• Aucun résultat trouvé

La méthode IIM pour une membrane immergée dans un fluide incompressible

N/A
N/A
Protected

Academic year: 2021

Partager "La méthode IIM pour une membrane immergée dans un fluide incompressible"

Copied!
81
0
0

Texte intégral

(1)
(2)
(3)
(4)
(5)

u

(6)

Un k

DT

Δμun+1 2

(7)

u

(8)

Ω p u v p u v Ω (i, j) ∂/∂x X(s) s Γ Ω f : R → R xi [x, x + h] M + 1

(9)

x x+h s1, s2, ..., sM X(s1) x X(s2) Iv u Ipu Iv p N = 24 N = 12 12 ×12 u Xkn u Γn u u(X(s, nΔt), nΔt) p u u ≈ un+1 ∇ · u (i, j) T T Γn Γn+1

(10)

x = (x1, x2, (n + 1/2)Δt) Ωε Γ (η, ξ) X(s) n(s) τ (s) n Γn+1 2

(11)

u p μ

(12)
(13)

μ p(x, t) u(x, t) Du Dt + ∇p = μΔu + G + F , ∇ · u = 0, G F F F

(14)
(15)
(16)

μ Ω = [0, 1] × [0, 1] u p Du Dt + ∇p = μΔu + G, ∇ · u = 0. u p p n + 1/2 u n + 1 u Ω u u i u∗s

(17)

u un+1 u un+1 = u s u i Δtφn+1 Δt n n + 1 u = un+1+ Δt∇φn+1. φn+1 3/2 n + 1/2 un+12 ∂t + u n+1 2 · ∇un+12 + ∇pn+12 = μΔun+12 + Gn+12, un+12/∂t Δun+1 2 un+1− un Δt = un+12 ∂t + O(Δt 2). (Δu)n+1+ (Δu)n 2 = Δun+ 1 2 + O(Δt2). un+1 2 · ∇un+12 3 2(u · ∇u) n 1 2(u · ∇u)n−1= (u · ∇u)n+ 1 2 + O(Δt2).

(18)

un+1− un Δt + (u · ∇u)n+ 1 2 + ∇pn+12 = μ 2  Δun+1+ Δun+ Gn+1 2. u un+1 u un+1= u− Δt∇φn+1, φn+1 ∇ · un+1= 0 ∇ · un+1= ∇ · u− ΔtΔφn+1 = 0, ∇ · u = ΔtΔφn+1. un+1 (u− Δt∇φn+1) u − Δt∇φn+1− un Δt + (u · ∇u)n+ 1 2 + ∇pn+12 = μ 2  Δu− Δt∇φn+1+ Δun+ Gn+1 2, u − un Δt + (u · ∇u)n+ 1 2 + ∇  pn+12 − φn+1+μΔt 2 Δφn+1  = μ 2 (Δu+ Δun) + Gn+ 1 2. pn+12 u pn+1 2 φn+1 qn+12 pn+12 pn+12 = qn+12 + φn+1− μΔt 2 Δφn+1

(19)

φn+1 pn+12 u− un Δt + (u · ∇u)n+ 1 2 + ∇qn+12 = μ 2(Δu+ Δun) + Gn+ 1 2 u qn+12 = pn−12. Ω (i, j) (ih, jh) h Ω f ∈ C2(R) x f (x + h) = f (x) + hf(x) + h 2 2 f(x) + O(h3)

(20)

f (x− h) = f(x) − hf(x) + h 2 2 f(x) + O(h3). f(x) = f (x + h)− f(x − h) 2h + O(h2), f(x) = f (x− h) − 2f(x) + f(x + h) h2 + O(h). φn+1 ∇ · un+1 = 0, un+1= u− Δt∇φn+1. (i, j) p,u, u φn+1 un+1 vn+1 un+1 un+1i,j = u∗i,j− Δtφ n+1 i+1,j − φn+1i−1,j 2h vn+1i,j = vi,j − Δtφ n+1 i,j+1− φn+1i,j−1 2h , uni,j u(ih, jh, nΔt)

un+1i+1,j − un+1i−1,j+ vi,j+1n+1 − vi,j−1n+1

2h = 0.

un+1

u∗i+1,j − u∗i−1,j+ v∗i,j+1− v∗i,j−1

2h

= Δtφn+1i+2,j + φn+1i−2,j+ φn+1i,j+2+ φn+1i,j−2− 4φn+1i,j

(21)

(i + 2, j) Δφn+1 i,j (i+1, j) φn+1 u∗ i+1 2,j− u i−1 2,j+ v i,j+1 2 − v i,j−1 2 h

= Δtφn+1i+1,j + φn+1i−1,j+ φn+1i,j+1+ φn+1i,j−1− 4φn+1i,j

h2 . i j u∗ un+1 (i +12, j) v∗ vn+1 (i, j + 1 2) p φn+1 (i, j) un+1 i+1 2,j = u i+1 2,j− Δt φn+1i+1,j − φn+1i,j h vn+1 i,j+1 2 = v i,j+1 2 − Δt φn+1i,j+1− φn+1i,j h , u v p u v p DXu p DX p u DXu p : p → u.

(22)

p u v p u v ∂/∂x u (DXu uu)i+1 2,j = ui+3 2,j− ui−12,j 2h , (DXp uu)i,j = ui+1 2,j− ui−12,j h Ω un+1 ∂Ω= 0 u φn+1

(23)

u = un+1+ Δt∇φn+1, u∗ ∂Ω= Δt∇φ n+1 ∂Ω. qn+12 pn+12 u u = un+1+ O(h2), u∗ ∂Ω= u n+1 ∂Ω = 0, ∇φn+1 ∂Ω· n = 0. Ω = [0, hN] × [0, hN] N× N h (i, j) [0, 1] × [0, 1] (i, j)  i +1 2  h,  j + 1 2  h  (1/2, j) (i, 1/2) (N +1/2, j) (i, N + 1/2)  ∂u∗ ∂x  3 2,j , u∗5 2,j− u 1 2,j 2h ,

(24)

...

Ω (i, j) u∗1/2,j  ∂v∗ ∂x  1,j+1 2 . v ∈ C2(Ω) v(x + h, y) = v(x, y) + h ∂xv(x, y) + h2 2 2 ∂x2v(x, y) + O(h 3) v(x−h 2, y) = v(x, y)− h 2 ∂xv(x, y) + h2 8 2 ∂x2v(x, y) + O(h 3). v(x + h, y) + 3v(x, y)− 4v(x −h2, y) 3h = ∂xv(x, y) + O(h 2)

(25)

∂/∂x 4 3h2  v(x + h, y) + 2v(x− h 2, y)− 3v(x, y)  = 2 ∂x2v(x, y) + O(h),  ∂v ∂x  1,j+1 2 = v2,j+12 + 3v1,j+12 − 4v12,j+12 3h + O(h2),  2v ∂x2  1,j+1 2 = 4 3h2  v2,j+1 2 + 2v12,j+12 − 3v1,j+12  + O(h). (1, j+1/2) (2, j+1/2) v v (1/2, j + 1/2) un u φn+1 2φ(x, y) ∂x2 = ∂φ(x + h2, y)/∂x− ∂φ(x − h2, y)/∂x h + O(h 2). x + h/2 φ(x + h, y)− φ(x, y) h2 1 h ∂φ(x− h2, y) ∂x + O(h).

(26)

 2 ∂x2φ  1,j = φ2,j − φ1,j h2 1 h  ∂xφ  1 2,j + O(h). (∂φ/∂x)1 2,j = 0 (1, j) (2, j) p φ  2φ ∂x2  1,j = φ2,j− φ1,j h2 ∇pn+1 2 u∗ v∗ u v DXu p DYvp n + 1 uk, φk, pk−1 2, (u · ∇u)k+12 , (∇q)n+12 , (Δu)k k ≤ n un+1 pn+1 2 u u− un Δt + (u · ∇u)n+ 1 2 + ∇qn+12 = μ 2(Δu+ (Δu) n) + Gn+1 2  1 ΔtIuu μ 2 Δuu  u∗ = −pn−x 12 − (u · ∇u)n+12 + u n Δt + μ 2 (Δu) n+ Gn+1 2 1 ;  1 ΔtIvv μ 2 Δvv  v∗ = −pn−y 12 − (u · ∇v)n+12 + v n Δt+ μ 2(Δv) n+ Gn+1 2 2 ;

(27)

Iu u Ivv u v φn+1 ΔtΔφn+1 = ∇ · u. (∇ · u) = DXp uu∗ + DYpvv∗; Δp pφn+1 = 1 Δt(∇ · u) ; k φn+1 φn+1+ k un+1 = u+ Δt∇φn+1 un+1 = u∗− ΔtDXupφn+1; vn+1 = v∗− ΔtDYvpφn+1; pn+12 = pn−12 + φn+1− μ 2 ∇ · u;

(28)

 ∂p ∂x n+1 2 = DXu ppn+ 1 2;  ∂p ∂y n+1 2 = DYv ppn+ 1 2; (Δu)n+1 = Δu uun+1; (Δv)n+1 = Δv vvn+1; (u · ∇u)n+32 = 3 2  un+1DXuuun+1+ Iuvvn+1DYuuun+1 12(unDXu uun+ IvuvnDYuuun) ; (u · ∇v)n+32 = 3 2  Iu vun+1DXvvvn+1+ vn+1DYvvvn+1  12(Iu vunDXvvvn+ vnDYvvvn) ; Iv u Iuv (Iu vu)i,j+1 2 = ui+1 2,j + ui−12,j + ui+12,j+1+ ui−12,j+1 4

u(x, y, t) =− sin2(πx) sin(2πy) cos t, v(x, y, t) = sin2(πy) sin(2πx) cos t, p(x, y, t) = μΔφ− ∂φ

∂t, φ

(29)

||E(u)|| ||E(p)|| ×10−02 ×10−02 ×10−03 ×10−03 ×10−04 ×10−03 ×10−04 ×10−03 ×10−05 ×10−04 ×10−05 ×10−04 ||E(u)|| ||E(p)|| ×10−02 ×10−03 ×10−03 ×10−04 G t = 10 μ = 1 N × N Δt = h = 1/N k

ordrek= log(Elog(Nk−1/Ek) k/Nk−1).

(30)
(31)

X(s)

s

Γ Ω

(32)

u = 0 Γ L s Γ X(s) : [0, L] → Ω s∈ Γ X ∈ Ω ˆs(s) X(s) X(0) X(ˆs) dˆs ds =  ddsX  . () g(s) : Γ→ R dg dˆs = g  = dg ds  ddsX. τ n τ (s) = X(s) = Rn(s), R π/2 Γ X

(33)

Γ Ω s1, s2, ..., sp g gk := g(sk), k = 1, ..., p. ˜g(s) ∈ C2(Γ) L ˜g(s) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ˜g0(s), s∈ [s0, s1], ˜g1(s), s∈ [s1, s2], ... ˜gp−1(s), s∈ [sp−1, sp], ˜gp(s), s∈ [sp, s0]. j = 0, ..., p ˜gj ˜g(sj) = g(sj) d/ds ˜gj dg/ds C1(Γ) p

(34)

ˆ L Γ F (x) F (x) =  Lˆ 0 f(ˆs)δ(x − X(ˆs)) dˆs, f T (s) = T0dX(s) ds   − 1, T0 f f = d(T (s)τ (s)) ds  dX(s)ds  , () f = (T (s)τ (s)). u ∂t + u · ∇u + ∇p = μΔu + G + F , F = 0 Ω+ Ω u p Γ u, p ∈ C(Ω \ Γ). G G ∈ C2(Ω \ Γ)

(35)

[μu] 0 [μuτ] 0 [μun] −(f · τ )τ [μuττ] κ(f · τ )τ [μu] −((f · τ )τ ) [μunn] −κ(f · τ )τ + (f · τ )n + (f · n)τ − [G · τ ] τ [p] f · n [pτ] (f · n) [pn] [G · n] + (f · τ ) [u] [u] [u τ] [uτ] [u n] [un] [u ττ] [uττ] [u ] [u] [μu nn] [μunn] −μ2(u · n)(f · τ )τ u p μ κ(s) s g ∈ C(Ω \ Γ) g [g] (s) = lim ε→0+(g(X(s) + εn(s)) − g(X(s) − εn(s))) . u φn+1 φn+1 φn+1∈ C2[Ω] u

(36)

[ux] = [un] nx+ [uτ] τx [uxx] = [unn] n2 x+ 2 [u] τxnx+ [uττ] τx2, nx τx f : R → R xi [x, x + h] M + 1 f : R → R f (x + h) = N  n=0 hn n!f (n)(x) + O(hN+1).

(37)

f : [x, x + h] → R f x1 < x2 <· · · < xM M + 1 hm = xm+1− xm m = 0, ..., M (xM, x + h) f (x + h) = N  n=0 hnM n! f (n)(x+ M) + O(hN+1). [f]M := lim ε→0+(f(xM + ε) − f(xM − ε)) . f xM f (x + h) = N  n=0 hnM n!  f(n)(x−M) +f(n)M+ O(hN+1), f (x + h) = N  n=0 hnM n! f (n)(x M) + N  n=0 hnM n!  f(n)M + O(hN+1). f(n)(x−M) (xM−1, xM) f (x + h) = N  n=0 hnM n!  N  k=n hk−nM−1 (k − n)!f(k)(x+M−1)  + N  n=0 hnM n!  f(n)M + O(hN+1). N  n=0 hnM n!  N  k=n hk−nM−1 (k − n)!f(k)(x+M−1)  = N  n=0 f(n)(x+M−1)  n  k=0 hkM k! hn−kM−1 (n − k)!  .

(38)

n!/n! N  n=0 f(n)(x+M−1)  n  k=0 hkM k! hn−kM−1 (n − k)!  = N  n=0 f(n)(x+M−1) n!  n  k=0 n! (n − k)!k!hkMhn−kM−1  = N  n=0 f(n)(x+M−1) n! (hM + hM−1) n . f (x + h) = N  n=0 f(n)(x+M−1) n! (hM + hM−1) n+N n=0 hnM n!  f(n)M + O(hn+1). xM−1 f (x+h) = N  n=0 f(n)(x−M−1) n! (hM + hM−1) n+N n=0 (x + h − xM−1)n n!  f(n) M−1+ N  n=0 hnM n!  f(n)M+ M + 1 h =Mm=0hm f (x + h) = N  n=0 hn n!f (n)(x) + M  m=1 N  n=0 (x + h − xm)n n!  f(n)m+ O(hN+1). N

(39)

x x + h s1, s2, ..., sM X(s1) x X(s2) g ∈ C2(Ω \ Γ) Γ (x, x + h) X(s1), ..., X(sM) x [f](s1) [f](s2) g(x+h) = N  n=0 ||h||n n! g (n)(x)+ M  m=1 (−1)m−1 N  n=0 ||x + h − xm||n n!  g(n)(sm)+O(||h||N+1) g(n) h (−1)m−1 x σ(x) σ(x) = ⎧ ⎪ ⎨ ⎪ ⎩ 1 x ∈ Ω+, −1 x ∈ Ω.

(40)

g(x+h) = N  n=0 ||h||n n! g (n)(x)+σ(x) M  m=1 (−1)m N  n=0 ||x + h − xm||n n!  g(n)(sm)+O(||h||N+1). CgN(x, h) = σ(x) M  m=1 (−1)m N  n=0 ||hm||n n!  g(n)(sm). N g [x, x + h] h =||h|| g(x + h) = N  n=0 hn n!g (n)(x) + CN g (x, h) + O(hN+1) g(x − h) = N  n=0 (−h)n n! g (n)(x) + CN g (x, −h) + O(hN+1). g(x + h) − g(x − h) 2h = g(x) + 1 2h  Cg2(x, h) − Cg2(x, −h)+ O(h2), g(x + h) − 2g(x) + g(x − h) h2 = g (x) + 1 h2  Cg2(x, h) + Cg2(x, −h)+ O(h). h (DXu uu)i+1 2,j =  ∂u ∂x  i+1 2,j + 1 2h  Cu2(x, hx) + Cu2(x, −hx)+ O(h2), hx = (h, 0)T 1 2h  Cu2(x, hx) + Cu2(x, −hx)

(41)

DXu uu C{DXu uu} DXu uu = ∂u ∂x + C{DX u uu} + O(h2). C{Δu uu} = 1 h2 

Cu(x, hx2 ) + Cu(x, −hx2 ) + Cu2(x, hy) + Cu(x, −hy2 )

DYu u C{DXu uun} C{DXvvvn} C{DXp uu} = 1 h  Cu2  x,h2x  − C2 u  x,−h2x  p C{DXu ppn+ 1 2} = 1 h  Cp1  x,hx 2  − C1 p  x,−hx 2  . ∂ku/∂tk ∂kp/∂tk k X(s) C{·} n + 1 uk, φk, pk−1 2, (u · ∇u)k+12 , (∇q)n+12 , (Δu)k

(42)

k ≤ n un+1 pn+12  1 ΔtIuu μ 2 Δuu  u∗ = −pn−12 x − (u · ∇u)n+ 1 2 + u n Δt +μ 2 (Δu) n+ Gn+1 2 1 μ 2 C{Δuuu∗};  1 ΔtIvv μ 2 Δvv  v∗ = −pn−y 12 − (u · ∇v)n+12 + v n Δt +μ 2(Δv) n+ Gn+1 2 2 μ 2 C{Δvvv∗}; (∇ · u) = DXp uu∗− C{DXpuu∗} + DYpvv∗− C{DYpvv∗}; Δp pφn+1= 1 Δt(∇ · u∗) + C{Δppφn+1}; un+1 = u∗ − ΔtDXupφn+1− C{DXupφn+1}; vn+1 = v∗− ΔtDYvpφn+1− C{DYvpφn+1}; pn+12 = pn−12 + φn+1−μ 2 (∇ · u) ; pn+x 12 = DXu ppn+ 1 2 − C{DXuppn+12}; pn+y 12 = DYv ppn+ 1 2 − C{DYvppn+12}; (Δu)n+1 = Δu uun+1− C{Δuuun+1}; (Δv)n+1= Δv vvn+1− C{Δvvvn+1};

(43)

(u · ∇u)n+32 = 3 2un+1  DXu uun+1− C{DXuuun+1}  +3 2Ivuvn+1  DYu uun+1− C{DYuuun+1}  12(un(DXu uun− C{DXuuun}) + Ivuvn(DYuuun− C{DYuuun})) ; (u · ∇v)n+32 = 3 2Iuvun+1  DXv vvn+1− C{DXvvvn+1}  +3 2vn+1  DYv vvn+1− C{DYvvvn+1}  12(Iu vun(DXvvvn− C{DXvvvn}) + vn(DYvvvn− C{DYvvvn})) ; u Iv u Iuv g ∈ C2(Ω \ Γ) g(x + h/2) + g(x − h/2) 2 = g(x) + 1 2  Cg1(x, h/2) + Cg1(x, −h/2)+ O(h2). Ip u Ivp Iv u Iu v Ipv Iup Ω = [0, 1] × [0, 1]

(44)

Iv u Ipu Iv p μ = 0.1 (x − 0.5)2 0.352 + (y − 0.5)2 0.252 = 1. f(s) = −10n(s). F G = 0 Γ u = 0 ∇p = F . p [p] = f · n f · n = −10 −10 C p = ⎧ ⎪ ⎨ ⎪ ⎩ C x ∈ Ω+, C + 10 x ∈ Ω−.

(45)

||E(u)|| ||E(p)|| ×10−04 ×10−03 ×10−05 ×10−03 ×10−06 ×10−04 ×10−06 ×10−05 ||E(u)|| ×10−15 ×10−16 ×10−16 ||E(v)|| ×10−15 ×10−16 ×10−16 ||E(p)|| ×10−15 ×10−15 ×10−15 N× N h = 1/N Δt = h 12×12

(46)

N = 24 N = 12

(47)

f(s, t) X(s, t) X(s, t) ∂t = u(X(s, t), t). Γ t0 + Δt t0 X(s, t0+ Δt) = X(s, t0) +  Δt 0 u(X(s, t0 + t), t0+ t)dt.

(48)

 Δt 0 u(X(s, t0 +t), t0+t)dt ≈ Δt  u(X(s, t0), t0) + u(X(s, t0+ Δt), t0+ Δt) 2  . Γn Xn k = X(sk, nΔt) s1, ..., sk Un k = u(Xkn, nΔt) Xn+1 k = Xkn+ ΔtU n k + Ukn+1 2 . Un+1 k Xkn+1 Un+1 k un+1

U

n k Un k u u v u u Xn k u Γn u u(X(s, nΔt), nΔt)

(49)

u Γ u x0 = (x0, jh) j u Γn u x0 x1 = (x0−α, jh) x2 = (x0+ β, jh) α, β > 0

u(x1) = u(x0) − αux(x0) + O(h2),

u(x0) u

C1

u(x1) = u(x0) − αux(x+0) + C1+ O(h2).

u(x1) = u(x0) −α 2  ux(x+0) + ux(x−0)+ C1 2 + O(h2). u(x2) u(x2) = u(x0) + β 2  ux(x+0) + ux(x−0)+C2 2 + O(h2), ⎛ ⎝ u(x1) u(x2) ⎞ ⎠ = ⎛ ⎝ 1 −α 1 β ⎞ ⎠ ⎛ ⎝ u(x0) (ux(x+ 0) + ux(x−0))/2 ⎞ ⎠ + 1 2 ⎛ ⎝ C1 C2⎠ + O(h2). u(x0) ⎛ ⎝ u(x0) (ux(x+ 0) + ux(x−0))/2 ⎞ ⎠ = ⎛ ⎝ 1 −α 1 β ⎞ ⎠ −1⎛ ⎝ ⎛ ⎝ u(x1) u(x2) ⎞ ⎠ − 12 ⎛ ⎝ C1 C2 ⎞ ⎠ ⎞ ⎠+O(h2). ⎛ ⎝ 1 −α 1 β ⎞ ⎠ −1 = 1 β + α ⎛ ⎝ β α −1 1⎠ , u(x0) = β(u(x1) − C1/2) + α(u(x2) − C2/2) α + β + O(h 2).

(50)

u Γ u u(X(s, t), t) u(X(s, nΔt), nΔt) Γ u v Un(s) = u(X(s, nΔt), nΔt) + O(h2), Un k Un k = Un(sk) = u(X(sk, nΔt), nΔt) + O(h2). Γn+1 n Γn+1 0 Γn+1 Xn+1 = Xn+ ΔtUn+ O(Δt2). Γn+1 0 Xn+1 0 = Xn+ ΔtUn. Γn+1 Γn+1 i Γn+1i+1 Γn+1 i Γn+1i+1 Xn+1 i+1 − Xin+1< ε ε Γn+1 i Γn+1i+1 Γn+1 i Γn+1i+1

(51)

i← 0 Γn+1 0 Γn+1 Xn+1 = Xn+ ΔtUn C{} Γn+1 i un+1 Un+1 un+1 Γn+1 i+1 Γn i← i + 1 Γn+1 i Γn+1i−1 (x − 0.5)2 a2 + (y − 0.5)2 b2 = 1, (u(x, 0) = 0) a = .35 + ε, b = .25 + ε ε f(s, t) = βκ(s, t)n(s, t), β

(52)

Δt = 1/32 16 × 16

(53)

p pn+12 = pn−12 + φn+1− μ 2 ∇ · u∗. [∇ · u] = O(Δt) φn+1 p v v∗ ∇ · u

(54)

u u ≈ un+1 ∇ · u u v p un+12/∂t un+1− un Δt = un+12 ∂t + O(Δt 2), u ∂u/∂t 2u/∂t2 [nΔt, (n + 1)Δt]

(55)

(i, j) T T t1, t2, ..., tm Δt x [nΔt, (n + 1)Δt] x Ω Ω+ Ω+ Ω

(56)

n+1 (i, j) T O(Δt) O(Δt) T [nΔt, (n + 1)Δt] (i, j) Γn d0 x Γn+1 d1 x u T = Δt  n + d 0 x d0x+ d1x  . O(Δt) T = Δt  n + d 0 y d0y+ d1y  + O(Δt). T = Δt  n + d 0 x/2 d0x+ d1x + d0y/2 d0y+ d1y  + O(Δt). Γn Γn+1

(57)

x = (x1, x2, (n + 1/2)Δt) O(Δt) (x, y, t) x = (x1, x2, (n+1/2)Δt) ht= (0, 0, Δt/2) g ∈ C2[Ω \ Γ] g(x + ht) = g(x) + Cg0(x, ht) + O(Δt), g(x − ht) = g(x) + Cg0(x, −ht) + O(Δt). [nΔt, (n + 1)Δt] C0 Cg0(x, ht) = ⎧ ⎨ ⎩ −σ(x − ht) [g] [(n + 12)Δt, (n + 1)Δt], 0 Cg0(x, −ht) = ⎧ ⎨ ⎩ σ(x − ht) [g] [nΔt, (n + 12)Δt], 0 . [g]+T Cg0(x, ht) [g]−T Cg0(x, −ht) g(x + ht) = g(x) + [g]+T + O(Δt), g(x − ht) = g(x) + [g]−T + O(Δt).

(58)

g(x + ht) = g(x) +Δt 2 gt(x) + Cg1(x, ht) + O(Δt2), g(x − ht) = g(x) −Δt 2 gt(x) + Cg1(x, −ht) + O(Δt2). Cg1(x, ht) = ⎧ ⎪ ⎨ ⎪ ⎩ −σ(x) ([g] + ||ht|| [g]) T ∈ [(n +12)Δt, (n + 1)Δt), 0 Cg1(x, −h) = ⎧ ⎪ ⎨ ⎪ ⎩ −σ(x) ([g] − ||ht|| [g]) T ∈ [nΔt, (n + 12)Δt), 0 . ||ht|| = ⎧ ⎪ ⎨ ⎪ ⎩ (n + 1)Δt − T ∈ [nΔt, (n + 1 2)Δt), T − nΔt , σ(x) = ⎧ ⎪ ⎨ ⎪ ⎩ σ(x − ht) ∈ [nΔt, (n + 12)Δt), −σ(x − ht) . Cg1(x, ht) = ⎧ ⎪ ⎨ ⎪ ⎩ −σ(x − ht) ([g] + ((n + 1)Δt − T ) [gt]) T ∈ [(n + 12)Δt, (n + 1)Δt), 0 Cg1(x, −ht) = ⎧ ⎪ ⎨ ⎪ ⎩ σ(x − ht) ([g] + (T − nΔt) [gt]) T ∈ [(n +12)Δt, (n + 1)Δt), 0

(59)

DT ∂/∂t DT DTu uun+ 1 2 = u n+1− un Δt = ∂un+12 ∂t + C{DT u uun+ 1 2} + O(Δt). C{DTu uun+ 1 2} = 1 Δt  Cu(x, ht) − C1 u1(x, −ht). C{DTv vvn+ 1 2} ut [ut] = −(u · n) [un] . Δμun+1 2 Δun+1 2 μ 2 

Δun+1+ Δun= μΔun+1

2 + μ 2  [Δu]+T + [Δu]−T  + O(Δt). n n + 1/2 (u · ∇u)n+12 (u · ∇u)n+1 2 = (u · ∇u)n+ O(Δt). n− 1 n

(60)

(u · ∇u)n+1 2 = ⎧ ⎨ ⎩ (u · ∇u)n [n − 1, n], 3 2(u · ∇u)n−12(u · ∇u)n−1 . . n n + 1/2 C

C =− [u · ∇u]T = −u · [∇u]T .

pn+12 = pn−12 + O(Δt). (x1, x2) n− 1/2 n + 1/2 [(n − 1/2)Δt, (n + 1/2)Δt] [nΔt, (n + 1)Δt] ¯ T ∈ [(n − 1/2)Δt, (n + 1/2)Δt] ¯ x = (x1, x2, nΔt) [p]+T¯ = C0 g( ¯x, ht) [p]−T¯ = C0 g( ¯x, −ht). pn+12 = pn−12 +[p]+T¯ − [p]−T¯+ O(Δt). pn+12 = pn−12 + φn+1−μ 2(∇ · u∗), pn+12 = pn−12 +[p]T+¯ − [p]−T¯+ φn+1− μ 2(∇ · u∗).

(61)

n+1 uk, φk, Δuk k ≤ n (u · ∇u)n+12  1 ΔtIuu μ 2 Δuu  u∗ = −pn−x 12 − (u · ∇u)n+12 + u · [∇u] T +un Δt + μ 2 (Δu) n+ Gn+12 1 μ 2 C{Δuuu∗} + C{DTuuun} −μ2 [Δu]+T + [Δu]−T;  1 ΔtIvv μ 2 Δvv  v∗ = −pn−y 12 − (u · ∇v)n+12 + u · [∇v] T +vn Δt + μ 2 (Δv) n+ Gn+1 2 2 μ 2 C{Δvvv∗} + C{DTvvvn} −μ2 [Δv]+T + [Δv]−T; (∇ · u) = DXp uu∗− C{DXpuu∗} + DYpvv∗− C{DYpvv∗}; Δp pφn+1= 1 Δt(∇ · u∗) + C{Δppφn+1}; un+1 = u∗ − ΔtDXupφn+1− C{DXupφn+1}; vn+1 = v∗− ΔtDYvpφn+1− C{DYvpφn+1}; pn+12 = pn−12 +[p]T+¯ − [p]−T¯+ φn+1− μ 2 (∇ · u) ; pn+x 12 = DXu ppn+ 1 2 − C{DXu ppn+ 1 2}; pn+y 12 = DYv ppn+ 1 2 − C{DYv ppn+ 1 2};

(62)

(Δu)n+1 = Δu uun+1− C{Δuuun+1}; (Δv)n+1= Δv vvn+1− C{Δvvvn+1}; n n + 1 (u · ∇u)n+32 = 3 2un+1  DXu uun+1− C{DXuuun+1}  +3 2Ivuvn+1  DYu uun+1− C{DYuuun+1}  12(un(DXu uun− C{DXuuun}) + Ivuvn(DYuuun− C{DYuuun})) ; (u · ∇v)n+32 = 3 2Iuvun+1  DXv vvn+1− C{DXvvvn+1}  +3 2vn+1  DYv vvn+1− C{DYvvvn+1}  12(Iu vun(DXvvvn− C{DXvvvn}) + vn(DYvvvn− C{DYvvvn})) ; n n + 1 (u · ∇u)n+32 = un+1DXu uun+1− C{DXuuun+1}  + Iv uvn+1  DYu uun+1− C{DYuuun+1}  ; (u · ∇v)n+32 = Iu vun+1  DXv vvn+1− C{DXvvvn+1}  + vn+1DYv vvn+1− C{DYvvvn+1}  ;

(63)
(64)

u p

u φn+1

(65)
(66)
(67)
(68)
(69)

u u φn+1 φn+1 ∈ C2(Ω) u un+1

Γ

Ω

Ω

ε

Γ

+ε

Γ

ε ε ε Ωε Γ Ωε Γ ∂Ωε Ωε Γε+ Γε− g

(70)

[g] (s) = lim ε→0+(g(X(s) + εn(s)) − g(X(s) − εn(s))) , lim ε→0+  ∂Ωε g(X(s))dˆs =  Γ [g] (s)dˆs, ˆs X(s) X(0) s ϕ ∈ C2(Ω) ∇ · Du Dt + Δp = ∇ · μΔu + ∇ · G + ∇ · F . μ ∇ · μΔu = μΔ(∇ · u) = 0. ϕ ∈ C2(Ω) Ωε lim ε→0+  Ωε  ∇ · Du Dt + Δp − ∇ · F − ∇ · G  ϕdx = 0. ϕΔp =∇ · (ϕ∇p) − ∇p · ∇ϕ = ∇ · (ϕ∇p) − ∇ · (p∇ϕ) + pΔϕ. lim ε→0+  Ωε ϕΔpdx = lim ε→0+  Ωε (∇ · (ϕ∇p − p∇ϕ) + pΔϕ) dx.

(71)

pΔϕ limε→0+Ω εpΔϕdV = 0 lim ε→0+  Ωε ϕΔpdx = lim ε→0+  ∂Ωε (ϕ∇p − p∇ϕ) · ndˆs. lim ε→0+  Ωε ϕΔpdx =  Γ [pn] ϕ − [p] ϕndˆs. G lim ε→0+  Ωε (∇ · G)ϕdx = lim ε→0+  Ωε (∇ · (ϕG) − G · ∇ϕ) dx. ϕ∈ C2(Ω) G · ∇ϕ lim ε→0+  Ωε G · ∇ϕdx = 0. G·∇ϕ lim ε→0+  Ωε (∇ · ϕG)dx = lim ε→0+  Ωε ϕG · ndˆs. lim ε→0+  Ωε (∇ · G)ϕdx =  Γ ϕ [G · n] dˆs. Du/Dt G lim ε→0+  Ωε ϕ∇ ·Du Dtdx =  Γ ϕ  Du Dt · n  dˆs. lim ε→0+  Ωε ϕ∇ · Du Dtdx = 0.

(72)

F  Ωε ϕ∇ · F dx =  Ωε ∇ · (ϕF )dx −  Ωε F · ∇ϕdx.  Ωε ∇ · (ϕF )dx =  ∂Ωε ϕF · ndˆs. ε > 0 0 F Γ  Ωε F · ∇ϕdx =  Ωε (F · n) ϕndx +  Ωε (F · τ ) ϕτdx. F F (x) =  Γf(ˆs)δ(x − X(ˆs))dˆs,  Ωε (F · n) ϕndx =  Ωε  Γf(s)δ(x − X(s))dˆs  · nϕndx =  Γ(f · n)ϕn dˆs.  Ωε (F · τ )ϕτ =  Γ(f · τ )ϕτ dˆs,  Γ(f · τ )ϕ s, () ϕ(s) = dϕ(X(s)) dˆs  dX(s)s . Γ  Γ(f · τ )ϕ s = Γ(f · τ ) ϕdˆs. lim ε→0+  Ωε ϕ∇ · F dx =  Γ  (f · τ )− (f · n) ϕndˆs

(73)

 Γ  [pn] − [G · n] − (f · τ )ϕ + (f · n − [p]) ϕndˆs = 0. ϕ(x) ∈ C2(Ω) ϕ(X(s)) ϕn(X(s)) C2(Γ) [pn] = [G · n] + (f · τ ), [p] = f · n.

n

τ

η

ξ

χ(η)

(x, y)

(0, 0)

Γ

Ω

Syst`eme de coordonn´ees local

(η, ξ) X(s) n(s) τ (s) s X(s) (η, ξ) τ (s) n(s)

(74)

Γ χ(η) p(x) dp = ∂p ∂η + χ (η)∂p ∂ξ d2p 2 = 2p ∂η2 + χ (η)∂p ∂ξ + 2χ (η) 2p ∂η∂ξ + (χ (η))2 2p ∂ξ2. χ(0) = χ(0) = 0 η = 0 κ = χ(0) dp   η=0 = ∂p ∂η   η=0 , d2p 2   η=0 = 2p ∂η2   η=0 + κ∂p ∂ξ   η=0 . [p] = (f · n) = [pη] . p [p] = f · n, [pξ] = [G · n] + (f · τ ), [pη] = (f · n). u ϕ C2(Ω) Ωε lim ε→0+  Ωε  Du Dt + ∇p − μΔu − F − G  ϕdx = 0.

(75)

Du/Dt lim ε→0+  Ωε Du Dtϕdx = 0. G lim ε→0+  Ωε Gϕdx = 0. (∇p) ϕ = ∇ (pϕ) − p∇ϕ lim ε→0+  Ωε (∇p) ϕdx = lim ε→0+  Ωε ∇ (pϕ) dx − lim ε→0+  Ωε p∇ϕdx. p ∇ϕ 0 lim ε→0+  Ωε (∇p) ϕdx = lim ε→0+  Ωε ∇(pϕ)dx = lim ε→0+  ∂Ωε ndˆs =  Γ[p] nϕdˆs. ϕΔu ϕΔp lim ε→0+  Ωε ϕΔudx =  Γ[un] ϕ − [u] ϕn dˆs. F (x) =Γδ(x − X(s))f(s)dˆs lim ε→0+  Ωε F (x)ϕdx =  Γf(s)ϕdˆs. ϕ∈ C2(Ω)  Γ(([p] n − [μun] − f(s)) ϕ + [μu] ϕn) dˆs = 0, [μu] = 0 [p] n − [μun] − f = 0. [p] = f · n − [μun] = f − (f · n) n, (ξ, η) [μuξ] = − (f · τ ) τ .

(76)

[μuξ] = − ((f · τ ) τ ) = [μuξη] .

τ = κn

[μuξη] = −(f · τ )τ − κ(f · τ )n.

[μu] = 0 [μu] = 0 = [μuη]

[μu]= 0 = [μuηη] + κ [μuξ] . [μuξ] = − (f · τ ) τ [μuηη] = κ (f · τ ) τ . [μuξξ]  Du Dt  + [∇p] = [μΔu] + [F ] + [G] . [F ] = 0 F Du/Dt [μuξξ] [μuξξ] = − [μuηη] + [∇p] − [G] . [μuξξ] = −κ(f · τ )τ + (f · τ )n + (f · n)τ − [G · τ ] τ .

(77)

[ut] [u] = 0

D

Dt[u] = 0 = [ut] + u · [∇u] , u · [∇u] = (u · n) [uξ] [uη] = 0 [ut] = − (u · n) [uξ] .

u

u un+1  u ξξ  n + 1/2 u u− un Δt +  un+1 2 · ∇  un+1 2+∇pn−12 = μ 2 (Δun+ Δu)+Fn+ 1 2+Gn+12. u  pn−12  n − 12μunξ 1 2  μuξ− f = 0 1 2[μu] + 1 2[μun] = 0. pn−12 un u Γn−1 2 Γn

(78)

Γn+1 pn−1 2 Γn+1 pn−12 un+12 un un+1 p(x, (n − 1/2)Δt) = ⎧ ⎨ ⎩ p+(x, (n − 12)Δt) Γn−12, p−(x, (n − 12)Δt) Γn−12, p+, p ∈ C∞(Ω) pn−12 n pn−12 = ⎧ ⎨ ⎩ p+(x, (n −12)Δt) Γn+1, p(x, (n −12)Δt) Γn+1.  pn−12  Γn+1  pn−12  =pn+1+ O(Δt). n + 1 fn+1 f  μuξ= −(f · τ )τ , [μu] = 0. [μuξ] [μu] [μu] = 0 =μu η  , [μu]= 0 =μu ηη  + κμuξ,  μuξ = ((−f · τ )τ ) =μuξη.

(79)

n Γn+1 2  μuη= 0,  μuηη= κ(f · τ )τ ,  μuξη= ((−f · τ )τ ).  u ξξ   u− un Δt 

+ u · [∇u] + [∇p] =μ2(Δu + Δu)+ [F ] + [G] .

 u+ u Δt  = 0 [F ] = 0, F u · [∇u] = (u · τ ) [uη] + (u · n) [uξ] = (u · n) [uξ]

(80)

[uη] = 0.  μuξξ  μuξξ = −μuηη− [μuηη] − [μuξξ] + 2 (u · n) [un] + 2 [∇p] − 2 [G] . [μuξξ] = − [μuηη] + [∇p] − [G] ,  μuξξ = − [∇p] + [G] −μuηη+ 2 (u · n) [uξ] + 2 [∇p] − 2 [G] ,  μuηη= κ(f ·τ )τ [μuξ] = −(f ·τ )τ  μuξξ =  −2u · n μ − κ  (f · τ )τ + [∇p] − [G] .  μuξξ= [μuξξ] − 1 μ(2u · n)(f · τ )τ . u un+1

φ

n+1 φn+1 ∈ C2(Ω) u φn+1 φn+1 u = un+1+ Δt∇φn+1. [u] = [u] + Δt∇φn+1. [u] = [u] = 0  φn+1ξ = 0,  φn+1η = 0..

(81)

 φn+1ξη  = 0  φn+1ηη = 0. [∇ · u] = [∇ · u] + ΔtΔφn+1, ∇ · u = 0 u η  = 0 ΔtΔφn+1=u ξ  · n.  φn+1ηη = 0  φn+1ξξ = 1 Δt  u ξ  · n.  u ξ   u ξ  · n = 0  φn+1ξξ = 0. [p] = [p] +φn+1 Δt 2 μ  Δφn+1.  φn+1 = 1 2  μuξ· n = 0. φn+1 ∈ C2(Ω)

Références

Documents relatifs

[ 29 ] have carried out the numerical simulations by coupling the SPH method for the fluid with the FE method for the structure, which is quite similar with the proposed method in

RAYONNEMENT ACOUSTIQUE D’UNE COQUE CYLINDRIQUE INFINIE PÉRIODIQUEMENT RAIDIE, IMMERGÉE DANS UN FLUIDE LOURD ET.. SUBISSANT DES

RAYONNEMENT ACOUSTIQUE D’UNE COQUE CYLINDRIQUE INFINIE PÉRIODIQUEMENT RAIDIE, IMMERGÉE DANS UN FLUIDE LOURD PAR UNE MÉTHODE D’ÉQUATIONS INTÉGRALES..

Nous nous plaçons dans une situation aussi simple que possible. Tout d’abord, nous considérons qu’un seul solide se trouve à l’intérieur de la cavité et que celui-ci a une

On cherche à déterminer une forme de profil qui minimise l’élévation maximale de la surface libre dans le domaine de calcul, en partant d’une forme initiale NACA 0012.. Une

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

In Chapter 6 , by adapting the techniques used to study the behavior of the cooperative equilibria, with the introduction of a new weak form of MFG equilibrium, that we

La légitimité d’une pratique, comme celle du port du foulard par une parlementaire, doit dès lors être appréciée non seulement sous l’angle de sa conformité aux idéaux