• Aucun résultat trouvé

The effect of posterior non-fusion instrumentation on segmental shear loading of the lumbar spine

N/A
N/A
Protected

Academic year: 2021

Partager "The effect of posterior non-fusion instrumentation on segmental shear loading of the lumbar spine"

Copied!
8
0
0

Texte intégral

(1)

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in:

https://sam.ensam.eu

Handle ID: .

http://hdl.handle.net/10985/20231

To cite this version :

Yann-Philippe CHARLES, Sylvain PERSOHN, Philippe ROUCH, Jean-Paul STEIB, E.A.

SAULEAU, Wafa SKALLI - The effect of posterior non-fusion instrumentation on segmental shear

loading of the lumbar spine - Orthopaedics and Traumatology - Surgery and Research - Vol. 100,

n°5, p.461-467 - 2014

Any correspondence concerning this service should be sent to the repository

(2)

Available

online

at

ScienceDirect

www.sciencedirect.com

Original

article

The

effect

of

posterior

non-fusion

instrumentation

on

segmental

shear

loading

of

the

lumbar

spine

Y.P.

Charles

a,b,∗

,

S.

Persohn

a

,

P.

Rouch

a

,

J.-P.

Steib

b

,

E.A.

Sauleau

c

,

W.

Skalli

a

aLaboratoiredeBiomécanique,ArtsetMétiersParisTech,151,boulevarddel’Hôpital,75013Paris,France

bServicedeChirurgieduRachis,HôpitauxUniversitairesdeStrasbourg,FédérationdeMédecineTranslationnelle(FMTS),1,placedel’Hôpital,BP426,

67091StrasbourgCedex,France

cDépartementdeSantéPublique,HôpitauxUniversitairesdeStrasbourg,FédérationdeMédecineTranslationnelle(FMTS),1,placedel’Hôpital,BP426,

67091StrasbourgCedex,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Accepted27May2014 Keywords: Degenerativespondylolisthesis Facetectomy Undercuttinglaminectomy Non-fusioninstrumentation Anteriorshear

a

b

s

t

r

a

c

t

Background:Lumbarstenosisandfacetosteoarthritisrepresentindicationsfordecompressionand instru-mentation.ItisunclearifdegenerativespondylolisthesisgradeIwitharemainingdischeightcouldbean indicationfornon-fusioninstrumentation.Thepurposeofthisstudywastodeterminetheinfluenceofa mobilepediclescrewbaseddeviceonlumbarsegmentalshearloading,thussimulatingtheconditionof spondylolisthesis.

Materialsandmethods:Sixhumancadaverspecimensweretestedin3configurations:intactL4–L5 seg-ment,thenfacetectomyplusundercuttinglaminectomy,theninstrumentationwithlesion.Astaticaxial compressionof400NwasappliedtothelumbarsegmentandanteriordisplacementsofL4onL5were measuredforposterior-anteriorshearforcesfrom0to200N.Theslopeoftheloadingcurvewasassessed todetermineshearstiffness.

Results:Homogenousload-displacementcurveswereobtainedforallspecimens.Theaverageintact ante-riordisplacementwas1.2mm.Afterlesion,thedisplacementincreasedby0.6mmcomparedtointact (P=0.032).Theinstrumentationdecreasedthedisplacementby0.5mmcomparedtolesion(P=0.046). Thestiffness’swere:162N/mmforintact,106N/mmforlesion,148N/mmforinstrumentation.The differencewasnotsignificantbetweeninstrumentedandintactsegments(P=0.591).

Conclusions: Facetectomy plusundercutting laminectomy decreases segmental shear stiffnessand increasesanteriortranslationalL4–L5displacement.Shearstiffnessoftheinstrumentedsegmentishigher withthedeviceandanteriordisplacementsundershearloadingaresimilartotheintactspine.This con-ditioncouldtheoreticallybeinterestingforthesimulationofnon-fusioninstrumentationindegenerative spondylolisthesis.

©2014ElsevierMassonSAS.Allrightsreserved.

1. Introduction

Lumbar non-fusion instrumentation systems are aimed to reduce theriskof adjacentsegment degenerationsecondary to fusion [1]. Total disc replacement can be efficiently indicated in low-backpain caused bydiscopathy. Nevertheless, the load-sharingcomplexbetweenthediscand facetjointsmaylead to recidivatingpainifadditionalmoderatefacetdegenerationisnot diagnosed preoperatively [2]. This has spawned an interest in

∗ Correspondingauthorat:LaboratoiredeBiomécanique,ArtsetMétiers Paris-Tech,151,boulevarddel’Hôpital,75013Paris,France.Tel.:+33388116826; fax:+33388115233.

E-mailaddress:yann.philippe.charles@chru-strasbourg.fr(Y.P.Charles).

the development of posterior facet preserving non-fusion sys-tems,whichmaydecreasesegmentalmotionwithoutsuppressing it [3–5]. Facet resurfacing and replacement devices have been designed toaddress severe facetosteoarthritis and subsequent stenosis[6].

Instrumentationisrequiredafterfacetectomyorarthrectomy becauseofsegmentalincreaseofmotioninaxialrotationandunder shearloading[7,8].Invitrostudiesandfiniteelementmodels indi-cate that posterior non-fusiondevices could stabilizea lumbar segmentandmaintainmobilityafterpartialortotalfacetresection andlaminectomy[9–12].Firstclinicaltrialsshowedthat decom-pressionandnon-fusioninstrumentationmightimproveback-and leg-pain, and thequalityoflife indegenerative spondylolisthe-sis [13–15]. However,these devices are restricted to segments witha sufficient discheight,and it isnot cleartowhat extent http://dx.doi.org/10.1016/j.otsr.2014.05.005

(3)

462 Y.P.Charlesetal./Orthopaedics&Traumatology:Surgery&Research100(2014)461–467

Fig.1.Non-fusioninstrumentationwithpolyaxialconnectorlinkingtherodsto caudalscrews,thusallowingathree-dimensionalmovementandstabilizationafter medialfacetresection.

decompressionshouldbeperformed,sinceshearforcesare trans-mitted through the implant, which may lead to device-related complications[16].

The NeoFacetTM (Clariance, Dainville, France) represents an

implant,whichisdesignedforposteriorelementsupplementation ifafacetresectionisrequiredinadditiontoundercutting laminec-tomy.Itmightbeindicatedforlow-backpain,mainlyduetofacet osteoarthritis,andsciaticaduetolateralrecessand/orforaminal stenosis.Thissystemutilizesfourpediclescrewswithtwo angu-latedrodsfixedcranially.Thisimplantismadeofimplantablegrade metalcomponents,whichaddresstheanatomicalrequirementsof thesegmentsL3–L4andL4–L5.Traditionalpediclescrewfixation isused.Tworods(30◦ or45)areinsertedandfixedatthe

cra-nialvertebrausingpolyaxialpediclescrews.Theserodsarelinked tocaudalpediclescrewsusingapolyaxialconnectoroneachside, whichallowsmovementsinflexion-extension,lateralbendingand axialrotation.Across-linkconnectsbothrodstoeachother,thus avoidingexcessiveaxialrotation(Fig.1).Pediclescrewsare man-ufacturedof titaniumalloy.A titaniumplasma spraycoating is

appliedtotheboneinterfacesurfacesofthescrews.Theother com-ponentsoftheimplantaremanufacturedfroma wear-resistant cobalt-chromium-molybdenumalloy.

Apreviousinvitrostudydemonstratedthatthisdevicecould preserveflexibilitybetweenlumbar vertebraewhile restraining motioninaxialrotationafterfacetectomy[17].Itisalsoimportant toinvestigatetheshearbehaviorofthisimplant,whichmaybe indicatedindegenerativespondylolisthesisgradeIwitha remain-ingdischeight.Thepurposeofthisstudywastodeterminethe influence of non-fusion instrumentation on a lumbar segment undershearloading,thussimulatingtheconditionsof degener-ativespondylolisthesistreatedbyfacetectomyplusundercutting laminectomy.

2. Materialsandmethods

Sixfresh-frozenhumancadavericL4–L5spinesegmentswere tested.Theaverageageofthedonorswas73.8yearsandranged from63to84years.Therewere5malesand1female.The speci-menswerefreshlydissected,sealedindoubleplasticbags,frozen, andstoredat−20◦Cuntiltesting.Thespecimenswerethawedto

6◦C12to14hoursbeforestartingthepreparationprocess.Soft

tis-sueswereremoved,leavingallligaments,jointcapsules,discsand bonystructuresintact.Spinaldeformities,damageorsevere degen-erationofthediscsandfacetjointswereexcludedmacroscopically andradiographically.Mediandischeightswere≥7mmonlateral radiographs.Theexperimentwasperformedatroomtemperature, whileusingasalinesolution(NaCl0.9%)tomoisturethedisc.

ThecranialhalfoftheL4vertebralbodyandthecaudalhalfof theL5vertebralbodywereembeddedin2metalcontainersusing polymethylmetacrylatecement(Technovit3040;Haerus,Hanau, Germany).ThemedianplaneoftheL4–L5discwasalignedwith ananteriorinclinationof10◦withregardtothehorizontalplane,

thusreproducingitssagittalalignmentinvivo.Biplaneradiographs wereusedtochecktheorientationofthespecimen.Shear load-ingtestswereconductedinaspecificspine-testingdevicethatwas designedforthispurpose.Thecaudalcontainer,fixedonL5,was rigidlyscrewedtoatable,whilethecranialcontainer,fixedonL4, wasmountedtoarail,allowingtranslationinthesagittalplane. Acompressivepreloadof400Nwasappliedtothemotion seg-ment[10,11,18,19].LoadswereappliedtoL4usingdeadweights placedattheendofloadingbars,cablesandpulleys,thus induc-ingananteriortranslationofL4onL5(Figs.2and3).Thissystem

Fig.2.ExperimentalsetupforinvitrosheartestingoftheL4–L5segment,withamobilerailfixedtoL4,alineartransducerformeasurementsoftranslationofL4onL5 obtainedbyanteriortractionviaacableandpulleysystemattachedtotherail.

(4)

Fig.3. InstrumentedL4–L5specimeninthespine-testingdevice.

Fig.4.LesionappliedtoL4–L5bymedialfacetectomyplusundercutting laminec-tomy.

allowedapplyingquasi-staticforcesinstepsof10N,withan inter-valof15secondsbetweeneachstep,untilamaximumof200N wasreached.Themaximalanteriordisplacementandbackto neu-tralpositionwerecompletedduringthesameloading-unloading cycle.Threepreconditioningcycleswereappliedtothespecimen usingthesameloadingprotocol,beforethemeasurementcycle wasstarted.Displacementsweremeasuredattheleveloftherail usingalineartransducer(VishaySfernice50L4D202W00235D 2k;VishayElectronicGmbH,Selb,Germany).Themeasurement accuracyofthis systemwasestimatedat0.1mmfor linear dis-placements.Load-displacementcurveswereobtainedforloading andunloadingcycles.Thestiffnesswascalculatedconsideringthe slopeofthelinearpartoftheloadingcurve.

Thespecimens weretestedin 3configurations:intact speci-men,specimenwithlesion,instrumentedspecimenwithlesion. ThelesionconsistedofanL4–L5medialfacetectomybyremoving theinferiorL4articularprocesses.Aninterlaminarfenestrationand yellowligamentresectionattherecessuswereperformedusinga Kerissonrongeur,thussimulatinganundercuttinglaminectomy (Fig.4).Theimplantwaspositionedsymmetricallybetweenright andleftsides.Pediclescrews,witha6.5mmdiameteranda45mm length,wereplacedparalleltothesuperiorendplateandalonga convergent trajectoryinthehorizontalvertebralplane.Therod systemandthepolyaxialconnectorsweremountedtoL4andL5 screws,respectively.Bothrodswereconnectedbyarigid cross-link.Thepositionoftheimplantwasdocumentedusingbiplane radiographs(Fig.5).

Fig.5.Antero-posteriorandlateralradiographsofinstrumentedL4–L5segment withlesionandvertebralbodiesembeddedinPolyMethylMethAcrylate(PMMA).

Statistical evaluation was performed with R Software Ver-sion 2011 (R Foundation for Statistical Computing, Vienna, Austria).Afterchecking homogeneityof variancesusing a non-parametricFligner-Killeentest,theWilcoxonranktestwasusedfor pairedsamplestocomparemaximaldisplacementsandstiffness’s betweendifferentconfigurations.Unilateraltestsfor superiority wereused.Thesignificancelevelwassetat0.05foralltests.

3. Results 3.1. Displacement

Load-displacement curves were obtained for anterior trans-lation and back to neutral position. A hysteresis phenomenon was observedfor each configurationsince the unloadingcurve wasnotsuperimposedontheloadingcurve.Loadingcurveswere comparable for the six intactspecimens (Fig.6).The variances werehomogenousformaximaldisplacements(P=0.194).Table1 demonstrates average,median andextremevalues obtainedfor each configuration.Fig. 7representsaverageload-displacement curvesandFig.8showsindividualvaluesobtainedforeach spec-imen.Thelesionledtoanaverageincreaseof0.6mmcompared totheintactL4–L5segment(P=0.032).Theinstrumentedsegment withlesionincreasedtheaveragedisplacementby0.1mm com-paredtotheintactspine(P=0.468).Theinstrumentationdecreased theaveragedisplacementby0.5mmcomparedtothelesionalone (P=0.046).

(5)

464 Y.P.Charlesetal./Orthopaedics&Traumatology:Surgery&Research100(2014)461–467

Fig.6.Load-displacementcurvesduringloadingfrom0Nto200Nforeachspecimen.

Table1

Maximalanteriordisplacement(mm)at200N.

Configuration Average Median Minimum Maximum Differencewithintact P-valuea

Intact 1.2 1.2 0.8 1.7 – –

Lesion 1.8 1.7 1.1 2.5 +0.6[+49%] 0.032

Instrumented 1.3 1.2 0.8 2.4 +0.1[+6%] 0.468

aWilcoxontestsignificantifP<0.05.

3.2. Stiffness

Thevarianceswerehomogenousforstiffness’s(P=0.717). Val-uesforeachconfigurationaredemonstratedinTable2.Thelesion decreased the stiffness by 56N/mm on average compared to theintactL4–L5segment(P=0.032).Thedifferencebetweenthe instrumented and theintact segment was14N/mm(P=0.591). The average stiffness of the instrumented segment increased by 42N/mm compared to the lesion without instrumentation (P=0.046).

4. Discussion

Theindicationforposteriornon-fusiondeviceshasbeen empha-sizedin lateralrecessand/orforaminalstenosisassociatedwith osteoarthritis of thefacet joints. Thesurgical treatmentof this lumbardegenerativepathologyusuallyrequiresadecompression of thecanal,and anadditional partialorcomplete resectionof thefacetjointsifthesearemainlyresponsibleforbackpain.This impliesastabilizationusingaposteriorinstrumentationandfusion to avoid segmental hypermobility of the treated segment. The

(6)

Fig.8. Maximaldisplacements(Dmax)at200Nforeachspecimenandtheiraverageforthedifferentconfigurations.

rationale behindpediclescrewbased mobilesystemswould be thestabilizationof thelumbar segmentwhilepreservinga cer-tainamountofsegmentalmobility,andthuspreventingadjacent segmentdegeneration[18].Nevertheless,theprotectiveeffectof thesenon-fusiondevicesonadjacentlevelshasnotbeenclearly demonstratedtodate.Theinfluenceofthesedevicesonsegmental kinematicsofthelumbarspinemainlydependsontheimplant’s design:flexion-extensionandlateralbendingareusuallyslightly decreased,whereasaxialrotationisonlylimitedbysystemswith across-linkcomponent[9–12,20].However,thispropertyseems essentialforthestabilizationofthelumbarsegmentwhen perform-ingafacetectomy[7].Ontheotherhand,shearloadingincreases mobilityofthelumbarsegmentafterfacetresection[8,19],and posterior-anterior displacementsmay havean influence onthe implant’s function.Thiswouldbeclinically relevantif degener-ative spondylolisthesis grade Iwithan associated stenosis was consideredasanindicationforposteriornon-fusion instrumenta-tion.

Hasegawaetal.[20]investigatedlumbarsegmental hypermo-bilityinvivobyusingintra-operativebiomechanicaldatacompared topreoperativeradiologicalparameters.Openingofdegenerated facetjointsonaxialcomputedtomographyimagesand degenera-tivespondylolisthesiswerefoundtobethestrongestpredictors for an unstable segment. Furthermore, thePfirrmann grade of degenerated discs onmagnetic resonance imaging was investi-gated.Segmentswithgrades3and4,whichcorrespondtomild andmoderatediscdegeneration,weremorepronetobeing hyper-mobilethanthosewithagrade5.Theconceptofposteriormobile instrumentation couldbeinteresting for patientswithstenosis and moderatediscopathy, presenting theserisk factorsfor seg-mentalhypermobility.Wethereforefocusedonaninvitromodel

analyzinganteriorshearstress,whichmightreproducethe clini-calindicationofdegenerativespondylolisthesiswithmoderatedisc degeneration,treatedbyposteriordecompressionandnon-fusion instrumentation.

Bothinvitroand finiteelementstudieshave shownthatthe shear stiffness of a lumbar segment is reduced after posterior decompressiontechniques[8,19,21,22].vanSolingeetal.[21]used aporcinemodelofthelumbarspinetodemonstratethat laminec-tomy and partial facetectomy resulted in a decrease of shear stiffnessof9%atapreloadof1600N.Bisshopetal.[22]useda simi-lartestingprotocolforhumancadavericL2–L3andL4–L5segments, andshowedthatshearstiffnesswasdecreasedafterlaminectomy comparedtotheintactspineinmilddiscdegenerationbasedonthe Pfirrmanngrade.Incontrasttothat,severedegenerationappeared toenhanceshearstiffnessratherthanreducingit.Moreover,the amountofpreloadneedstobeconsideredsinceaxial compres-sioninfluencesthestiffness,thehysteresisareaandthelinearityof theload-displacementrelationshipofthelumbarmotionsegments [23].Luetal.[19]analyzedtheinfluenceofposteriorversus ante-riorelementresectiononshearstiffnessofhumanlumbarmotion segments.Thecompleteremovaloffacetjointsandposterior lig-aments ledtoanaveragedecrease ofstiffnessinanteriorshear of 77.7%comparedtoanintactspine.Aftercompletesectionof thediscincludinganteriorandposteriorlongitudinalligaments, anteriorshearstiffness decreasedby22.8%onaverage. Further-more,theresectionofposteriorelementsapproximatelydoubled anteriordisplacements(+117%)whenthespecimenswereloaded to250N.Theseresultsstresstheimportanceofthefacetjoints, thesupraspinous,interspinousandyellowligamentsforshear sta-bility. Nevertheless,anterior and posterior elementsdo not act independentlyofoneanotherinresistinganteriorshear,butthe

Table2

Stiffnessduringposterior-anteriorloading(N/mm).

Configuration Average Median Minimum Maximum Differencewithintact P-valuea

Intact 162 164 112 242 – –

Lesion 106 113 81 172 −56[−34%] 0.032

Instrumented 148 165 81 240 −14[−8%] 0.591

(7)

466 Y.P.Charlesetal./Orthopaedics&Traumatology:Surgery&Research100(2014)461–467 intervertebralsegment is rather a composite structure withits

differentcomponentsfunctioningincooperation, whichare fur-therguidedbysurroundingmusclesinvivo.Thefindingsin our studyareinlinewiththepreviouslymentionedresults,showing reducedshearstrengthandstiffnessofthespineafterrealizinga medialfacetectomyincombinationwithanundercutting laminec-tomy.Theconfigurationofamoderatediscopathyleadingtolower shearstiffnessinvitrohasconsequencesfortheinstrumentation ofahypermobilesegmentinvivo.Thiswouldreflecttheclinical indicationofadegenerativespondylolisthesiswithadisc degen-erationgradePfirrmann3or4,facetosteoarthritis,lateralrecess and/orforaminalstenosis,whichwouldbecarriedoutforposterior non-fusioninstrumentation.

Theinfluenceofnon-fusioninstrumentationsonshearstress isnotwellunderstoodtodateandithasneverbeenanalyzedfor posteriormobiledevicestoourknowledge,althoughload trans-missioninposterior-anteriordirectionandaxialrotationappears crucialfor theirfunction.Schillinget al.[24]haveanalyzedthe effectofdesignparametersofposteriordynamicstabilization sys-temsanddemonstratedacorrelationbetweenaxialstiffnessand inter-segmentalmotionrestrictioninthesagittalplane,butnotin thetransversal plane.Thismaybeduetothefactthatdynamic stabilizationsystemsarenotprovided witha cross-linkin con-trasttothemobilesysteminourstudy.Furthermore,theseauthors showedthatthespecificdesigndictatedtheimplantsshear prop-erties.Implantsusingaspacerlockedintoplacebyacordbetween thescrewshadalowershearresistancethanthoseusingaspring mechanismrestricting translationalmovements.The implantin thepresent studyrestrictedanteriorsheardisplacementsofthe lumbarsegmenttreatedbymedialfacetectomyandundercutting laminectomy.Thisindicated thatthepolyaxial connectormight allowmovementsinflexion-extension,lateralbendingandaxial rotation,butthatitalsolimitstheeffectofanteriorshearstress. Furthermore,thepropertiesoftheroditselfareimportantforthe loadtransfercharacteristicsbetweentheimplantandthelumbar spine.Melnyketal.[25]investigatedtheinfluenceofrod mate-rialandgeometryonshearstiffnessupto250N(under300Naxial compression)inhumanlumbarsegmentsthathadbeentreated invitrobypartialfacetresection,undercuttinglaminectomyand nucleotomy.Theimplantssupportedgreatershearforcesasthe specimenwasdestabilized.Lowershearloadsweretransferredto thespinewith5.5mmtitaniumrods(stiffestconfiguration) com-paredto6.35×7.2mmoblongPEEKrods(intermediatestiffness) and5.5mmroundPEEKrods(lowstiffness).Themeasuredanterior displacementswereinferiorto2mmandcomparabletotheresults oftheinstrumentspineinourstudyatsimilarloadingconditions. Therodsofthepresentnon-fusiondevicehavea5mmdiameter andaremadeofacobalt-chromium-molybdenumalloy,whichhas ahigherstiffnessthantitanium.

Althoughthetechnicalcharacteristicsoftheimplantare impor-tantforshearresistance,thesurgicalprocedureitselfalsoneedsto beadapted,thusprovidingacompleteneurologicaldecompression butthelowestpossibledestabilizationofthelumbarsegment.The undercuttingorcompletelaminectomyitselfdoesnotcreateand unstablesituationifthereisnoolisthesisofthetreatedsegment. Onlythecombinationwithafacetresection,requiredforfarlateral andforaminaldecompression,maynecessitatestabilizationbyan implant.

5. Conclusion

Thecombination of partialfacetresectionplusundercutting laminectomydecreasessegmentalshearstiffnessandincreasesthe anteriortranslationaldisplacementofL4onL5undershear load-ing.Theshearstiffnessoftheinstrumentedlumbarsegmenttends

toincreasewiththeposteriornon-fusiondeviceandanterior dis-placementtendstodecreaseundershearloading.Thiscondition couldtheoretically beinterestingforthesimulationofposterior non-fusioninstrumentationindegenerativespondylolisthesis. Disclosureofinterest

TheLBMArtsetMétiersParisTechreceivedinstitutionalsupport fromClariance.

Y.P.CharlesisconsultantforClariance. J.-P.SteibisaboardmemberofClariance. Acknowledgements

Clariancefortechnicalsupport. References

[1]ShonoY,KanedaK,AbumiK,McAfeePC,CunninghamBW.Stabilityof poste-riorspinalinstrumentationanditseffectsonadjacentmotionsegmentsinthe lumbosacralspine.Spine1998;23:1550–8.

[2]SiepeCJ,MayerHM,Heinz-LeisenheimerM,KorgeA.Totallumbardisc replace-ment:differentresultsfordifferentlevels.Spine2007;32:782–90.

[3]SchnakeKJ,SchaerenS,JeanneretB. Dynamicstabilization inadditionto decompressionforlumbarspinalstenosiswithdegenerativespondylolisthesis. Spine2006;31:442–9.

[4]PanjabiMM,HendersonG,JamesY,TimmJP.StabilimaxNZ®

versussimulated fusion:evaluationofadjacentleveleffects.EurSpineJ2007;16:2159–65. [5]Schmoelz W, Erhart S,Unger S,Disch AC. Biomechanical evaluation of

aposterior non-fusioninstrumentation ofthelumbar spine.EurSpine J 2012;21:939–45.

[6]Büttner-Janz K. Status quo of facet joint replacement. Orthopade 2010;39:609–22.

[7]AbumiK,PanjabiMM,KramerMM,DuranceauJ,OxlandT,CriscoJJ. Biome-chanicalevaluationoflumbarspinalstabilityaftergradedfacetectomy.Spine 1990;15:1142–7.

[8]TeoEC,LeeKK,QiuTX,NgHW,YangK.Thebiomechanicsoflumbargraded facetectomyunderanteriorshearload.IEEETransBiomechEng2004;51: 443–9.

[9]Wilke HJ, Schmidt H, Werner K, Schmölz W, Drumm J. Biomechanical evaluation of a new total posterior element replacementsystem. Spine 2006;31:2790–6.

[10]ZhuQ,LarsonCR,SjovoldSG,RoslerDM,KeynanO,WilsonDR,etal. Biome-chanicalevaluationoftheTotalFacetArthroplastySystem:3-dimensional kinematics.Spine2007;32:55–62.

[11]PhillipsFM,TzermiadianosMN,VoronovLI,HaveyRM,CarandangG, Ren-nerSM,etal.EffectsoftheTotalFacetArthroplastySystemaftercomplete laminectomy-facetectomyonthebiomechanicsofimplantedandadjacent seg-ments.SpineJ2009;9:96–102.

[12]GoelVK,MehtaA,JangraJ,FaizanA,KiapourA,HoyRW,etal.Anatomic FacetReplacementSystem(AFRS)restorationoflumbarsegment mechan-icstointact:afiniteelementstudyandinvitrocadaverinvestigation.SASJ 2007;1:46–54.

[13]McAfeePC,KhooLT,PimentaL,CapuccinoA,SengozA,CoricD,etal.Treatment oflumbarspinalstenosiswithatotalposteriorarthroplastyprosthesis:implant description,surgicaltechnique,andaprospectivereporton29patients. Neu-rosurgFocus2007;22:E13.

[14]Castellvi A. The treatment of symptomatic lumbar spinal stenosis with ACADIATM.Clinicaloutcomesfromworldwidecohort.In:NorthAmericanSpine

SocietyPre-MeetingCourse.2009.

[15]ReganJJ,HartjenCA,DryerRF,DiRisioDJ.ACADIATMfacetarthroplastypilot

study:twelvemonthsfollow-upresultsfor20patientsatfourcenters.In:Spine ArthroplastySocietyAnnualGlobalSymposium.2009.

[16]PalmerDK,InceogluS,ChengWK.Stemfractureaftertotalfacetreplacement inthelumbarspine:areportoftwocasesandreviewoftheliterature.SpineJ 2011;11:e15–9.

[17]CharlesYP,PersohnS,SteibJP,MazelC,SkalliW.Influenceofanauxiliaryfacet systemonlumbarspinebiomechanics.Spine2011;36:690–9.

[18]SerhanHA,VarnavsG,DoorisAP,PatwardhanA,TzermiadianosM. Biomechan-icsoftheposteriorlumbararticulatingelements.NeurosurgFocus2007;22:E1. [19]LuWW,LukKDK,HolmesAD,CheunKMC,LeongJCY.Pureshearpropertiesof lumbarspinaljointsandtheeffectoftissuesectioningonloadsharing.Spine 2005;30:E204–9.

[20]HasegawaK,ShimodaH,KitaharaK,SasakiK,HommaT.Whatarereliable radiologicalindicatorsoflumbarsegmentalinstability?JBoneJointSurgBr 2011;93:650–7.

[21]vanSolingeGB,vanderVeenAJ,vanDieënJH,KingmaI,vanRoyenBJ. Ante-riorshearstrengthoftheporcinelumbarspineafterlaminectomyandpartial facetectomy.EurSpineJ2010;19:2130–6.

(8)

[22]BisshopA,MullenderMG,KingmaI,JiyaTU,vanderVeenAJ,RoosJC,etal. Theimpactofbonemineraldensityanddiscdegenerationonshearand stiffnessofthelumbarspinefollowinglaminectomy.EurSpineJ2012;21: 530–6.

[23]Gardner-MorseMG,StokesIA.Structuralbehaviorofhumanlumbarspinal motionsegments.JBiomech2004;37:205–12.

[24]SchillingC,KrügerS,GruppTM,DudaTM,BlömerW,RohlmannA.Theeffectof designparametersofdynamicpediclescrewsystemsonkinematicsandload bearing:aninvitrostudy.EurSpineJ2011;20:297–307.

[25]MelnykAD,WenTL,KingwellS,ChakJD,SinghV,CriptonPA,etal.Loadtransfer characteristicsbetweenposteriorspinalimplantsandthelumbarspineunder anteriorshearloading:aninvitroinvestigation.Spine2012;37:E1126–33.

Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org)

Figure

Fig. 1. Non-fusion instrumentation with polyaxial connector linking the rods to caudal screws, thus allowing a three-dimensional movement and stabilization after medial facet resection.
Fig. 5. Antero-posterior and lateral radiographs of instrumented L4–L5 segment with lesion and vertebral bodies embedded in Poly Methyl MethAcrylate (PMMA).
Fig. 6. Load-displacement curves during loading from 0 N to 200 N for each specimen.
Fig. 8. Maximal displacements (Dmax) at 200 N for each specimen and their average for the different configurations.

Références

Documents relatifs

Since POSL uses at most (one positional and) one slotted rest variable on each level of an atom or structure, slotted unification can perform sorting as in the above slotted

Several configurations are then thoroughly examined in the light of such a method: multilayer or single trench reinforcement where exact closed form expressions are

Experimental results on clay and clay/concrete interface at 5°C: (a) Shear stress 502 versus horizontal displacement; (b) Vertical displacement versus horizontal displacement; 503

This figure shows that although different pre-shear rates were applied during the crystallisation step, the steady state viscosity intensities at 50 s -1 are

To the contrary, at a frequency equal to 0.5 MHz at which the SH 0 and SH 1 -like modes are roughly as sensitive to the bond shear property as to the aluminium or composite

Moreover, when the surfaces come into contact, the asperity heights and their relative locations are uncertain, consequently, the resulting asperity contacts are

SH3 domain SH2 domain SH2 domain PxxP domain Rem domain Ras GTP GDP DH domain PH domain Cdc25 domain Ras GTP Figure 2C Grb2 SOS1 Interaction with Cell membrane ALLOSTERIC SITE +

Measurements of at- mospheric electrical properties above the surface are, how- ever, important in assessing global geophysical changes in atmospheric electricity, as regions of