• Aucun résultat trouvé

Efficient computation of genomically-enhanced inbreeding coefficients

N/A
N/A
Protected

Academic year: 2021

Partager "Efficient computation of genomically-enhanced inbreeding coefficients"

Copied!
1
0
0

Texte intégral

(1)

  Inbreeding  coef-icient    (Wright,  1922)  is  half  

of  the  relationship  coef-icient  between   parents  

  Genomic  relationships  are  created  using  

dense  genotypes  (e.g.  Leutenegger  et  al.,  2006;   VanRaden,  2008)  

  Legarra  et  al.  (2009)  proposed  a  method  

to  combine  pedigree-­‐based  and  genomic   relationships:  

     

G=  genomic  relationship  matrix  

A=  pedigree-­‐based  relationship  matrix  (indices  1  and  2  

respectively  for  non-­‐genotyped  and  genotyped  animals)  

H  =  combined  relationship  matrix  

Ef-icient  computation  of  genomically-­‐enhanced    

inbreeding  coef-icients

 

 

P.  Faux  &  N.  Gengler  

   

 

 University  of  Liege,  Gembloux  Agro-­‐Bio  Tech,  Department  of  Agricultural  Science  –  Gembloux,  Belgium  

Contact:  Pierre.Faux@ulg.ac.be    

 

We  acknowledge  the  Fonds  National  de  la  Recherche  Luxembourg  (FNR)  and  the  Ministry  of  Agriculture  of  the    

Walloon  Region  of  Belgium  (Service  Public  de  Wallonie  –  Direction  générale  de  l’Agriculture,  des  Ressources  naturelles   et  de  l’Environnement,  Direction  de  la  Recherche)  for  their  -inancial  support  through  the  research  projects  NextGenGES  

and  D31-­‐1274/S1&S2.  Authors  also  acknowledge  CONVIS  s.c.  for  their  collaboration  to  this  study.    

G

EMBL

O

U

X

AG

R

O

-BI

O

T

EC

H

19th  National  Symposium  on  Applied  Biological  Sciences,  Gembloux,  Belgium,  February  7th  2014  

Background

 

  In  livestock  species,  inbreeding  impacts  

animal  performances:  

  Inbreeding  depression  

  Loss  of  genetic  diversity  

  A  good  estimation  of  an  animal’s  

inbreeding  coef-icient  requires  the  

knowledge  of  both  paternal  and  maternal   lineages  

  Inbreeding  may  be  underestimated  due  to  

lacks  or  inconstancies  in  pedigree  

  Dense  genotypes  (over  50k  SNPs)  are  

genomic  -ingerprints  of  animals  that  may   help  to  overcome  underestimations  

Objective:  We  aim  to  make  an  ef-icient  use  of  

dense  genotypes  in  estimation  of  inbreeding  

coef-icients  

Conclusions  

   

Computation  of  genomically-­‐enhanced  inbreeding  

coef-icients  is  fast  and  does  not  require  high  memory  

   Use  of  genomic  information  helps  to  better  estimate  

the  inbreeding  level  of  the  whole  population

 

Material  &  Methods

 

Methods

 

Implementation

 

  Diagonal  of  H  is    1+FG  where  FG  is  the  

genomically-­‐enhanced  inbreeding   coef-icient  

  Computation  of  H  is  computationally  

demanding  beyond  10k  animals  in   population    

  quadratic  increase  of  memory  to  store  H

  cubic  increase  of  time  for  inversion  of  A22

  Tests  on  the  dairy  cattle  population  from  

Luxembourg  (397,743  animals)  

  Among  them,  440  sires  are  genotyped  

  The  method  of  Colleau  (2002)  is  used  to  compute  A22,  the  product  A12  

times  A22-1  and  the  pedigree-­‐based  inbreeding  coef-icients  

  The  method  of  Faux  and  Gengler  (2013)  is  used  to  compute  the  

inverse  of  A22

  Computations  of  H  is  restricted  to  diagonal  elements  

  Any  genomic  relationship  matrix  can  be  used  

Computation  of  pedigree-­‐based  inbreeding  coefAicients     of  all  n  animals  in  population  (n-­‐by-­‐1  vector)  

 

Loading  of  matrix  G  (n2-­‐by-­‐n2  matrix)      

Computation  of  A22  (n2-­‐by-­‐n2  matrix)   and  its  subtraction  of  G

 

Inversion  of  A22  (stored  in  the  same  matrix)    

Product  of  A12  by  A22-­‐1  (n

1-­‐by-­‐n2  matrix)  

 

Genomic  adjustment  of  the  inbreeding  coefAicients  

  H = A11 + A12A22 !1 G ! A 22

(

)

A22 !1A 21 A12A22 !1G GA22!1A 21 G " # $ $ % & ' '

Material

 

Results  

Year of birth! A v e ra g e i n b re e d in g c o e ffi c ie n t [% ]!

Figure  1.  Evolution  of  the  average  inbreeding  coef-icients  of  dairy  cattle  from  

 Luxembourg,  born  between  1980  to  2009,  considering  all  animals  with  at  least  10  

Références

Documents relatifs

For the doubling and addition steps in Miller’s algorithm for the computation of the Tate pairing, we obtain a theoretical gain up to 27% and 39%, depending on the embedding degree

Here, we completed the numerical results with addi- tional information provided by the computations: (i) on the asymptotic decay of the classical solitary waves; (ii) on the

This is an adaptation of the tabular method and depends upon computing the subset of A required to compute its diagonal.. As each animal’s pedigree is read, Equation

of disk memory is required, slowing this algorithm considerably. Known inbreeding coefficients are not recalculated.. The aim of this paper is to present a method for

In this paper, we studied the problem of identifying clustered-clumps in conser- vative degenerate strings and presented O(n +m)-time algorithms that compute the occurrences of

Instead, Ted++ opts for (i) iterating over the space of possible explanations, which is expected to be much smaller, (ii) computing partial sets of passing compatible tuples, and

The constructive policy which respects the non-redundancy property offers such a choice to the user by guiding a search toward a specific core. To this purpose, instead of starting

This amelioration makes possible the numerical computation of so- lutions of problem (1) for large number of cells in dimension two, on surfaces in R 3 and in dimension