• Aucun résultat trouvé

Control of the Ni non-stoichiometry in Ni<sub>1-x</sub>O nanoparticles : "Core-shell"-like model

N/A
N/A
Protected

Academic year: 2021

Partager "Control of the Ni non-stoichiometry in Ni<sub>1-x</sub>O nanoparticles : "Core-shell"-like model"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01560944

https://hal.archives-ouvertes.fr/hal-01560944

Submitted on 12 Jul 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Control of the Ni non-stoichiometry in Ni1-xO

nanoparticles : ”Core-shell”-like model

Baptiste Polteau, Franck Tessier, François Cheviré, Laurent Cario, Stéphane

Jobic

To cite this version:

Baptiste Polteau, Franck Tessier, François Cheviré, Laurent Cario, Stéphane Jobic. Control of the Ni

non-stoichiometry in Ni1-xO nanoparticles : ”Core-shell”-like model. ”Solid State Chemistry” Gordon

Research Conference (GRC), Jul 2016, New London, NH, United States. �hal-01560944�

(2)

a

Institut des Sciences Chimiques de Rennes &UMR CNRS .gg.z- Université de Rennes w- France

b

Institut des Matériaux Jean Rouxel- &UMR CNRS .=Agz- Université de Nantes- France

To improve the performances of pb>ye Sensitized Solar <ell 4pb>SS<. [X]° the synthesis of modi�ied pbtype nickel oxide semiconductor° commonly used as

a photocathode in such devices° was initiated using a mixed valent nickel oxyhydroxide Ni

E

O

R

4O9.

M

5 The decomposition of this precursor in air at

temperatures lower than …AA°< leads to nonbstoichiometric Ni

Xbx

O nanoparticles 4from R to EA nm. with tunable nickel vacancies concentration 4up to

RBO for RbEnm particle sizes. [R]5 Iccording to our chemical characterizations 4XR>° T=M° density° chemical analysis° V=T measurement….° the nickel

vacancies segregate at the surface of the Ni

Xbx

O nanoparticles to create a gcorebshellgblike edi�ice 4similarly to our previous work on Znbde�icient Zn

Xbx

O

nanoparticles [E].5 This gcorebshellg is constituted by a dense stoichiometric NiO coated 4or terminated. by an oxygen 4hydroxide or carbonate groups.

surface layer free from nickel atom5 The Nibfree surface layer in�luences drastically the density of the smaller nanoparticles by decreasing it5 When the

nanoparticles size increases° the density evolves until reaching the theoretical density of stoichiometric nickel oxide for the bigger particles 4≥ BA nm.5

Thus° with the control of the particles size° we can also control the Ni nonbstoichiometry in Ni

Xbx

O following our gcorebshellgblike model5

<ontrol of the Ni nonbstoichiometry in Ni

Xbx

O

nanoparticles : g<orebshellgblike model

Vaptiste Polteau

a

° 8ranck Tessier

a

° 8rançois <heviré

a

°

Laurent <ario

b

° Stéphane Jobic

b

Nickel precursor synthesis p characterizations

Thermal decomposition in air

NiO synthesis

Muf�le Furnace Time Tamb XA°<5minbX >well Rh Iir T /vD°L ≤ T ≤ ?DD°L Nickel precursor NiEOBDOHy.powder

=xperimental procedure : NiO materials prepared at X °L are labeled as NiOBX

NiwXxO NiO / Theta g°x +D ,D vD &D 6D >nt ensit y gak ukx g+++x g/DDx g//Dx g,++xg///x RAA°< &DD°L

Irea I A Surface dehydration Irea III A Thermal stability range of Ni+BxO

Area IhII Area III Area IV Ni,O/gOWxw In situ XRD vs temperature Area I Area II

Area III Area IV

exo

Irea II A Phase transformation from Ni,O/gOWxwinto Ni+BxO

Irea IV A Thermal stability range of NiO

TGA DTA

Precipitation

Route

NiDNO

E

y

B

= *H

B

O

NaOHmNaClO

Ni

E

O

B

DOHy

. Flack color Nickel oxyhydroxide gXRYx Nanoparticles ≈ / gnmx Speci�ic surface area ≈ /vD m/kgB+ Ni,4RNi/4ratio ≈ / gXPSP magnetismx

Ni/4+Ni,4/O/gOWxwformula 5 nm F>é ç R°XR nm Yiameter >nt ensit y

NiO nanoparticles with high speci�ic surface areas

Evidence of Ni

wXx

O nanoparticles at low decomposition temperatures

NiOhBÅ" NiOhE"" NiOhEÅ" NiOh."" NiOh.Å" NiOhÅ"" NiOh*"" NiOhv"" NiOhM""

νOWB δW/OνLO,/B νNiBO

Tr

ansmit

tance

8TIR : Llear correlation between the intensity of the absorption bands of hydroxide and carbonate groups vs particles size

Surface OWBc LO ,/Bgroups

NiObulk

Oxygen analysis : Wigh oxygen nonBstoichiometry at low decomposition temperatures in comparison with NiO

NiO+4xor Ni+BxO formulation =

Yensi

ty

/P/ /P& wP/ &PD +/Pz +6Pz /?Pv v+Pw +DD

NiObulk

Tailles des cristallites gnmx

Lrystallites size gnmx

x

in

Ni

+B

x

O

Area III Area IV

Ni

wXx

O

NiO

NiwXxO nanoparticules with tunable Ni vacancies concentration vs synthesis temperature and particles size

>ensity : ]t low densitiesP Ni+BxO

formation with nickel vacancies up to /vf at T < zDD °L g]rea >>>x Yensity of stoichiometric NiO at T ≥ zDD °L g]rea >Vx

Lon�irmation of the two areas gTq]x Density of NighxO nanoparticle R = particle radius r = shell thickness

NiO

Rw r

NiO

Rg r NiO Stoichiometric CCoreC Oxygen CShellC Dor hydroxide= carbonate groupsy

Nanoparticle

CBulkC particle

g<orebshellg structure : Yense stoichiometric NiO sphere coated by an oxygen surface layer gfree from nickel atomx

NaClhtype d 7 .D4w

NaClhtype Dwithout Niy

d 7 wDEw

Speci�ic surface area of NighxO nanoparticle

NiObulk gD= Å wDA Å A Å hhh CorehShell model Experimental data Yensi ty x in Ni+B xO

Speci�ic surface area r = "= gS"= BSÅ Å NiObulk A Å AD= Å wDf Å hhh CorehShell model Experimental data Yensi ty x in Ni+B x O Particles size gnmx r = "= "SÅ= gSE Å

>ensity vs SV=T: Fest �it with r V /kv ]�

>ensity vs particles size : Fest �it with r V +k, ]�

Average shell thickness 7 wDÅ Å close to dNiXOin NiO at gDw Å The oxygen surface layer is a monoXlayer

lCoreXshelllXlike model

References

[+]k Jk OdobelP Lk Le PleuxP Yk PellegrinP Ek FlartP ]cck Lhemk ReskP MEP +Dz,P g/D+Dxk [/]k Fk PolteauP Jk TessierP Jk LheviréP Lk LarioP Jk OdobelP Sk JobicP Solid State ScikP BMP ,& g/D+zxk

[,]k ]k RenaudP Lk LarioP Xk RocquefelteP Pk YeniardP Lk PayenP Ek qautronP Ek JaulquesP Jk LheviréP Jk TessierP Sk JobicP Scik RepkP BP +/6+w g/D+vxk

Lry stalli tes size gnmx f

T=M : Well crystallized NiO nanoparticles with a narrow particles size distribution B <YG the average particles size qradual increase of the NiO crystallites size with temperature Wigh SFETP up to /wD m/kgB+at low temperatures

Lontrol of the NiO particles size vs the decomposition Excellent agreement

between the crystallites and the

particles sizes for temperatures ≤ 8AA °C

temperature

f By Rietveld re�inement

NiOhBÅ" NiOhE"" NiOhEÅ" NiOh.""

NiOh.Å" NiOhÅ"" NiOh*"" NiOhv""

5 nm 20 nm 5 nm F>é ç R°RZ nm Yiameter >nt ensit y 5 nm F>é ç R°Z… nm Yiameter >nt ensit y 5 nm Yiameter >nt ensit y F>é ç M°ZA nm 200 nm F>é ç B…°" nm Yiameter >nt ensity 50 nm F>é ç XW°B nm Yiameter >nt ensity F>é ç "°EZ nm Yiameter >nt ensity F>é ç XR°… nm Yiameter >nt ensity 50 nm F>é ç EA°" nm Yiameter >nt ensit y

Références

Documents relatifs

In other words, if one considers, as in RMZL12, that the source of tidal dissipation is restricted to the core, it seems obvious that one has to relate the tidal dissipation in the

Using SAXS- WAXS on aliquots taken from the synthesis medium, we demonstrate the formation of an alkali-stabilized oleate mesophase acting as a template for

On the other hand, the quantitative analysis of RIXS-MCD relies on TEM- EELS results: (i) the average size of the particles is obtained from TEM analysis and (ii) constraints on

We develop a theory of diffraction of rough surfaces and use it to show conclusively that the surface has finite height fluctuations below the transition that become

Figure 2: Evolution of the diffraction patterns as a function of the progress of transformation upon annealing of quenched (disordered) HT-Ni 1.50 Sn establishing LT-Ni 1.50 Sn

In the case of titrations starting from acidic, alkaline and neutral pH, it is also possible to evaluate the number of protons bound to the surface of the particle by comparing the pH

The approach retained for the 6A version of LMDZ, a mass flux representation of the vertical transport in the convective boundary layer by the thermal plume model, was shown, both

Vous nous avez accueilli chaleureusement dans votre équipe et permis d’y apprendre entre autre, ce qui ne s’apprend pas dans la littérature : la qualité humaine. Vous nous