• Aucun résultat trouvé

Biobased Processes: Systematically Evaluating Chances and Challenges

N/A
N/A
Protected

Academic year: 2021

Partager "Biobased Processes: Systematically Evaluating Chances and Challenges"

Copied!
10
0
0

Texte intégral

(1)

1

Biobased Processes:

Systematically Evaluating

Chances and Challenges

Andreas Pfennig

andreas.pfennig@ulg.ac.be

Products, Environment, and Processes (PEPs) Department of Chemical Engineering

Université de Liège www.chimapp.ulg.ac.be

1st BioSC Symposium: Towards an Integrated Bioeconomy 21.11.2016, Cologne, Germany

possible biobased synthesis pathways

gasification, pyrolysis:

C1- (C2-, C3-) building blocks

extract major components:

starch, sugar, vegetable oil

remains: energy use

separate „all“ components:

cellulose, lignin, use of whole

plant, biorefinery

b

io

m

a

ss

p

ro

d

u

ct

s

2

(2)

interaction of some major drivers

world population

7.000.000.000

food

2.8 kg/(cap d)

energy

21.000 kWh/(cap a)

materials

ca. 0.9 kg/(cap d)

fossil resources

5.6 kg/(cap d)

land area

agricultural: 7.000 m

2

/cap

3

interaction of some major drivers

world population

7.000.000.000

food

2.8 kg/(cap d)

energy

21.000 kWh/(cap a)

materials

ca. 0.9 kg/(cap d)

fossil resources

5.6 kg/(cap d)

land area

agricultural: 7.000 m

2

/cap

(3)

19600 1980 2000 2020 2040 2060 2080 2100 20 40 60 80 100 120 140 biomaterials biofuels minimum pastures vegetal/feed forests pastures and meadows la n d b y u s e i n m ill io n k m 2 year arable land

land-area use: +1.5°C, high pop. variant

in 2100: CO2 464 ppm ∆T 1.50 °C 5

calculation of exergy

+

=

R U R U

)

(

1

)

(

)

(

iF

R

U

U

phys

T

T

i

T

T

i

i

i,

C

T

dT

V

P

P

T

T

C

T

dT

E

=

+

=

j

i

j

j

i

i

i

G

E

E

1

o

chem

,

,

o

chem

,

ν

exergy of a material stream

chemical exergy of a material stream

physical exergy of a material stream

(

)

mix 1 phys , chem ,

E

E

E

E

N i i i i

=

+

+

=

+ exergy losses in processes and equipment

(4)

chemical exergy of various materials

7 0 10 20 30 40 50 60 80 100 120 140 PA 6.6 poly styr ene PET PVC poly prop ylen e poly carb onat e H2O, CO2 methanol glucose amylose ethanol glycerol lactic acid CO poly lact ic a cid poly ethy lene ethene plant oil coal crude oil

methane, natural gas

c h e m ic a l e x e rg y i n M J /k g hydrogen

fossil biomass intermediates products feedstock

glucose fermentation

net reaction

chemical exergy of various materials

0 10 20 30 40 50 60 80 100 120 140 PA 6.6 poly styr ene PET PVC poly prop ylen e poly carb onat e H2O, CO2 methanol glucose amylose ethanol glycerol lactic acid CO poly lact ic a cid poly ethy lene ethene plant oil coal crude oil

methane, natural gas

c h e m ic a l e x e rg y i n M J /k g hydrogen

fossil biomass intermediates products feedstock glucose fermentation net reaction

?

fossil

(5)

COH composition

+H2-H2O PE PLA H O

fossil raw materials bio-based feedstock conventional polymers bio-based polymers

lignin

starch, cellulosehemicellulose glucose oleic acid natural gas crude oil coal C PET PHB water CO2 -CO2 -H2O 9 0 10 20 30 40 50 60 80 100 120 140 H2O H2O, O2 CO2 hydrogen crude oil 1,2-ethandiol ethylene oxid ethylene ethanol c h e m ic a l e x e rg y i n M J /k g glucose PET

synthesis pathways to PET

(6)

process: ethylene

ethylene oxid

reagent recycling

solvent

conditioning

heat integration

main process

11 0 2 4 6 8 10 re c ti fi c a ti o n m ix e r re a g e n t re c y c le h e a t e x c h a n g e r re a g e n t re c y c le e x e rg y l o s s e s i n M J /( k g p ro d u c t) utility phys. exergy chem. exergy

ethylene ethylene oxid

p u m p re a c to r h e a t e x c h a n g e r a b s o rp ti o n

results of exergy analysis

(7)

0 10 20 30 40 50 g lu c o s e g lu c o s e (d ir e c t) g lu c o s e (i n d ir e c t) c ru d e o il g lu c o s e e x e rg y l o s s e s i n M J /( k g p ro d u c t) utilities chemical exergy footprint raw materials

PE PET PLA

c ru d e o il

comparision of the processes

13

exergy demand for different routes

0 5 10 15 20 e x e rg y d e m a n d i n M J /( k g p ro d u c t) biobased feedstock footprint hydrogen electrolysis -C O2 + H2 -H2 O -C O2 -H2 O -C O2 + H2 -H2 O -C O2 -H2 O -C O2 + H2 -H2 O -C O2 -H2 O +O2 direct direct glucose → glucose glucose → fatty acid glucose → crude oil fatty acid → glucose fatty acid → fatty acid fatty acid → crude oil 14

(8)

land-area use 2050 for different routes

15 0 500 1000 1500 2000 direct la n d u s e i n m 2 /c a p -C O2 + H2 -H 2 O -C O2 -H 2 O -C O2 + H2 -H 2 O -C O2 -H 2 O -C O2 + H2 -H 2 O -C O2 -H 2 O direct +O2 glucose → glucose glucose → crude oil glucose → fatty acid fatty acid → glucose fatty acid → fatty acid fatty acid → crude oil

process ideas

plant-based

material

paraxylene

terephthalic acid

ethanol

ethylene glycol

bio-PET

plant-based

material

(9)

evaluation of selected options

17 gasification, pyrolysis of entire biomass

methanation of entire biomass

starch and sugar to oxygen-rich products plant oil to conventional products separate cellulose and lignin liquid or gas as feedstock no diluted aqueous solution no complex mixture exergetically favorable acceptable 0 infeasible – good + not tested evaluation:

evaluation of options

exergy is general energy measure

mix of feedstock and technologies

results (integration limited):

extraction/separation of direct valuables

glucose

→ products with more oxygen

plant oil

→ products with less oxygen

rest to methanation

energy demand for processes will increase

land area required for biobased feedstock:

200 to 800 m

2

/capita (food

≈ 7000 m

2

/capita)

integration:

agriculture - production - consumer needs

18

(10)

references

P. Frenzel, S. Fayyaz, R. Hillerbrand, A. Pfennig:

Biomass as Feedstock in the Chemical Industry –

An Examination from an Exergetic Point of View

Chem. Eng. Technol. 36(2) (2013) 233-240

P. Frenzel, R. Hillerbrand, A. Pfennig:

Increase in energy and land use by a bio-basedchemical industry

Chem. Eng. Res. Design 92 (2014) 2006-2015

P. Frenzel, R. Hillerbrand, A. Pfennig:

Exergetical Evaluation of Biobased Synthesis Pathways

Polymers 6 (2014) 327-345

19

Biobased Processes:

Systematically Evaluating

Chances and Challenges

Andreas Pfennig

andreas.pfennig@ulg.ac.be

Products, Environment, and Processes (PEPs) Department of Chemical Engineering

Université de Liège www.chimapp.ulg.ac.be

Références

Documents relatifs

The need for adopting process simulation tools is expected to become even more pressing in the extended food industry, including cereal processing, because of growing trends such

We highlight four case studies that use common PM software-based approaches (fuzzy cognitive mapping, agent-based modeling, system dynamics, and participatory

Keywords: photolysis, photodegradation products, polycyclic hydrocarbons, fluorene, in vitro 34.. tests

Celui-ci pointe du doigt l’énorme gaspillage de nourriture qui concerne aujourd’hui notre planète alors que plus d’un milliard de personnes souffrent de la faim.. Ce gâchis

There is enough non-forested land suitable for plantation development to allow large increases in production without further deforestation, but political inertia, competing

This chapter presents a brief overview of methods allowing the identification of allergens in complicated chemical mixtures, going from bioassay-guided fractionation and combination

Some examples concerning problems important from a technical point of view will demonstrate successful applications of Uossbauer spectroscopy: The influence of ciimate factors

Based on XML heterogeneous data conversion technology, we implement the data integration of external traceability and internal traceability, so the digital files of the grain and