• Aucun résultat trouvé

Crystallization of methane hydrates from an emulsion in a flowloop: Experiments in a gas-liquid-liquid system in the gas-lift

N/A
N/A
Protected

Academic year: 2021

Partager "Crystallization of methane hydrates from an emulsion in a flowloop: Experiments in a gas-liquid-liquid system in the gas-lift"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01677837

https://hal.archives-ouvertes.fr/hal-01677837

Submitted on 8 Jan 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Crystallization of methane hydrates from an emulsion in a flowloop: Experiments in a gas-liquid-liquid system in

the gas-lift

Trung-Kien Pham, Ana Cameirao, Herri Jean- Michel, Philippe Glenat

To cite this version:

Trung-Kien Pham, Ana Cameirao, Herri Jean- Michel, Philippe Glenat. Crystallization of methane hydrates from an emulsion in a flowloop: Experiments in a gas-liquid-liquid system in the gas-lift. 16ème Congrès de la Société Française de Génie des Procédés (SFGP 2017NANCY), Jul 2017, Nancy, France. Ed. SFGP, Paris, France, Livre des résumés SFGP 2017, 2017, Récents Progrès en Génie des Procédés. �hal-01677837�

(2)

CRYSTALLIZATION OF METHANE HYDRATES FROM AN EMULSION IN A FLOWLOOP:

EXPERIMENTS IN A GAS-LIQUID-LIQUID SYSTEM WITH A GAS-LIFT

Trung-Kien PHAMa,c, Ana CAMEIRAOa,*, Jean-Michel HERRIa, Philippe GLENATb

aGas Hydrate Dynamics Centre, Ecole Nationale Supérieure des Mines de Saint-Etienne, 158 Cours Fauriel, Saint-Etienne 42023, France bTOTAL S.A., CSTJF, Avenue Larribau, Pau Cédex 64018, France

cHanoi University of Mining and Geology, Duc Thang, Bac Tu Liem, Ha Noi, Vietnam (*) cameirao@emse.fr

[1]. A.Melchuna, A.Cameirao, JM.Herri, P.Glenat, “Topological modeling of methane hydrate crystallization from low to high water cut emulsion systems”, Fluid Phase Equilibria, Volume 413, 15 April 2016, P.158-169

[2]. Fidel-Dufour, Annie, Frédéric Gruy, and Jean Michel Herri. 2006. “Rheology of Methane Hydrate Slurries during Their Crystallization in a Water in Dodecane Emulsion under

Flowing.” Chemical Engineering Science 61(2): 505–15.

[3]. Leba, Hung et al. 2010. “Chord Length Distributions Measurements during Crystallization and Agglomeration of Gas Hydrate in a Water-in-Oil Emulsion: Simulation and

Experimentation.” Chemical Engineering Science 65(3): 1185–1200. [4]. PVM Mettler Toledo® Manual

[5]. FBRM Mettler Toledo® Manual

[6]. http://oilstates.com/offshore/subsea-pipeline-products/ (13/06/2017)

[7]. https://www.thejournalofindustryandtechnology.biz/page66.html (14/06/2017)

The FBRM probe enables to monitor the crystallization by following the size of droplets, particles and agglomerates with chord length distribution measurements during time.

Different morphologies of hydrate particles during crystallization were observed with PVM.

Hydrate deposition on the pipe wall was observed with the FBRM, the PVM and the density measurements.

Future work will be modelling of gas hydrate formation, agglomeration, deposition and plugging combined

with flow pattern.

- Offshore systems operate at low temperature and high pressure which favor conditions for gas hydrate formation and agglomeration.

- Gas hydrate is a serious issue in flow assurance; it may cause many troubles, especially, plugging in oil and gas pipelines.

- The previous work (Melchuna 2016, [1]) allowed to construct a preliminary model of understanding of the crystallization under flow.

- Science: understand the mechanisms of methane hydrate crystallization, agglomeration together with slurry transport and deposition in oil and gas pipelines at high water cut with a gas-lift.

- Industry: understand the properties and role of commercial additives (anti-agglomerants - AA-LDHIs) in dispersing hydrate particles to prevent plugging in offshore pipelines.

Experimental procedure and apparatus

- Emulsions formed by water (with and without salt) and oil (Kerdane®) are charged into the flow loop with and without anti- agglomerants (AA-LDHIs).

- The system is cooled down until 4-5oC and pressurized up to 75 bar by the injection

of methane for gas hydrate formation, agglomeration and deposition study.

- Flowrate: 150-400 L/h; water volume fraction (80-100%); dosage of AA-LDHI: 0; 0.01; 0.05; 0.5; 1.0 and 2.0%; salt: 0 and 30g per liter of water.

- Probes used: Particle Video Microscope (PVM, [4]); Focus Beam Reflectance

Measurement (FBRM, [5]); Attenuated Total Reflection (ATR, [7]); pressure drop, flowrate and density measurement.

Figure 5 – Typical pressure drop (in horizontal line), pressure drop in the separator (PD4) and pressure profile during a crystallization experiment for mixture of 80%WC at 400L/h and 85%LV.

Figure 4 – Typical temperature (T7), flowrate and density profile during a crystallization experiment for mixture of 80%WC at 400L/h and 85%LV.

Figure 6 – PVM images of gas hydrate formation for mixture of 80%WC at 400L/h and 85%LV [a) 102.8 min; b) 131.8 min; c) 145.9 min; d) 270.8 min].

Figure 7 – FBRM chord counts as function of hydrate volume for experiment of 80%WC at 400L/h and 85%LV.

Figure 1 – Subsea pipelines [6].

Figure 3 – Archimède flowloop photos and schemas [1-2-3].

0 20 40 60 80 100 120 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 0,00 5,00 10,00 15,00 20,00 25,00 30,00 FBRM Chor d Coun ts (#) ( 10 0 -10 00 µm ) FBRM Chor d Coun ts (#) ( 0 -10 0µm) Hydrate Volume (%) FBRM (0-10µm) FBRM (10-100µm) FBRM (100-1000µm)

Beginning of hydrate formation PLUG

Gas-Lift a) b) c) d) 0 200 400 600 800 1000 1200 0 1 2 3 4 5 6 0 50 100 150 200 250 300 Flowr at e (L/h) /Density (kg /m3) Tem per atu re C) Time (min) T7 Flowrate Density

Beginning of hydrate formation PLUG

Gas-Lift 0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 120 140 0 50 100 150 200 250 300 Pr es sur e Dr op in the horiz on tal lin e (b ar) Pr es sur e (b ar)/P res sur e Dr op in t he separ at or , PD4 (mbar ) Time (min)

PD4 Pressure Pressure Drop

Beginning of hydrate formation

PLUG

Gas-Lift

Gas-Lift

1. Introduction

2. Objective

4. Experimental Results

3. Materials and Methods

5. Conclusions & Perspectives

6. References

Figure 2 – Topological model of crystallization under flow [1].

PVM Probe

FBRM Probe ATR Probe

Références

Documents relatifs

For all these positions, the analysis of the obtained channel parameters (path loss, RMS delay spread and coherence bandwidth) was performed by comparing the direct orientation

مقر موسرلدبا تردص ،لياعلا ميلعتلا في دادعلاا تاسسؤم نم عونلا اذبه ةصاخ ةيلؽداكأو ةيرادإ تاميظنت تعضو 8741 / 96 موسرلداو ،ةينانبللا ةعمالجا في ايجولونكتلل

This paper examines how innovation intermediaries could interact with other important actors identi fied by the MLP framework, the niche actors and regime actors, to create niches

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

D'autres ont imputé cette comorbidité à la présence de facteurs sociaux, également communs aux deux troubles (Petry et al., 2005). Il est donc possible que la

Sur la base d’une enquête nationale auprès des Missions interservices de l’eau (MISE) et de trois monographies départementales, cet article rend compte des acteurs impliqués et de

A pesar de haber sido realizada por sujetos no fronterizos (habitantes de la frontera México-Estados Unidos), esta cinta es marginal y fronteriza en tanto que

Keywords: Shem Tov Ibn Falaquera, translator, quotations, Sefer ha-ma‘alot, Iggeret ha- ḥ alom, Moreh ha-Moreh, Letter regarding the Guide. Résumé : Shem Tov Ibn Falaquera