• Aucun résultat trouvé

Investigation of the thermophysical properties of binary system CO 2 and Hydro-fluoro-olefins

N/A
N/A
Protected

Academic year: 2021

Partager "Investigation of the thermophysical properties of binary system CO 2 and Hydro-fluoro-olefins"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01633874

https://hal-mines-paristech.archives-ouvertes.fr/hal-01633874

Submitted on 13 Nov 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Investigation of the thermophysical properties of binary system CO 2 and Hydro-fluoro-olefins

P.-A Artola, B. Rousseau, R Fauve, C. Houriez, E. El Ahmar, C Coquelet

To cite this version:

P.-A Artola, B. Rousseau, R Fauve, C. Houriez, E. El Ahmar, et al.. Investigation of the thermo-physical properties of binary system CO 2 and Hydro-fluoro-olefins. ESAT 2017, May 2017, Bucarest, Romania. �hal-01633874�

(2)

,

Investigation of the thermophysical properties of binary system CO

2

and Hydro-fluoro-olefins

P.-A. Artola

1

, B. Rousseau

1

, R. Fauve

1,2

, C. Houriez

2

, E. El Ahmar

2

, C. Coquelet

2

1Laboratoire de Chimie Physique UMR 8000 CNRS, Bˆatiment 349, Universit´e Paris Sud, 91405 Orsay, France 2MINES ParisTech, PSL - Research University, CTP – Centre for Thermodynamics of Processes, 35 rue Saint Honor´e, 77300

Fontainebleau, France

,

Introduction

I In the context of reduction of global greenhouse gas emissions, the development and study of refrigerants with low Global

Warming Potential (GWP) is crucial. Fluorinated gases are

currently considered as promising low-GWP refrigerants. These compounds are used as pure or as components of refrigerant blends. The knowledge of their thermophysical properties is of great importance in the design and optimization process of air-conditioning and refrigeration systems.

I In the following, we illustrate how molecular simulations are used to predict relevant properties for refrigerants fluid

mixtures. The studies are applied to the mixture

CO2+CH2CFCF3 (R1234yf). Equilibrium properties, including liquid-vapour equilibrium, phase density, enthalpy of

vaporization, enthalpy of mixing, specific heat, are obtained using Monte Carlo simulations. Transport properties (viscosity and thermal conductivity) are predicted by means of molecular simulation techniques.

Molecular Simulations

I Systems studied

Carbon dioxide 2,3,3,3 tetrafluoropropene (R1234yf)

I Force fields

I CO2: TraPPE model1. All atom model, rigid molecule, multipole described with partial charges

I R1234yf: Raabe model2. All atom model, flexible molecule, multipole described with partial charges

I Monte Carlo simulations

I Gibbs code (CNRS-UPSud/IFPEN)3;4

I ELV: Gibbs ensemble5 at constant pressure6

I Molecular Dynamics simulations

I Newton code (CNRS-UPSud)7

I Viscosity: equilibrium molecular dynamics and Green-Kubo relationship I Thermal conductivity: non equilibrium Heat Exchange Algorithm8

Conclusion

I Molecular simulation is able to predict several thermophysical properties for the CO2-R1234yf mixture

I New numerical data have been produced for thermal

conductivity. Predicted values show a reasonnable agreement with RefProp data for pur components.

I The full set of data can be used to compute quantities of

interest for applications in cooling and heating devices such as the Prandtl number (Cpη/λ)

References

[1] Potoff, J. J.; Siepmann, J. I. AIChE Journal 2001, 47, 1676–1682.

[2] Raabe, G.; Maginn, E. J. The Journal of Physical Chemistry B 2010, 114, 10133–10142.

[3] Ungerer, P.; Tavitian, B.; Boutin, A. Applications of molecular simulation in the oil and gas industry: Monte Carlo methods; Editions Technip, 2005.

[4] Medea® Gibbs - Materials Design Web Page, http://www.materialsdesign.com/medea/gibbs. [5] Panagiotopoulos, A. Z. Molecular Physics 1987, 61, 813–826.

[6] Panagiotopoulos, A.; Quirke, N.; Stapleton, M.; Tildesley, D. Molecular Physics 1988, 63, 527–545. [7] Van-Oanh, N.-T.; Houriez, C.; Rousseau, B. Phys. Chem. Chem. Phys. 2010, 12, 930–936.

[8] Hafskjold, B.; Ikeshoji, T.; Ratkje, S. Molecular Physics 1993, 80, 1389–1412.

[9] Juntarachat, N.; Valtz, A.; Coquelet, C.; Privat, R.; Jaubert, J.-N. International Journal of Refrigeration 2014, 47, 141–152.

[10] Artola, P.; Rousseau, B.; Jaubert, J.; Paricaud, P.; Chapoy, A.; Coulier, Y.; Coxam, J. Y.; Bouteiller, P.; Tobaly, P.; Masella, M.; Houriez, C.; Coquelet, C. Investigation of the thermophysical properties of binary system R744 + R1234yf. TPTPR2017 - 5th IIR International Conference on Thermophysical Properties and Transfer Processes of Refrigerants, April 23-26, Seoul, South Korea, 2017.

[11] Lagache, M.; Ungerer, P.; Boutin, A.; Fuchs, A. H. Physical Chemistry Chemical Physics 2001, 3, 4333– 4339.

[12] Kano, Y.; Kayukawa, Y.; Fujii, K.; Sato, H. International Journal of Thermophysics 2010, 31, 2051–2058. [13] Daivis, P. J.; Evans, D. J. The Journal of Chemical Physics 1994, 100, 541–547.

Liquid-vapour equilibrium 0.0 0.2 0.4 0.6 0.8 1.0 xCO 2 , yCO 2 0.0 1.0 2.0 3.0 4.0 5.0 P [MPa]

Exp. Juntarachat et al. 2014 PR78 Gibbs ensemble MC SAFT 0.0 0.2 0.4 0.6 0.8 1.0 xCO 2 , yCO 2 0 50 100 150 200

Molar Enthalpy [kJ.mol

-1 ] Liquid phase Vapour phase 0 0.2 0.4 0.6 0.8 1 xCO 2 10 12 14 16 18 20 ∆ H(x,T) [kJ.mol -1 ]

ELV curve (left) at 283 K including experimental data9, PR78 correlation (with adjustable kij), Multipolar SAFT-Mie (courtesy P. Paricaud, ENSTA ParisTech, Univ. Paris-Saclay)10 and GIBBS predictions. Enthalpy of liquid and gas phases along the bubble and dew curves (right). Insert: enthalpy difference versus composition.

Specific Heat • T = 283 K, P = 6 MPa 0 0.2 0.4 0.6 0.8 1 xCO 2 110 120 130 140 150 160 Cp [J.mol -1 .K -1 ] Monte Carlo RefProp 9.1

I Specific heat at constant pressure Cp(P, T ) = Cpid(T ) + Cpres(P, T )

I Cpres from fluctuations in NpT ensemble11 Cpres(P, T ) = 1 kBT2  hUexHi − hUˆ exih ˆHi  + P kBT2  hV ˆHi − hV ih ˆHi  − NkB

I Cpid(T ) from NIST (CO2) and Kato et al.12 (R1234yf) using speed of sound measurements Mixing enthalpy • T = 283 K, P = 6 MPa 0 0.2 0.4 0.6 0.8 1 xCO 2 0 0.2 0.4 0.6 0.8 1

Enthalpy of mixing [kJ.mol

-1 ] Experiments Monte Carlo SAFT 0 0.2 0.4 0.6 0.8 1 xCO 2 0 40 80 120 Enthalpy [kJ.mol

-1 ] I Experimental data obtained using a

customized BT2-15 calorimeter from Setaram, courtesy J.Y. Coxam (Univ. Blaise Pascal, Clermont-Ferrand)10

I SAFT model: Multipolar SAFT-Mie model, courtesy P. Paricaud (ENSTA ParisTech, Univ. Paris Saclay)10

I Monte Carlo simulations in the NpT ensemble Transport properties • T = 283 K, P = 6 MPa 0 0.2 0.4 0.6 0.8 1 xCO 2 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 η [mPa.s] EMD, 283 K - 6.0 MPa Raabe, 313 K - 3.5 MPa Raabe, 273 K - 3.5 MPa RefProp, 283 K - 6.0 MPa • T = 283 K, P = 6 MPa 0 0.2 0.4 0.6 0.8 1 xCO 2 70 80 90 100 110 120 λ [mW.m -1 .K -1 ] NEMD RefProp 9.1 0 0.2 0.4 0.6 0.8 1 800 900 1000 1100 1200 ρ [kg.m -3 ] η = V 10kBT Z ∞ 0 hσ(t) · σ(0)iNVT with13 σ =  σxx, σyy, σzz, √2σxy, √2σxz, √2σyz  λ = − Jq,z ∇T = − ∆K LxLyδt Lz ∆T

with ∆K the kinetic energy exchanged be-tween hot and cold boundary layers8

Références

Documents relatifs

We have produced two types of molecular simulation data for the mixture CO 2 +R1234yf: isothermal vapor-liquid equilibrium data and mixing and transport properties

The first types correspond to the radiometric methods that are based on the measurement of the thermal emission, generally in the infrared range, emitted as a response to the

In order to grasp those dynamics, we analyzed two particular dimensions: the relational structure of the group of stakeholders and their contours of involvement

In the second way, measured apparent diffusion coefficient (also called moisture diffusivity) curves are fitted over a large range of relative humidity (RH) by a general

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The continuous emergence of new materials with complex structures (anisotropic, multilayers, porous, and heterogeneous) in various industrial sectors, notably in aeronautics,

Énoncés de manière très rapide, ponctués de silences, les noms de lieux sont évoqués pour rappeler les morales qui leur sont afférentes : ce sont des « images précises » (p.