognitiveperformanceinasustainablematter.

Seventeenparticipantswereenrolledina24-hbalancedcross-overstudy,subsequenttoSR(6-hof

sleep).Twodifferentlightsettingswereadministeredeachmorning:a)dawnsimulatinglight(DsL;

polychromaticlightgraduallyincreasingfrom0to250lxduring30minbeforewake-uptime,withlight

around250lxfor20minafterwake-uptime)andb)controldimlight(DL;<8lx).Cognitivetestswere

performedevery2hduringscheduledwakefulnessandquestionnaireswerecompletedhourlytoassess

subjectivemood.

Theanalysesyieldedamaineffectof“lightcondition”forthemotortrackingtask,sustainedattention

toresponsetaskandaworkingmemorytask(visual1and3-backtask),aswellasfortheSimpleReaction

TimeTask,suchthatparticipantsshowedbettertaskperformancethroughoutthedayaftermorningDsL

exposurecomparedtoDL.Furthermore,lowperformersbenefitedmorefromthelighteffectscompared

tohighperformers.Conversely,nosignificantinfluencesfromtheDsLwerefoundforthePsychomotor

VigilanceTaskandacontraryeffectwasobservedforthedigitsymbolsubstitutiontest.Nolighteffects

wereobservedforsubjectiveperceptionofsleepiness,mentaleffort,concentrationandmotivation.

Ourdataindicatethatshortexposuretoartificialmorninglightmaysignificantlyenhancecognitive

performanceinadomain-specificmannerunderconditionsofmildSR.

©2014ElsevierB.V.Allrightsreserved.

Abbreviations: NIF,Non-ImageForming;fMRI,functionalMagneticResonance Imaging;SR,sleeprestriction;DsL,Dawnsimulationlight;DL,dimlight;MTT, MotorTrackingTask;DSST,DigitSymbolSubstitutionTest;PVSAT,PacedVisual SerialAdditionTask;simRT,SimpleReactionTimeTask;SART,SustainedAttention toResponseTask;PVT,PsychomotorVigilanceTask;V1-V2-V3,1,2,3-back:Visual N-backTask;SC,superiorcolliculus.

∗ Correspondingauthorat:PsychiatricHospitalofUniversityofBasel,Centrefor Chronobiology,WilhelmKlein-Strasse27,CH-4018Basel,Switzerland.

Tel.:+41613255908;fax:+33676211028. E-mailaddress:Virginie.gabel@upkbs.ch(V.Gabel).

1. Introduction

Numerousfactorscaninfluencecognitiveperformance,chief

amongthemaretheimpactoftimeofday[1,2]andhomeostatic

sleep pressure [3]. Chronic sleep restriction (SR) has

deleteri-ouseffects not onlyondaytimealertnessbut alsooncognitive

performance[4,5].

Indeed, sleepdisruptionresultsin specific cognitive

impair-ments including deficits in attention, executive function,

non-declarative and declarative memory, as well as emotional

reactivityandsensoryperception[6–8].Somestudiesshowthat

http://dx.doi.org/10.1016/j.bbr.2014.12.043

(2)

light exposure can act as countermeasure for these cognitive

impairmentsinhumans[9,10].

Theseacute impacts of light areusually referred toas

non-visual (or Non-Image Forming – NIF) effects, since they drift

apartfromclassicalinvolvementofrodandconephotopigments

in visual responses to light. NIF light effects at shorter

wave-length via novel photoreceptors containing the photopigment

melanopsinappeartostronglyimpactthehumancircadiantiming

system[11,12].Behaviouralresponsestriggeredbylight

encom-passimprovedalertnessandperformance,asindexedbyspecific

corticalresponsestocognitivetasksinPhotonEmission

Tomogra-phyandfunctionalMagneticResonanceImaging(fMRI)techniques

[13].However,dosage(intensityandduration),timingand

wave-lengthoflightfordomesticuseandintheworkplaceenvironments

aredifficulttodefineandmaycriticallydependonenvironmental

andtheindividualfactors.

Inapreviousstudy,wehaveshownthatexposuretogradually

increasinglightpriortoawakeningcancounteractsleep

restric-tioneffectsonwell-beingandcognitiveperformanceacrossthe

day,leadingtoanoptimizedlevelofalertness,whichimpingeson

enhancedperformanceonspecificcognitivetaskstightlyrelatedto

sustainedlevelsofattention[14].

Mostoftheeffectswerevisibleonthefirstdayafterthesleep

restrictionnightbutnotontheseconddayaftertwonightsofsleep

restriction,mostlikelyduetotheincreaseinsleeppressure.

Theoverallaimofthepresentstudywastoinvestigatewhether

dawnsimulationlightfollowingsleeprestriction,enhances

perfor-manceaccordingtocognitivedomainandwhethertheseeffectsare

sustainedduringtheentireday.

2. Materialandmethods

2.1. Studyparticipants

Studyvolunteerswererecruitedthroughadvertisementsat

dif-ferentlocaluniversitiesandwebsitesinSwitzerland,Germanyand

France.Screening procedurebegan witha telephoneinterview,

involvingadetailedstudyexplanation.Allparticipantsgavewritten

informedconsentbeforethestartofthelaboratorypart.Study

pro-tocol,screeningquestionnairesandconsentformswereapproved

bythelocalethicscommittee(EKBB/EthikkommissionbeiderBasel,

Switzerland)andconformedtotheDeclarationofHelsinki.

Allapplicantscompletedquestionnairesabouttheirsleep

qual-ity,lifehabitsandhealthstate.Thesequestionnairescompriseda

consentform,a generalmedicalquestionnaire,BeckDepression

InventoryII[15], EpworthSleepinessScale [16], Horne Ostberg

MorningnessEveningnessQuestionnaire[17],MunichChronotype

Questionnaire[18]and PittsburghSleepQualityIndex.Potential

candidateswitha PittsburghSleepQualityIndexscore>5were

excludedfromparticipation[19].Furtherexclusioncriteriawere

smoking,medicationordrugconsumption,bodymassindex<19

and>28,shiftworkandtransmeridianflightswithinthelastthree

months,aswellasmedicalandsleepdisorders.Sinceourstudy

pro-tocolincludedtwonightsofpartialsleeprestriction(restrictionto

6-h),wealsoexcludedparticipantswithhabitualsleepdurations

<7-hand>9-h[20],tominimizeapossibleconfoundingeffectsof

sleepduration.

Eighteenyoungmen(20–33yearsold;mean+StandardErrorof

Mean:23.1+.8)fulfillingallthecriteriawereenrolledinthestudy.

Acomprehensivetoxicologicalanalysisofurinefordrugabusewas

carriedoutbeforethestudy,alongwithanophthalmologic

exam-inationtoexcludevolunteerswithvisualimpairments.

Oneweekbeforethestudy,participantswerenotallowedto

drinkexcessivealcohol, and toconsumecaffeine orcacao

con-tainingdrinksormeals(atmost5alcoholicbeveragesperweek,

and 1cupof coffee or1caffeine-containing beverageperday).

Theywerealsoinstructedtokeeparegularsleep-wakeschedule

(bedandwaketimeswithin±30minofself-selectedtargettime).

Compliancetothisoutpatientsegmentofthestudywasverified

by wristactigraphy(actiwatchL, Cambridge Neurotechnologies,

Cambridge,UK)andself-reportedsleeplogs.

Thestudywascarriedoutduringthewinterseason(January

to March) in Basel, Switzerland, and comprised two segments,

distributedinabalancedcross-overdesign,separatedbyatleast

1-weekinterveningperiod.Thevolunteersreportedtothe

Cen-treforChronobiologyatthePsychiatricHospitaloftheUniversity

ofBaselontwooccasions(controlconditionandoneexperimental

conditions),wheretheystayedinindividualwindowlessbedrooms

withnoinformationabouttimeofday.Sincewedidnotfind

signif-icanteffectsoncognitiveperformanceneitherafterthebluelight

exposurenoraftertheDsLexposureafterthesecondnightofsleep

restriction,wedecidedtofocushereonthefirst24-hofthecontrol

conditionandtheDsLcondition.Themostlikelyexplanationwas

thatsleeppressurewastoohighafterthesecondnightofsleep

restriction, and thusthemorning lightcouldnot counteractits

Fig.1. (A)Protocoldesign.Twoarmsofa6-hsleeprestrictedprotocolwith dif-ferentmorninglightexposures.Elapsedtimeindicationisrelativetoanarrivalin thelabat8p.m.Time-of-dayindicationvariedacrossallsubjectsbutwasgiven inthefigureasanexample(takenfromthemeanofthesleep/waketimefromall participants).(B)Morninglightdevice.Spectralcomposition(lightwavelengthby irradiance(W/m2nm))oftheDawnSimulationLightat5min(greysolid),15min (greydash),24min(blacksolid)and30min(blackdash).

(3)

detrimentaleffect.Formoredetails,referredtoGabeletal.[14].

These24-hincludethefirstsleeprestrictionnight(6-h)at0lx

start-ingatthesubject’shabitualsleeptimeandfollowedby18-hof

datarecordingduringwakefulness.Duringtheday,inboth

condi-tions,participantswereexposedtodimlight(<8lx)during2-hafter

wake-upandto40lxfortheremainderofthedayuntiltheywent

tobed(Fig.1A).Inbothconditions,theinvestigatorenterstheroom

inthemorning,6-hafterlightoff,towake-uptheparticipants.

Thelight treatmentwasadministeredafterthesleep

restric-tionnighteitherwithnoadditionallightforthecontrolcondition

orwithaDawnSimulationLight(DsL:LEDprototypeofPhilips

Wake-upLightHF3520,PhilipsDrachten,TheNetherlands)

(poly-chromaticlightgraduallyincreasingfrom0to250lxduring30min

beforewake-uptime;thelightremainsaround250lxfor20min

afterwake-uptime),placed nearthebedateyes level(Fig.1B).

One participant could not be included in the analysis because

ofpoorqualityoftheelectroencephalogramrecordingsand

non-complianceduringcognitivetesting.Theremaining17volunteers

underwentbothlightconditionsinabalancedcross-overdesignas

follows:DL–DsLforninevolunteersandDsL–DLforeight.

2.2. Assessmentofsubjectiveratings

Subjectivesleepinesswasassessed everyhourwitha Visual

AnalogueScale(100mmscale).Likewise,aftereverytestsession

participanthadtoindicatetheeffort,concentrationandmotivation

theyneededtoperformthetests.A100mmeffortvisualanalogue

scalewasused,rangingfrom“0:little”to“100:much”[21,22].

2.3. Cognitiveperformance

Alltestswereadministeredevery2hduringwakefulness,

start-ing30minafterwakeup.ThetestbatterycomprisedtheMotor

TrackingTask(MTT),DigitSymbolSubstitutionTest(DSST)[23],

PacedVisualSerialAdditionTask(PVSAT)[24,25],Sustained

Atten-tionto ResponseTask(SART) [26],Psychomotor VigilanceTask

(PVT)[27],SimpleReactionTimeTask(simRT)andVisualN-back

Task(1,2,3-back)[28].For detailedinformation abouteach test,

pleaseseeTable1.

Alltheresultsaregivenrelativetoelapsedtimeafterwake-up

fromrestrictedsleeptakenat6a.m.Time-of-dayindicationwas

alsoaddedtobemoreinformativeandunderstandableforgeneral

public;itisanexamplecalculatedwiththemeanoftheparticipants

sleep/wakecycle,astheydidnothavethesamescheduledtime.

2.4. Statisticalanalysis

Forallanalyses,thestatisticalpackageSAS (version9.1;SAS

Institute,Cary,NC,USA)wasused.Statisticalanalyseswerecarried

outforeachvariable(subjectivefatigue,motivation,concentration,

effort,PVT,MTT,DSST,SimRT,SART,PVSATandN-Back)separately

withthemixed-modelanalysisofvarianceforrepeatedmeasures

Table1

Descriptionofthetasksinthecognitivetestbattery.

Tests Cognitivedomain Explanationofthetests References

MotorTrackingTask(MTT) Peopleneedtotrackacomputer-generateddiscusingthe mouse,alonganothercomputer-generatedpointfor20s DigitSymbolSubstitution

Test(DSST)

Computer-based“cognitive throughput”task(orattention-based task)measuringclericalspeedand accuracy.Thetaskbecomesless sensitivetochangesinattentionand moresensitivetomemoryimpairment.

Participantsarerequiredtoselectapredefineddigitin responsetoeachappearanceofanabstractsymbol(thekey linkingsymbolsanddigitsareavailableonscreenthroughout testing).Theylearnthecodingrelationshipsaftersome experience.Inthispacedversionofthetask,8symbolsare presentedfor500ms,withanISIof1500ms.Eachsymbol occuranequalnumberoftimes.

Asteretal.[23]

PacedVisualSerial AdditionTask(PVSAT)

Additiontaskheavilydependenton frontalbrainregions,involving executiveaspectsofworkingmemory

Singledigits(1to9)appearonscreenandeachmustbeadded tothedigitwhichprecededit,andtheresultingansweris selectedfromanon-screennumericalkeypad(“sum”of adjacentpairs,notatotalacrossalldigitspresented).Digits wereseenfor1000ms,withinter-stimulusinterval(ISI)of 2000msinbetween.

Feinsteinetal.[24]; Nagelsetal.[25]

SustainedAttentionto ResponseTask(SART)

Sustained/dividedattentiontaskin whichinattentionandinhibitory processingcanbemeasured separately.Bothtypesofperformance dependonthefrontalcortex

It’sacomputer-basedtask,usedhereasaGo/NoGotask,which requiresparticipantstomonitorsingledigitspresentedrapidly onscreen,andrespondtoeachonethatappears(calledGo target),exceptforaparticularpre-defineddigit(calledNoGo target).Digitsarepresentedfor1000ms,withaninter-item intervalof2000ms,with15“targets”(whereresponsesare withheld)randomlyinterspersedwith25distractors.

Robertsonetal.

[26]

Psychomotorvigilancetask (PVT)

Sustainedattentiontask,sensitiveto circadianvariationandsleeplossItis anapproachofDinges(Dinges,Pack etal.,1997).

ThePVTinvolvesa5-minvisualreactiontime(RT) performancetestinwhichthesubjectisrequiredtomaintain thefastestpossibleRT’stoasimpleauditorystimulus.Data analysesfocusonRT,errors,andsignaldetectiontheory parameters.

Dingesetal.[27]

SimpleReactionTimeTask (simRT)

Indicatorofspeededmotor performance.

Varyasafunctionofalertnessand sleepdeprivation

Thistaskrequirespeopletorespond,asquicklyaspossible,toa single,predictablestimulus.Theparticipantrestshis/herindex fingeronamouse,andhavingdonesooverthenext1000msa wordsuchas“Now!”appears,atwhichpointtheparticipant movesthecursortoadesignatedtargetposition.Thetime takenfromNow!Totheonsettomovethecursorfromthe restingpositionreflectstheparticipants’abilitytodetectthata responseisrequired,and,togetherwiththesubsequenttime takentomovethemousetothetargetposition,giveustheRT. VisualN-backTask

(1,2,3-back)

Executiveaspectsofworkingmemory Stimuliarepresentedindividuallyonacomputerscreen,and theparticipantmustindicate(usingthemouse),ifthecurrent stimulusandthenstimulipriortoitmatch.Thehigherthen, thestrongerarethedemandsofexecutivefunctioning.Stimuli arepresentedfor500mswithanISIof1500ms.Theratio betweenmatchtonon-matchtrialsisof1:2with30items.

(4)

Table2

Resultsoftheanalysisofthevariancefordifferentvariablesofsubjectivefeelingforthetimecourseofthestudy. Variable Analysisofthevariance

Light Timeofday Light×Time

Effort F1,254=0.14,p=.7059 F8,254=1.21,p=.2927 F8,254=51,p=.8485

Concentration F1,254=.69,p=.4061 F8,254=1.42,p=.1877 F8,254=1.08,p=.3806

Motivation F1,254=2.87,p=.0913 F8,254=1.56,p=.1377 F8,254=.45,p=.8927

Fatigue F1,254=00,p=.9996 F8,254=4.28,p<.0001 F8,254=1.07,p=.3830

(PROCMIXED),withwithinfactors“lightcondition”(dimlight[DL]

versusdawnsimulationlight[DsL])and“time-of-day”(allassessed

timepoints).

Afurtheranalysisincludedthefactor“group”wasdone,

accord-ingtothesubject’sperformanceonthe3-backtask.Asthisworking

memoryparadigmpresentsarelativelyhighcognitiveloaditmight

besuitabletodifferbetweenhighandlowperformers.Thus,we

performedamediansplitandconsideredsubjectspresenting

per-formancesbelowthemedianoftheoverallgroupaslowperformers

(N=9)andthoseaboveashighperformers(N=8).

3. Results

3.1. Assessmentofsubjectiveratings

Nosignificantdifferenceswerefoundbetweenlightconditions

for effort,concentration andmotivation neededtoperformthe

tasks.Similarly,subjectivesleepinessinducedbythetestdidnot

differacrossthelightconditions(Table2).Fordetailedinformation

onsleepiness,well-beingandmood,pleasesee[14].

3.2. Cognitiveperformance

3.2.1. MTT

Main effects of “light condition” and “time-of-day” were

observedfortheMTT(Table3),suchthataftertheDsLexposure

par-ticipantswerebetteratfollowingthedotthanaftertheDLexposure

duringtheentireday(Fig2B).

3.2.2. DSST

Maineffectsof“lightcondition”and“time-of-day”werealso

observedforDSST(Table3)butintheoppositedirection.

Partic-ipantsperformedbetteraftertheDLexposurethanaftertheDsL

exposurethroughouttheday(Fig.2A).

3.2.3. PVSAT

PVSATperformancedidnotyieldsignificantdifferencesneither

forthemainfactors“lightcondition”,norfortheinteractionof

“lightcondition×time of day” (Table 3). Only thefactor “time

of day” was significant such that participants improved their

performanceacrossthedayindependentoflighttreatment(data

notshowninthefigure).

3.2.4. SART

Maineffectof“lightcondition”(Table3)wasobservedfor

accu-racy(correctanswersforGoandNoGotargets),suchthatuntil5-h

oftimeawake,theperformancewasnotsignificantlydifferent

irre-spectiveoflightsettings,while6-hafterwake-timeDsLimproved

performancealongthedayascomparedtoDL(Fig.2D).

Besides,NoGotrials wereanalyzed asa proxyfor inhibition

control.Itrevealedamaineffectof“lightcondition”(p=0.0013).

ParticipantshadlesscorrectNoGoanswersaftertheDsLexposure

thanaftertheDLexposureandmostlyatthebeginningoftheday.

Furthermore,themissedanswers(missedGoanswers)showeda

maineffectof“lightcondition”(p<0.0001),suchthattheDsLled

tolowerlevelsofmissedanswersthantheDL.Thereactiontime

forthistaskshowedalsoasignificanttrendofthe“light

condi-tion”effect(p=0.0876),suchthatparticipantsansweredfasterat

thebeginningofthedayaftertheDsL.

3.2.5. PVT/simRT

TheDsLexposuredidnotinfluencereactiontimeduringthePVT

(Table3,datanotshowninthefigure)andperformancewassimilar

afterbothlightexposures.However,theDsLdecreasedreaction

timeintheSimRTtestthroughouttheday,asshownbyamain

effectof“lightcondition”and“timeofday”(Table3,Fig.2C).

3.2.6. N-BACK

The1-Backshowedamaineffectof“lightcondition”(Table3)for

accuracy,drivenbyDsLexposure.After4-hofelapsedtimeawake,

DsLimprovedaccuracy,withastrongereffectintheevening,while

performanceremainedstableafterDLexposure(Fig.2E).

Nosignificantdifferenceswerefoundbetweenbothlight

con-ditionsinthe2-Backtest(datanotshowninthefigure).

Forthe3-Backtest,wefoundamaineffectof“lightcondition”,

suchthatparticipantshadahigherrateofcorrectanswersaftera

DsLthanafteraDLexposure,startingatthebeginningoftheday

andremainingalltheday(Fig.2F).

Table3

Resultsoftheanalysisofthevariancefordifferentvariablesofcognitiveperformanceforthetimecourseofthestudy. Variable Analysisofvariance

Light Timeofday Light×Time

MTT F1,260=1.76,p=.0079 F8,260=2.05,p=.0407 F8,260=.58,p=.7933 DSST F1,254=7.22,p=.0077 F8,254=2.44,p=.0148 F8,254=.25,p=.9800 SimRT F1,271=5.52,p=.0195 F8,271=3.07,p=.0025 F8,271=.33,p=.9554 PVT F1,264=3.31,p=.0700 F8,264=1.95,p=.0528 F8,264=.44,p=.8933 SART F1,255=5.07,p=.0252 F8,255=.28,p=.9731 F8,255=.31,p=.9601 PVSAT F1,272=0.96,p=.3277 F8,272=2.42,p=.0152 F8,272=.90,p=.5204 1-Back F1,255=5.86,p=.0162 F8,255=.66,p=.7269 F8,255=.88,p=.5368 2-Back F1,255=0.04,p=.8323 F8,255=.56,p=.8127 F8,255=1.12,p=.3497 3-Back F1,254=16.69,p<.0001 F8,254=.48,p=.8716 F8,254=.16,p=.9952

MTT:MotorTrackingTask;DSST:DigitSymbolSubstitutionTest;SimRT:SimpleReactionTimeTask;PVT:PsychomotorVigilanceTask;SART:SustainedAttentiontoResponse Task;PVSAT:PacedVisualSerialAdditionTask;1-2-3-Back:VisualN-backTask.

(5)

Fig.2.Accuracyofthecognitiveperformanceovertheday.

Timecourseofthe(A)DigitSymbolSubstitutionTest(DSST),the(B)MotorTrackingTask(MTT),the(C)SimpleReactionTimeTask(simRT),the(D)SustainedAttentionto ResponseTask(SART),the(E)Visual1-backTask(1-Back)andthe(F)Visual3-backTask(3-Back)in17participantsunderDimlight(blacklines)orDawnSimulationLight (greylineswithblackcircle).Dataareplottedasameanforeach2-hbinrelativetoelapsedtime(h)afterwake-upfromrestrictedsleep,andtheerrorbarsrepresentthe standarderrorofthemean.Elapsedtimeindicationisrelativeto6a.m.wake-uptime.

3.2.7. Reactiontimes

Furthermore,thecomposite score ofthe reactiontime from

those cognitive tests presenting higher cognitive load (n-Back,

SART,PVSAT)wassignificantlyloweraftertheDsLthanafterthe

DL(supplementarydata).

3.3. Highvs.lowperformers

Splittingthegroupaccordingtohighandlowperformance,a

maineffectof“lightcondition”waspresentinthelowbutnotin

thehighperformers,suchthattheDsLlightimprovedperformance

inthePVSAT(p=0.0096),the3-Backtest(p<0.0001)andthesimRT

test(p=0.0064)comparedtotheDLcondition(Fig.3).

4. Discussion

Ourdatashowthatartificialmorninglightexposure,asindexed

byDsL,hasatask-dependenteffectoncognitiveperformanceunder

sleeprestrictionconditions,suchthatmorningDsLsignificantly

enhancedperformanceonattention-basedtasks(SART,1-verbal

Back,and simRT).Furthermore,DsLsignificantlyimproved

per-formanceontheMTT that involvesmotor-basedskills, andthe

(6)

Fig.3. Accuracyofthecognitiveperformanceoverthedayinthehighandlowperformers.

Timecourseofthehighperformers(leftpanel)andthelowperformers(rightpanel)ofthe(A)Visual3-Back(3-Back),the(B)thePacedVisualSerialAdditionTask(PVSAT) andthe(3)SimpleReactionTimeTask(simRT)in17participantsunderDimlight(blacklines)orDawnSimulationLight(greylineswithblackcircle).Dataareplottedasa meanforeach2-hbinrelativetoelapsedtime(h)afterwake-upfromrestrictedsleep,andtheerrorbarsrepresentthestandarderrorofthemean.Elapsedtimeindication isrelativeto6a.m.wake-uptime.

wealsofoundbetterperformanceaftertheDLcomparedtotheDsL

fortheDSST.

Our results corroborate our previous analysis that artificial

morning dawn simulation light improvessubjective perception

ofwell-beingandmood,aswellascognitiveperformanceacross

thedayunderconditionsofmildsleeprestriction[14].However,

hereweshowedthatthelighteffectonperformancedependson

theinvestigatedcognitivedomain,suggestingthatdifferent

path-waysmaybeimplicatedinthiseffect.Previousstudiesindicatethat

eveninglightexposureimpactsonnumerousdomainsofcognitive

performancesuchassustainedattention[10],workingmemory

andattention,aswellasdeclarativememory[9].

Hereweshowthatlightexposureduringthemorninghours

cansignificantlyboostcognitiveperformanceandmaintainits

sta-bilitythroughouttheday.Moststudiesontheeffectsoflightin

humans have been carried out during the night, when light is

abletocounteracttheincreasingsleeppressure,andthus

signif-icantlyenhanceorstabilizecognitiveperformance(forareview,

see[29]).Inthiscontext,themodulatorymechanismsaccounting

forthelighteffectsoncognitionhavebeenascribedtoitsimpacton

sleephomeostasisand/oritsindirectsynchronizing/phase-shifting

effectsonthecircadiantimingsystem[10].However,alternative

mechanismsmaybypassthesesystems,thuselicitingdirect

(7)

Evidenceforthelatterarisesfromstudiesinwhichdaytime

per-formanceincreasedafter30minfromlightonset[30,31],froman

fMRIstudyinwhichdaytimelightenhancedcognitivebrainactivity

duringanoddballtask[32]andfromourpreviousanalysisinwhich

morninglightexposure(dawnsimulationlight)increased

well-beingandenhancedperformancesacrosstheday[14].Recently,

anotherstudyshowedthecriticalroleoflightforcognitivebrain

responses in emphasizing the evidence of a cognitive role for

melanopsin, which may confer a form of “photic memory” to

humancognitivebrainfunction[33].Collectively,thesedata

sug-gestthatlightmaymodulateongoingcorticalactivityinvolvedin

alertness,thusstimulatingcognitivebrainfunction.

Onecrucialbrainregioninvolvedintheimpactoflighton

cog-nitionistheanteriorhypothalamus,inlocationscompatiblewith

thesuprachiasmaticnucleusandtheventrolateralpreopticnucleus

[34].Thisregionispostulatedtobetheprimarylinkoftheretina

tothebrain,thusmediatingtheeffectoflightoncognition[13].

Furthermore,numerous retinalprojections extendtothelateral

geniculatenucleusandalso(albeitless)tothesuperiorcolliculus

(SC).Fromthelateralgeniculatenucleus,projectionsaresentto

theprimaryvisualcortex,whichisthefirstprocessingsiteofthe

corticalvisualpathway.Functionally,thispathwayisclassifiedin

dorsalandventralstreams[35].Theformerisassociatedtomotion

processing(medialtemporalandsuperiortemporal,andalso

pari-etalcortices),while thelatterinvolvessalientvisualprocessing

[36].Interestingly,attention-relatedmodulatoryeffectsimpacton

bothstreams.Withinthedorsalstream,attentionis“encoded”by

neuronsinvolvedinspatialattention/feature-basedattention,such

astheorientationofanobjectoramovingdot[36].Concomitantly,

motion-sensitivemedialtemporalandsuperiortemporalareasare

alsoinvolvedintheseprocesses,aswellashighercorticalareas

suchastheintraparietalcortex[37].Wetentativelyspeculatethat

thisparticularnetworkmaybeunderlyingtheresponsesinthe

MTTtask,andthatlightmightplayamodulatoryroleonthistype

ofspatialattention/feature-basedattention.

Withrespecttotheventralattention-basedstream,akey

struc-tureinvolvedinthisattentionalnetworkistheSC,whichreceives

directinputfromtheretina.Thisattentionnetworkispresumably

sharedwiththeintraparietalregion[38],frontaleyefields[39],and

visualcortices,throughdirectconnectionsfromthecortextothe

SC,andindirectlyfromtheSCtothecortexviathepulvinar[40].The

pulvinar(dorsalthalamicnuclei)ispivotalinattentionmodulation,

presumablythroughtheflowofinformationinthebrain.Itreceives

adirectretinalprojection,andprovidesanindirectlinkbetween

thesuprachiasmaticnucleusandtheprefrontalcortex[41].Thus,

itmediatesarousalregulation,andaneffectoflightonthe

thala-muswillprobablyresultinawidespreadcorticalimpact,suchason

attention-basedcognitiveperformance.Takentogether,we

postu-latethatthesebrainnetworksmayunderliethemodulatorylight

effectsonnumerousdimensionsofattentiontasks,suchasonMTT,

1-Back,simRTandSART.Itcouldalsoexplainthelackofcorrect

NoGoanswersandthedecreaseofthemissedGoanswersinthe

SARTtestaftertheDsLexposure.Effectively,arousallevelsaremore

prominentatthebeginningofthedayandmightevenbemore

pro-nouncedafteralightexposure,whichexplainsresponseaccuracyat

thebeginningoftheday.However,differenttasksrequiredifferent

levelsofarousalforoptimalperformance[42].Forexample,

dif-ficultorintellectuallydemandingtasksmayrequirealowerlevel

ofarousal(tofacilitateconcentration),whereastasksdemanding

staminaorpersistencemaybeperformedbetterwithhigherlevels

ofarousal(toincreasemotivation)[43].Accordingtothisconcept,

itcouldbearguedthatthearousallevelaftertheDsLexposure

wastoohightoinhibittheparticipant’sanswersintheSARTtask,

whichisinaccordancewiththeincreaseofthereactiontimein

thistaskduringthefirsthoursafterwaketime.Thisleadstoa

speed-accuracytrade-offintheinhibitoryprocess,meaningthat

lightexposureinduceshigherexcitabilityresultinginfaster

reac-tiontimeandthusinlackofinhibitioncontrol.

OurPVTdatadidnotparallelearlierfindingsofabeneficiallight

effect[10,30].Onepossibilityisthat,contrarytoourdesign,these

studieschallengedsustainedattentionperformanceeitherduring

lightexposureanddidnotspecificallyexplorecarry-overeffectsor

afteraprolongeddaytimelightexposure.Howevertheyare

com-parabletothefindingsfromVandeWerken[44],showingthatthe

reactiontimesunderDsLweresimilartotheoneundercontrol

condition.OnecouldarguethatthePVTneedsahigherand,more

probably,asustainedlevelofarousalthantheSARTtest–which

isnotreachedhere–togettooptimalperformancelevels,since

thistaskismuchmoremonotonouswithmuchfewerstimuli(e.g.,

[45]).Theabsenceofasignificanteffectcouldbetracedbackto

thefactthatwecomparedreactiontimesafteronenightofsleep

restrictionbetweentwolightconditions.Thisisdifferenttoother

studies,comparingrestedwakefulnesstosleepdeprivedorsleep

restrictedconditions.Similarly,theDSSTshowedthecontraryof

theexpectedeffect,suchthatparticipantswereslowerinreacting

andlessaccurate.Wehavenostraightforwardexplanationforthe

opposingeffectoftheDSST.Itcannotbeduetoasimple

learn-ingeffectacrossconditionsaswecounterbalancedtheorderand

wedidnotdetectasignificantinteractionbetweentimeofdayand

condition.Neithertheobservedpatterncanbeattributedtogeneral

impairmentsinworkingmemoryfunctionsacrossthedayunder

DsLaswefoundbetterperformanceunderDsLforthen-Backtest.

Thesetwotaskswerethefirsttwotasksadministeredwithineach

testingsessions,thus,acertaintime-on-taskeffectcanberuledout,

andaflooreffectoflightimpactbecauseofhighdemandisequally

implausible.

Interestingly,ourdataalsoshowasignificantDsLeffectonthe

3-verbalbacktask.Thistaskchallengesworkingmemory,which

referstotheindividualcapacitytotemporarilymaintainactive

rel-evantinformationtoperformanongoingtask[46,47].Thistask

involvestheneedtocontinuouslyupdateandinhibitinformation,

andalsohasanattentionalcomponenttoit.Thus,onepossible

explanationtotheDsLeffects isthatlightmayenhance

perfor-manceonthe3-backtaskviaitsimpactonthebasicattention

componentinthiscomplexworking-memorytask.However,atthe

behaviourallevel,itisnotpossibletodissectoutthecomponents

existingwithinthistask.Thus,lightmightalsoimpactonthe

exec-utivecomponent ofthis task.The3-backtaskprobesexecutive

control,anditscerebralcorrelatesinvolvethebilateralposterior

parietalcortex,premotorcortex,dorsalcingulate/medialpremotor

cortex,dorsolateralprefrontalcortexandventrolateralprefrontal

cortex[48].Lightmayhaveamodulatoryeffectontheseanatomical

structures,thusimpactingonexecutivebrainresponses[49].

Furthermore,lighthasgreaterbeneficialeffectsonthelow

per-formers(stratifiedaccordingtothe3-Backresults)comparedto

thehighperformersinthe3-back,PVSATandsimRT.However,itis

importanttoconsiderapotentialceilingeffectforthehigh

perform-ers;asthesleeprestrictionwasnotthatsevere,theseparticipants

couldeasilycopewiththisandthus,keeptheirhighlevelof

per-formance.Thereby,theimpactoflightmighthavebeendifficultto

detect.

Interestingly,thelowperformersonthe3-backwhoprofitmost

fromthelightintervention arealsotheoneswho experiencea

detrimentaleffectoflightontheirreactiontimesinthePVT.This

issomewhatcontra-intuitive,aswepreviouslyshowedthatlight

leadstofasterreactiontime[10].However,itcouldindicatethatthe

lowperformersaremorecautiousintheirtaskperformanceunder

theeffectoflight,andthereforeprofitinacomplextask,where

accuracyisimportant,butdeclineinamorebasictaskwherefast

reactionsarerequired.Clearly,itindicatesthatthelighteffectis

dependentonthecognitivedomainandobviouslyalsoacts

(8)

5. Conclusion

Ourresultscollectivelyindicatethatshortexposuretogradually

increasingmorninglight(DsL)justbeforetheendofthepartially

restrictednightepisode,maysignificantlyenhanceperformance,

particularlyincognitivetasksassociatedtoattention.Inabroader

context,thesefindingspointtostrategiesthatmaydirectly

opti-mizeattention-relatedcognitioninreal-lifesettings,particularly

whenindividualsaresleeprestricted.

Supplementarydata

Reactiontimefromthecognitivetestsovertheday.Timecourse

ofthecompositeofreactiontimeofthePacedVisualSerial

Addi-tionTask(PVSAT),SustainedAttentiontoResponseTask(SART)

andVisual1-2-3-backTask(1-2-3-Back)in17participantsunder

Dimlight(blacklines)orDawnSimulationLight(greylineswith

blackcircle).Dataareplottedasameanforeach2-hbinrelative

toelapsedtime(h)afterwake-upfromrestrictedsleep,andthe

errorbarsrepresentthestandarderrorofthemean.Elapsedtime

indicationisrelativeto6a.m.wake-uptime.

Conflictsofinterest

Theauthorsreportnoconflictsofinterest.Theauthorsaloneare

responsibleforthecontentandwritingofthepaper.

Acknowledgments

We thank Dr. Götz for medical screenings, Claudia Renz,

Marie-France Dattler and Giovanni Balestrierifor their help in

data acquisition, AmandineValomon for her help in recruiting

volunteers and, of course,the volunteers to participating. This

researchwassupportedbyPhilipsConsumerLifestyle,Drachten,

TheNetherlands.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,athttp://dx.doi.org/10.1016/j.bbr.2014.12.043.

References

[1]DijkDJ,DuffyJF,CzeislerCA.Circadianandsleep/wakedependentaspectsof subjectivealertnessandcognitiveperformance.JSleepRes1992;1:112–7.

[2]SilvaEJ,WangW,RondaJM,WyattJK,DuffyJF.Circadianandwake-dependent influencesonsubjectivesleepiness,cognitivethroughput,andreactiontime performanceinolderandyoungadults.Sleep2010;33:481–90.

[3]BonnetMH.Performanceandsleepinessasafunctionoffrequencyand place-mentofsleepdisruption.Psychophysiology1986;23:263–71.

[4]VanDongenHP,MaislinG,MullingtonJM,DingesDF.Thecumulativecostof additionalwakefulness:dose-responseeffectsonneurobehavioralfunctions andsleepphysiologyfromchronicsleeprestrictionandtotalsleepdeprivation. Sleep2003;26:117–26.

[5]BelenkyG,WesenstenNJ,ThorneDR,ThomasML,SingHC,RedmondDP, etal.Patternsofperformancedegradationandrestorationduringsleep restric-tion and subsequent recovery: asleep dose-response study.J SleepRes 2003;12:1–12.

[6]DurmerJS,DingesDF.Neurocognitiveconsequencesofsleepdeprivation. SeminNeurol2005;25:117–29.

[7]JonesK,HarrisonY.Frontallobefunction,sleeplossandfragmentedsleep. SleepMedRev2001;5:463–75.

[8]Walker MP.Sleep-dependentmemoryprocessing. HarvardRevPsychiatry 2008;16:287–98.

[9]CajochenC,FreyS,AndersD,SpatiJ,BuesM,ProssA,etal.Evening expo-suretoalight-emittingdiodes(LED)-backlitcomputerscreenaffectscircadian physiologyandcognitiveperformance.JApplPhysiol2011;110:1432–8.

[10]ChellappaSL,SteinerR,BlattnerP,OelhafenP,GotzT,CajochenC.Non-visual effectsoflightonmelatonin,alertnessandcognitiveperformance:can blue-enrichedlightkeepusalert?PLoSOne2011;6:e16429.

[11]BersonDM,DunnFA,TakaoM.Phototransductionbyretinalganglioncellsthat setthecircadianclock.Science2002;295:1070–3.

[12]SmithMR,RevellVL,EastmanCI.Phaseadvancingthehumancircadianclock withblue-enrichedpolychromaticlight.SleepMed2009;10:287–94.

[13]VandewalleG,MaquetP,DijkDJ.Lightasamodulatorofcognitivebrain func-tion.TrendsCognSci2009;13:429–38.

[14]GabelV,MaireM,ReichertCF,ChellappaSL,SchmidtC,HommesV,etal.Effects ofartificialdawnandmorningbluelightondaytimecognitiveperformance, well-being,cortisolandmelatoninlevels.ChronobiolInt2013;30:988–97.

[15]BeckAT,WardCH,MendelsonM,MockJ,ErbaughJ.Aninventoryformeasuring depression.ArchGenPsychiatry1961;4:561–71.

[16]JohnsMW.Anewmethodformeasuringdaytimesleepiness:theEpworth sleepinessscale.Sleep1991;14:540–5.

[17]Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 1976;4:97–110.

[18]RoennebergT,Wirz-JusticeA,MerrowM.Lifebetweenclocks:dailytemporal patternsofhumanchronotypes.JBiolRhythms2003;18:80–90.

[19]BuysseDJ,Reynolds3rdCF,MonkTH,BermanSR,KupferDJ.ThePittsburgh SleepQualityIndex:anewinstrumentforpsychiatricpracticeandresearch. PsychiatryRes1989;28:193–213.

[20]AeschbachD,CajochenC,LandoltH,BorbelyAA.Homeostaticsleepregulation inhabitualshortsleepersandlongsleepers.AmJPhysiol1996;270:R41–53.

[21]VerweyW,VeltmanH.Detectingshortperiodsofelevatedworkload: com-parison of nine assessment techniques. J Appl Psychol Applied 1996;3: 270–85.

[22]DunhamKJ,ShadiS,SofkoCA,DenneyRL,CallowayJ.Comparisonofthe repeatablebatteryfortheassessmentofneuropsychologicalstatuseffortscale andeffortindexina dementiasample.Arch ClinNeuropsychol 2014;29: 633–41.

[23]AsterMvNA,HornRWAIS-III.WechslerAdultIntelligenceScaleFrankfurt/M., Germany:Harcourt2006.

[24]FeinsteinA,BrownR,RonM.Effectsofpracticeofserialtestsofattentionin healthysubjects.JClinExpNeuropsychol1994;16:436–47.

[25]NagelsG,GeentjensL,KosD,VleugelsL,D’HoogheMB,VanAschP,etal. Pacedvisualserialadditiontestinmultiplesclerosis.ClinNeurolNeurosurg 2005;107:218–22.

[26]RobertsonIH,ManlyT,AndradeJ,BaddeleyBT,YiendJ.‘Oops!’:performance correlatesofeverydayattentionalfailuresintraumaticbraininjuredand nor-malsubjects.Neuropsychologia1997;35:747–58.

[27]DingesDF,PackF,WilliamsK,GillenKA,PowellJW,OttGE,etal. Cumula-tivesleepiness,mooddisturbance,andpsychomotorvigilanceperformance decrementsduringaweekofsleeprestrictedto4-5hourspernight.Sleep 1997;20:267–77.

[28]CohenJD,PerlsteinWM,BraverTS,NystromLE,NollDC,JonidesJ,etal. Tem-poraldynamicsofbrainactivationduringaworkingmemorytask.Nature 1997;386:604–8.

[29]ChellappaSL,GordijnMC,CajochenC.Canlightmakeusbright?Effectsoflight oncognitionandsleep.ProgBrainRes2011;190:119–33.

[30]Phipps-NelsonJ,RedmanJR,DijkDJ,RajaratnamSM.Daytimeexposureto brightlight,ascomparedtodimlight,decreasessleepinessandimproves psy-chomotorvigilanceperformance.Sleep2003;26:695–700.

[31]RugerM,GordijnMC,BeersmaDG,deVriesB,DaanS.Time-of-day-dependent effectsofbrightlightexposureonhumanpsychophysiology:comparisonof daytimeandnighttimeexposure.AmJPhysiolRegulIntegrCompPhysiol 2006;290:R1413–20.

[32]VandewalleG,BalteauE,PhillipsC,DegueldreC,MoreauV,SterpenichV, etal.Daytimelightexposuredynamicallyenhancesbrainresponses.CurrBiol 2006;16:1616–21.

[33]ChellappaSL,LyJQ,MeyerC,BalteauE,DegueldreC,LuxenA,etal.Photic memoryforexecutivebrainresponses.ProcNatlAcadSciUSA2014;111: 6087–91.

[34]PerrinF,PeigneuxP,FuchsS,VerhaegheS,LaureysS,MiddletonB,etal. Nonvi-sualresponsestolightexposureinthehumanbrainduringthecircadiannight. CurrBiol2004;14:1842–6.

[35]GoodaleMA,MilnerAD.Separatevisualpathwaysforperceptionandaction. TrendsNeurosci1992;15:20–5.

[36]Baluch F, Itti L. Mechanisms of top-down attention. Trends Neurosci 2011;34:210–24.

[37]Martinez-TrujilloJC, TreueS.Feature-basedattentionincreases the selec-tivityofpopulationresponsesinprimatevisualcortex.CurrBiol2004;14: 744–51.

[38]BisleyJW,GoldbergME.Attention,intention,andpriorityintheparietallobe. AnnuRevNeurosci2010;33:1–21.

[39]ThompsonKG,BichotNP.Avisualsaliencemapintheprimatefrontaleyefield. ProgBrainRes2005;147:251–62.

[40]ShippS.Thefunctionallogicofcortico-pulvinarconnections.PhilosTransRoy SocLondonSerB:BiolSci2003;358:1605–24.

[41]SylvesterCM,KroutKE,LoewyAD.Suprachiasmaticnucleusprojectiontothe medialprefrontalcortex:aviraltransneuronaltracingstudy.Neuroscience 2002;114:1071–80.

[42]YerkesR,DodsonJ.Therelationofstrengthofstimulustorapidityof habit-formation.JComparatNeurolPsychol1908;18:459–82.

[43]Broadhurst PL. Emotionality and the Yerkes-Dodson law. J Exp Psychol 1957;54:345–52.

[44]VanDeWerkenM,GimenezMC,DeVriesB,BeersmaDG,VanSomerenEJ, GordijnMC.Effectsofartificialdawnonsleepinertia,skintemperature,and theawakeningcortisolresponse.JSleepRes2010;19:425–35.

(9)

[45]LimJ,DingesDF.Sleepdeprivationandvigilantattention.AnnNYAcadSci 2008;1129:305–22.

[46]BaddeleyA.Theconceptofworkingmemory:aviewofitscurrentstateand probablefuturedevelopment.Cognition1981;10:17–23.

[47]SchmidtC,ColletteF,CajochenC,PeigneuxP.Atimetothink:circadianrhythms inhumancognition.CognNeuropsychol2007;24:755–89.

[48]Sala-LlonchR,Arenaza-UrquijoEM,Valls-PedretC,Vidal-PineiroD,BargalloN, JunqueC,etal.Dynamicfunctionalreorganizationsandrelationshipwith work-ingmemoryperformanceinhealthyaging.FrontHumNeurosci2012;6:152.

[49]Vandewalle G,GaisS,Schabus M,Balteau E,CarrierJ, DarsaudA,et al. Wavelength-dependentmodulationofbrainresponsestoaworkingmemory taskbydaytimelightexposure.CerebCortex2007;17:2788–95.

Figure

Fig. 2. Accuracy of the cognitive performance over the day.
Fig. 3. Accuracy of the cognitive performance over the day in the high and low performers.

Références

Documents relatifs

It will be necessary to evaluate if, as in the research Exploring Emoji Usage and Prediction Through a Temporal Variation Lens (Barbieri et al., 2018), it was the

Table 3 (exact matching) and the table 4 (partial matching) show the results obtained by the participants in the disability recognition task for both, Spanish (a) and English

This situation arises over the period in which the task is active as the task organisers come to better understand what the task is seeking to achieve as a result of working to

Although this pattern was interpreted as reflecting an active suppression of the irrelevant dimension of the stimulus (Ridderinkhof, 2002a, 2002b), this view has been disputed,

On the other hand, exact tests based on response time analysis (RTA) provide worst response time for each task and are more suited to be used as cost functions.. Thus, the sum of

Interpolated recall vs precision averages plot Average precision statistics and box plot Average precision comparison to median plot Document cutoff levels vs precision at DCL

We simulate the schedule to obtain the total num- ber of context switches using the scheduling simulator SimSo [12] and our task clustering heuristic to evaluate the number of

However, this aftereffect was abolished if the second PF2 trial was replaced by an oppositely directed velocity-dependent force field (VF). Interestingly, in the following VF