• Aucun résultat trouvé

Strain rate effect of mode II interlaminar fracture toughness on the impact response of a thermoplastic PEEK composite

N/A
N/A
Protected

Academic year: 2021

Partager "Strain rate effect of mode II interlaminar fracture toughness on the impact response of a thermoplastic PEEK composite"

Copied!
18
0
0

Texte intégral

(1)

an author's

https://oatao.univ-toulouse.fr/26736

https://doi.org/10.1016/j.jcomc.2020.100031

Bouvet, Christophe and Serra, Joël and Garcia-Perez, Pablo Strain rate effect of mode II interlaminar fracture

toughness on the impact response of a thermoplastic PEEK composite. (2020) Composites Part C: Open Access, 2.

ISSN 2666-6820

(2)

Strain

rate

effect

of

mode

II

interlaminar

fracture

toughness

on

the

impact

response

of

a

thermoplastic

PEEK

composite

C.

Bouvet

a,∗

,

J.

Serra

a

,

P.

Garcia

Perez

a,b

a Université de Toulouse, Institut Clément Ader, ISAE-SUPAERO – UPS – IMT Mines Albi – INSA, 10 av. E. Belin, 31055 Toulouse, France b Arts et Métiers ParisTech, I2M, Talence, France

Keywords:

Strain rate effect Carbon/PEEK composite Fracture toughness Impact

Delamination

a

b

s

t

r

a

c

t

Recentadvancementsincompositeproductionandprocessingaremakingthermoplasticsaviableoptionina widerarrayofaerospaceapplications.Inparticular,CarbonFibreReinforcedPlastics(CFRP)withthermoplastic resinarebelievedtohavebetterdamagetolerancepropertiesthanthermosets.However,fewstudieshavebeen conductedregardingthenumericalmodellingofthebehaviourofsuchmaterialssubmittedtolowenergyimpacts. HeretheDiscretePlyModel(DPM),thatpredictsthefailureoflaminatedcompositeswiththehelpofcohesive elements,isusedtocomparethermosettingandthermoplasticsimpactdamagetolerances.TheDPMisimproved totakeintoaccountthestrainrateeffectofthefracturetoughness(FT)inmodeIIofinterlaminarinterfaces.First, theEndNotchedFlexure(ENF)testthatinducesunstablecrackgrowthisusedbothtoexperimentallymeasure thevalueofFTinmodeIIforhighspeedcrackgrowthandtoidentifythestrainrateeffectusedinthemodel. Second,theDPMisthenusedtosimulateimpacttestsforvariousstackingsequences([452 ,−452 ,02 ,902 ]2S ,[02 , 452 ,902 ,−452 ]2S ,[02 ,302 ,902 ,−302 ]2S and[902 ,−452 ,02 ,452 ]2S )andimpactenergylevels(10,20and30J). Goodcorrelationswithexperimentareobservedintermsofforce/displacementcurvesanddelaminatedareas. Thenumericalmodelcorrectlydescribestheasymmetryofthedelaminatedinterfacesandthepropagationof groupsofinterfaceslocatednearthemid-thicknessofthelaminatedplates.Finally,thedamageassociatedwith a30Jimpactiscomparedforthecarbon/PEEKofthisstudyandclassicalcarbon/epoxyplatesusingnumerical simulations(DPM).Nosignificantdifferencehasbeenfound.Theresultscorroboratethoseobtainedinprevious studiesshowingtherelativelylowvalueofFTinmodeII,usinganENFtestandinfraredthermography(IRT). Thisarticlethereforequestionstheapparentsuperiorityofcarbon/PEEKlaminatedcompositesovercarbon/epoxy laminatedcompositesintermsofimpactdamagetolerance.

1. Introduction

High-performancecompositeswiththermoplasticresinarebeing in-creasinglyusedincompositestructures,inparticularinthe aeronauti-calfield.Semi-crystallinethermoplasticpolymers,suchasPEEKresins, haveadvantagesoverclassicalthermosetresins,suchasepoxies:good damageandimpacttolerance[1,2],a highdegree ofchemical resis-tance,noexpirydate,a usabilityovera largerangeoftemperatures andapossiblerecyclingthroughremelting.InthecaseofPEEK,its bio-compatibilityalsomakesitaperfectcandidateforcompositetrauma devicessuchasorthopaedic,dental,spinalandcranialimplants[3,4]. Classically,theliteraturestatesthatthermoplasticcomposites showa bettertolerancetoimpactdamagethanepoxybasedcomposites[5,6]. Themainpropertiesdrivingtheimpacttoleranceofcompositelaminate, i.e.themodeIandmodeIIfracturetoughness(FT),GIcandGIIc,are

Correspondingauthor.

E-mailaddress:christophe.bouvet@isae-supaero.fr(C.Bouvet).

themostimportant[2,7–12].TheFTofthermoplasticresinsisclearly higherthanthatofthermosetresins,particularlyiftheneatresinis con-sidered.Forexample,themodeIFTisabout4N/mmforneatPEEK resincompared toabout0.1N/mmforneatepoxy resin[11]. How-ever,thedifferencediminisheswhenfibresareadded.Friedrichetal.

[13]haveshownthat carbonfibreprepegwithPEEKresinis“only” about 10times moreresilient(modeIandmode IIFT)thancarbon fibreprepegwithepoxy resin(Fig.1a),forasimilarfibrecontentof approximately 64%.Carbonfibrewovenplies alsofollowthis trend: modeIandmodeIIFTareabout1.6N/mmand2.5N/mm, respec-tively,forcarbon/PEEKcomposite,comparedtoabout,0.5N/mmand 1.5N/mmforcarbon/epoxycomposite,forasimilarfibrecontentof ap-proximately50%[11].Thisevolutioncanbeexplainedbytheincrease oftheinfluenceoffibresondamagepropagation.Thedelaminationcan only evolvebetweenplies onaprepeg-basedlaminate andthecrack

(3)

Fig.1. EffectofthecrackgrowthspeedonmodesIandIIFTforcarbon/epoxyandcarbon/peekcomposites(a)[13],andductile(b)andbrittlebehaviour(c)of delaminationofPEEKresin[29].

propagationpathisevenmoreconstrainedbytheundulatedpatternof theyarnsforthecaseofwovenplies[11].Itisgenerallyacceptedin theliteraturethattheinitialdamageduringimpactloading,associated withdelamination,ismainlydrivenbytheinterlaminarFTinmodeII. Therefore,thehigherFTofthermoplasticcompositesinshearingmode makesthemgoodcandidatesforimpacttolerance[14].

However,someresultsrecentlyreportedintheliteratureshowthat thesuperiorimpacttoleranceofcarbon/thermoplasticlaminated com-positescomparedtothatofcarbon/epoxylaminatedcompositesisnot soobvious.Forexample,Vieilleetal.comparedtheimpactdamageof compositelaminateswithwovencarbonand3typesofresin:2 ther-moplasticones(PEEKandPPS)anda thermosetone(epoxy) [9,10]. Althoughbetterresistancetoimpactwasexpectedfromthe thermoplas-tics,theresultsshowsimilarbehaviourforthe3materials.Theauthors explainthatthesmalldifferenceobservedbetweenthese3laminates couldbe dueeithertothewovennature ofthepliesor tothesmall thicknessoftheplates(about2mm),comparedtotheclassical thick-ness(4mm)usedforstandardtests[15].Anotherexplanationofthe smalldifferencebetweenimpactresistanceofthermoplasticand ther-mosetcomposites couldbethestrainrateeffectof thethermoplastic resinsontheinterlaminarFT,particularlyinshearingmode.

Itiswellestablishedthatthemechanicalpropertiesofpolymersare verydependantontemperature,strainrateandpressure[16,17].Strain rateoftenhasaninfluenceonthefracturebehaviourofboth

thermoset-[18]andthermoplastic-basedcomposites[19–23].Afewconfigurations seemtobestrainrate-independent[24–27],behaviourthatmightbe duetofibrebridgingin unidirectionalspecimens[22]ortothe rela-tivelylowstrain-ratesinvestigated.ThereviewbyW.J.Cantwelland M.Blytononvariousthermosetandthermoplasticresinbased compos-itesrevealsthat, onaverage,thefracturetoughnessof brittlematrix

compositesiseitherrate-insensitiveorincreasesslightlywithloading rates [28].Incontrast,thermoplastic matricesexhibitareductionin fracturetoughnesswithincreasingstrainrates.AccordingtoPloeckl,at lowtemperaturesorathighstrainrates,themolecularmovementsof thepolymerchainsarerestrictedand,consequently,theoverall mate-rialbehaviourshowsarigidandbrittleresponse[20].Withincreasing temperatures,rotationsandtranslationaldisplacementsofsidegroups, smallmoleculargroupsorrepeatunitsinthemainpolymerchainare possible.Thedecreaseofthetemperatureisequivalenttotheincrease ofthestrainrate.Inpolymerphysicsliterature,thisisreferredtoasthe time-temperaturesuperpositionprinciple.

RegardingthespecificcaseofPEEKbasedcomposites,Hamdanetal. suggested thathighratetestinginducedachangein crystalline mor-phologyand,morespecifically,anincreaseofthecrystallinitydegree

[30]whichwouldthenbethecauseofthefracturetoughnessdecrease athighstrainrates.ElQoubaaetal.showedthatthedependency re-lationshipofPEEKmaterialpropertiesonstrainrateisnotlinear:the strainratesensitivityisgreaterathigherstrainrate(over100/s)[31].

Friedrichetal.[13]performedENFtestsofAPC-2PEEKresin uni-directional(UD)compositelaminateatdifferentloadingspeeds.They showedthatFTinmodeII(Fig.1a)ofcarbonfibre/PEEKdecreasedfrom 1.9to0.4N/mmwhenthecrossheadspeedincreasedfrom4.2×10−6to

9.2×10−2m/s.Theyexplainedthisresultbyanevolutionofthecrack

growthtype,fromductilepropagationatlowspeed(Fig.1b)tobrittle propagationathighspeed(Fig.1c).Hashemietal.reachedthesame conclusionswithacarbon/PEEKcompositeusingthecorresponding pa-rameteroftheloading-rate:thetemperature[24].Theirworkexhibited aclearincreaseinfracturetoughnesswhenthetemperaturerose.This isalsothecaseforgraphite/PEEKcompositesaccordingtotheanalysis ofMalletal.[32].

(4)

Fig.2. FTinmodeIIversuscrackgrowthevolutionoftheENFtests[33].(Forinterpretationofthereferencestocolourinthisfigure,thereaderisreferredtothe webversionofthisarticle.)

Inapreviousstudy[33],similarresultswereobtainedwithaPEEK resinandaUDcarbonlaminateusingtheunstablecharacteroftheENF test.Forlowvaluesoftheinitialcracklength,theENFtestrevealsan unstablepropagationduetothesnapbackeffect(Fig.4)[34].Onthis subject,thestandardadvisesagainstusingacracklengthshorterthan

0.347L(whereListhebeamlength,Fig.3).However,iftheobjectiveis topromoteunstablepropagation,itisinterestingtoforgetthisrule.The otherdrawbackofunstablepropagationistheimpossibilitytousethe classicaltheoryofENFteststoobtaintheinterlaminarFT.Therefore,in thiswork,IRTwasusedtoobtaintheGIIcduringunstablepropagation

[35–37].TheresultsshowanR-curveeffectattheinitialcrackgrowth

withGIIc increasingfromabout1to2.7N/mm,andconstantvalues

ofGIIcbetween0.75and1.3N/mmduringtheunstablepropagation

(Fig.2).TheproblemofusingtheIRTapproachtomeasuretheFTis thelackofconfirmationofthismethodand,inparticular,thedifficulty ofevaluatingtheTaylor–Quinneyratio:theratiobetweenthetotal en-ergydissipatedbythedamagemechanismandtheenergydissipatedas heat.Itliesbetween100%(whenalltheenergyreleasedisdissipated asheat)and0%(whenalltheenergyreleasedisstoredinthematerial). Forpolymermaterials,thisvaluevariesconsiderably,dependingonthe typeofmaterialandthetypeofloading.Forbrittlefailures,theTaylor– Quinneyratioiscloseto100%,anditliesbetween90and100%ina moregeneralcase.

Theobjectiveofthisarticleistoassesstheinfluenceofthedecrease oftheFTinmodeIIbetweenslowandfastcrackgrowth,ontheimpact behaviour,usingafiniteelement(FE)model.First,abehaviourlawof theGIIctakingthestrainrateeffectintoaccountusingtheENFtestis

determined.Second,amodelofthestrainrateeffectisproposedand evaluatedusingtheENFtest.Eventually,thismodelisusedinorder tosimulateimpacttestsperformedatdifferentenergylevelsandwith differentstackingsequences.Thestrainrateeffectishighlightedin or-dertoshowitscrucialeffectonthedamagedevelopingduringimpact and,inparticular,onthedelaminatedarea.Additionally,acomparison withanimpactmodelofthermosetcompositeisperformedinorderto compareathermoplasticandathermosetcompositelaminate. 2. ENFtest

2.1. FiniteelementmodeloftheENFtest

Thecompositelaminateusedinthisstudywasthesameastheone assessedinthepreviousworkdealingwiththemeasurementoftheFT usingIRT[33]:aUDprepreglaminatewithPEEKthermoplasticresin

Table1

Mechanicalpropertiesofcarbon/PEEKUDply[46–48]andmaterialparameters oftheDPM.

Tensile Young’s modulus in fibre direction, E lt 150 GPa

Compressive Young’s modulus in fibre direction, E lc 130 GPa

Young’s modulus in transverse direction, E t 9 GPa

In-plane shear modulus, G lt 5 GPa

Poisson’s ratio, 𝜐lt 0.3

Tensile failure strain in fibre direction, 𝜎lt 0.019

Compressive failure strain in fibre direction, 𝜎lc − 0.01

Tensile failure stress in transverse direction, 𝜎tt 84 MPa

Compressive failure stress in transverse direction, 𝜎tc − 150 MPa

In-plane shear failure stress, 𝜏ltr 160 MPa

Interlaminar fracture toughness in mode I , G Ic 1 N/mm

Interlaminar low speed fracture toughness in mode II , G II0 2.7 N/mm

Interlaminar high speed fracture toughness in mode II , G II1 1 N/mm

Reference shear velocity, Δv 0 1000 mm/s

Material parameter driving the decrease of the FT, n 0 10

Tensile fracture toughness in fibre direction, G If,t 80 N/mm

Compressive fracture toughness in fibre direction, G If,c 30 N/mm

Density, 𝜌 1600 kg.m −3

andIM7carbonfibre.Themechanicalpropertiesandthematerial pa-rametersoftheproposedFEmodelarenotedinTable1.Thegeometry oftheENFtestisgiveninFig.3.Thestackingsequenceis[016/016],

wherethe“/” atmid-thicknesscorrespondstotheTeflonfilminserted toinitiatethecrack.Differentinitialcracklengthswerestudiedbut,for thepresentwork,onlytheENFtestwithaninitialcracklengthofa0=

34mmispresented.TheENFtestisnotdetailedinthisarticlebutall thedetailscanbefoundinthepreviouspublication[33].

Theforce-displacementcurvesobtainedexperimentallyand analyti-cally,fortheENFtestwiththeinitialcracklengthof34mmareplotted inFig.4.

Thisfigureshows:

• theexperimentalcurveasasolidbluelineandthepointofinitiation ofthepropagationasabluepoint.Thecrackpropagationstartsat about1N/mmofFT,thenstablepropagationwithanR-curveeffect isobserveduptoabout2.7N/mmofFT,andunstablecrackgrowth is obtained.Itis notpossible tousethestandardtoevaluatethe FTduringthisunstablecrackpropagation,sotheFTwasevaluated usingIRT[33]atabout1N/mm(Fig.2).

• the elastic force-displacement curve of the beam without crack (a=0),withahalfbeamlength(a=L/2)andafullbeamlength (a=L)crackasdashedblacklines.Thelongerthecrack,thesmaller

(5)

Fig.3.ENFtestsetup.

Fig. 4. Experimental and analytical force-displacementcurvesoftheENFtest.(For in-terpretationofthereferencestocolourinthis figure,thereaderisreferredtothewebversion ofthisarticle.)

thestiffness.Thesecurveswereobtainedusingananalyticalmodel andaregivenforinformation.

• thecurvesoftheconditionofcrackgrowthstabilityobtained ana-lyticallyusingbeamtheory[38–40](greendashedlinefor1N/mm andreddashedlinefor2.7N/mm).Theanalyticalexpressionofthe conditionof crackgrowthstabilityis differentfor acrack length higherandlowerthanhalfthelengthofthespecimen.Thisexplains theangularpointfora=L/2.Thesnapbackphenomenonisclearly visibleforacracklengthshorterthan0.347L.

TheFEmodeloftheENFtestwasbuiltwith4volelementsinthe thicknessofthebeam,inordertohave2elementsinthethicknessof eacharm,andonecohesivezoneelementatmid-thickness(bottomright ofFig.5).Themodelwasdevelopedwiththeassumptionofaplane straininthe(x,y)plane.Therefore,onlyonevolumeelementwasused inthezdirection.Thethreecylindersof theENFtests (Fig.3)were simulatedusingrigidsurfacesandtherubberwasnotmodelled.Inthe experiment,therubberwasusedtoavoidcompressivefibrefailurejust underthecentralcylinder,butintheFEmodel,evenifafibrefailure model(detailedinIII.1)wasused,nofibredamagewasobtained.The modelwasbuiltusingAbaqusExplicitv6.13andthedisplacementof thecylinderswassetataconstantvelocity.Avalueof130mm/swas selectedafterhavingverifiedthatthetestcouldbe consideredstatic, andthatadecreaseofthisvaluedidnotaffecttheresult.Interface ele-mentswereusedtosimulatethedelaminationatmid-thicknessandthe

non-penetrationofthearmswasimposedafterthetotaldamageofthe interfaceelements.Acoupleddamagecriterionwasprogrammedwith linearcouplingbetweenshearingmode(modesIIandIII)andopening mode (modeI).However,fortheENFtestpresented here,thecrack propagatesinpuremodeII.ThemostimportantparameterfortheENF testistheFTinmodeII,GIIc,andthestrainrateeffectisofparticular

importance.Duringstablepropagation,GIIcpresentsaclassicalR-curve

effect(Fig.2).ThisR-curveeffectisduetothecreationofareal frac-tureprocesszone(FPZ)atthecracktip.However,atthebeginningof thetest,thereisapre-existingcrackgeneratedbyaTeflonfilmplaced inthemiddleplaneduringthemanufacturingprocess.Therefore,the FPZisnotarealone.Thisphenomenonisdifficulttosimulatebutis partlytakenintoaccountbytheinitialdamagingoftheinterface ele-mentsatthecracktip.Thefirstcohesiveelementatthecracktipwill quicklyreachahighstressvalueduetothehighstressconcentration. Therefore,oncethedamageis“activated”,thestiffnessoftheelement isprogressivelyreduced(III.1)and,asfortheexperimentalFPZ,stress isrelievedlocally.

Inthisstudy,forbothcrackgrowthinitiationandstablepropagation, aconstantvalueofFTof2.7N/mmisused(Figs.2and6).

2.2. Strainrateeffect

Duringtheunstablecrackgrowth,alowvalueofFTof1N/mmis observed(Figs.2and6).Itisthennecessarytodrawthepathbetween

(6)

Fig.5. ModeloftheENFtestjustbeforeandjustaftertheunstablecrackgrowth.(Forinterpretationofthereferencestocolourinthisfigure,thereaderisreferred tothewebversionofthisarticle.)

Fig.6. StrainrateeffectontheshearingFT. (Forinterpretationofthereferencestocolour inthisfigure,thereaderisreferredtotheweb versionofthisarticle.)

these2values(2.7N/mmand1N/mm)using avelocityparameter. Onewaycouldbetousethecrackgrowthvelocity.Inthepresentcase, thisvelocitywasmeasuredbetweenabout600and1000m/s,which approximatelycorrespondstotheclassicalRayleighwavespeed[41]. However,itisdifficulttousethisvelocitybecauseitsdeterminationis al-mostimpossiblewithinaninterfaceelement.Moreover,itcallsfor com-municationbetweenelements,whichistrickyintheclassicFEcodes. Therefore,thevelocitygapbetweenthetwosuperimposednodesofthe interfaceelementsisused:

Δ𝒗=𝒗𝒖𝒖𝒑𝒑𝒆𝒓𝒗𝒖𝒍𝒐𝒘𝒆𝒓 (1)

wherevulower (vuupper)isthevelocityofthelower(upper)nodeofthe

interfaceelementintheudirection,anduisthein-planedirectionof theinterfaceelement(Fig.5).

WeproposethatthedecreaseoftheFTbetweenthelowspeedvalue andthehighspeedvaluemaybedrivenusinganexponentialfunction (Fig.6):

𝑮𝑰𝑰𝒄=𝑮𝑰𝑰1+(𝑮𝑰𝑰0−𝑮𝑰𝑰1)(1+|Δ𝒗Δ𝒗|

0

)𝒏0

(2) whereGII0isthevalueofshearingFTforstablepropagation,GII1isthe

valueofshearingFTforunstablepropagation,Δvistheshearvelocity oftheinterfaceelement,Δv0isthereferenceshearvelocity,andn0is

amaterialparameterdrivingthedecreaseoftheFT(Table1).Two pa-rametersarethenneededtodrivetheevolutionoftheFT:thereference shearvelocity,Δv0,andtheexponent,n0.Tosimplifythemodel,the

ex-ponentissetto10,whichishighenoughtoobtainarelativelyquick decreasebutlowenoughnottotriggernumericalinstabilitiesintheFE

(7)

Fig.7. Effectofthereferenceshearvelocity ontheshearvelocity(a)andonthesizeof thezoneofhighdissipatedenergy(b).(For interpretationofthereferencestocolourin thisfigure,thereaderisreferredtotheweb versionofthisarticle.)

model.Complementaryworkwasdoneinordertoevaluatetheeffectof thisparameter.Resultsshowedthatitseffectwasnegligibleifthevalue remainedlowenough.Theonlyparameterremainingtobeevaluated wasthereferenceshearvelocity.Manyvaluesweretestedbutonlythe effectofthreevalues:102,103,and104mm/sispresentedinthisarticle

(Fig.6).

InordertoevaluatethemostrelevantvalueforΔv0,itseffectonthe

force-displacementcurvewasstudied.TheinfluenceofΔv0appeared negligibleandthereforethesecurveshavenotbeenplottedonFig.9 be-causetheresultwouldnotbe readable.These 3curves areincluded betweentheblackcurve“Num.(strainrateeffect)” andthegreycurve “Num.(GIIc=2.7N/mm)”.Theunstablecrackgrowthistriggeredwhen theenergyreleaserate(ERR)reaches2.7N/mm,anditsdecreaseto 1N/mmonlyinfluencestheunstablepropagation.Theunstable propa-gationisrepresentedintheforce-displacementcurveonlybythesudden loaddrop;nodifferencecanbedetected.

AnotherevaluationofthemostrelevantvalueofΔv0couldusethe crackgrowthvelocity.Onceagain,there isnosignificant effect.The crackgrowthvelocityisrelativelyindependentof Δv0 andis always

equaltoabout1300m/s.

TodetermineΔv0,onecouldalsomeasuretheexperimentalshear

velocityduringtheENFtest.Thismeasurementisdifficulttomakeand wasnotperformedduringthiswork.Inthefuture,itwouldbe inter-estingtoconfrontthisexperimentalvaluewiththeoneselectedinthis article.Theshearvelocityduringthecrackpropagationwiththe3 val-uesofthereferenceshearvelocityΔv0(102,103and104mm/s)is

dis-playedinFig.7a.Itshouldbenotedthattheshearvelocityinagiven interfaceelementchangesbetweenthestartandtheendofthedamage. Theshearvelocityatthedamageonsetislowbecausetheinterface ele-mentstiffnessremainshigh,andishighatthedamageendbecausethe interfaceelementstiffnessbecomesnull.Therefore,wesuggestthatthe representativeshearvelocityisreachedwhenhalfoftheFTisdissipated. ForΔv0of102mm/sand103mm/s,asuddenincreaseoftheshear

velocityisobservedwhen:

Δ𝒗𝒗0 (3)

while,forΔv0equalto104 mm/sthisconditionisnever reached,so

thispeakisnotobserved.Nevertheless,thissuddenincreaseoftheshear velocitydoesnotreallyaffecttheunstablepropagationandforthethree cases, unstablecrackgrowthistriggered foracracklength ofabout 35mm.

Aninterestingaspectofthisshearvelocitypeakisthe correspond-ing decrease of theFT (Fig.7b). The higher theshear velocity, the lowertheFT.Thetippingpointisthereferenceshearvelocity(Fig.6). Consecutively,azoneofhighdissipatedenergyappearsatthe begin-ningofthecrackgrowth.ThehigherΔv0is,thelargeristhehigh

dis-sipatedenergyzone. Itisabout4, 8and155 mmwhenΔv0 is 102,

103and104mm/srespectively(Fig.7b).Thisparametercantherefore

beusedtodiscriminatethemostrelevantvalueofthereferenceshear velocity.

Todothis,theinformationgivenbytheIRTmeasurementwasused. InFig.8,thetemperaturefieldis displayedatfourtimeincrements:

(8)

Fig.8. TemperaturefieldmeasurementusingIRT dur-ingtheENFtest(1snapshotevery2ms).(For inter-pretationofthereferencestocolourinthisfigure,the readerisreferredtothewebversionofthisarticle.)

twoframesbeforetheunstablepropagationandtwoafter(onesnapshot every0.002s).Ontheframejustaftertheunstablecrackgrowth(frame 3861),azoneofhigherdissipatedenergy,ofabout10mm,isclearly visibleinthezonewherethecrackgrowthstarted.Thesizeofthiszone canthenbecomparedtothesizeofthehighdissipatedenergyzone obtainednumerically(Fig.7b)andestablishesthemostrelevantvalue forΔv0 at 103 mm/s. Moreprecisely,thevalueis between 103 and

104mm/sbutaperfectlyaccuratevalueisnotfundamental.Areference

shearvelocityof103mm/swasconsideredrelevantenoughtobeused

withconfidence.Thisvaluewillbeusedinthenextsectiontosimulate theimpacttests.

Thenumericalcurveobtainedusingthemodelwiththestrainrate effectisdisplayedasacontinuousblackcurveinFig.9.Unstablecrack growthisobtainedforacylinderdisplacementofabout13mm.The de-formedFEmodelisshownjustbeforeandjustafterthisunstablecrack growthinFig.5.TheVonMisesstressisusedasastress mathemati-calnormratherthanafailurecriterionhere.Theunstablepropagation inducesamarkedoscillationofthebeamgoingoccurringduringthe unloadingphase.

Thenumericalcurveobtainedfromthemodelwithoutthestrainrate effectisdisplayedasacontinuoussolidgreycurveforFTvaluesof1and 2.7N/mm.Unstablecrackgrowthsareobtainedfordisplacementsof about8and13mmforFTvaluesof1and2.7N/mm,respectively.These unstablepropagationsinducemarkedoscillationsofthebeamoccuring duringtheunloadingphase.Suchnumericalissueswouldneedtobe corrected in thefuturebyimprovingthemodelling ofthestructural damping.

3. Impacttest

NowthatthestrainrateeffecthasbeenidentifiedusingtheENFtest, themodelcanbeusedtosimulateimpactonplateswiththesame car-bon/PEEKcompositeandwithvariousstackingsequences.Themodel usedistheDiscretePlyModel(DPM)whichhasbeenindevelopment formorethan10yearsattheInstitutClémentAder[42–45].Detailsare availableinourpreviousarticle[33],soonlythemaincharacteristics willberecalled.

(9)

Fig.9. Experimental,analyticalandnumericalforce-displacementcurvesoftheENFtest.(Forinterpretationofthereferencestocolourinthisfigure,thereaderis referredtothewebversionofthisarticle.)

Fig.10. DPMconceptanditsassociatedspecificmesh[44].

Fig.11. Impacttestsetup[15].

3.1. DiscretePlyModel

TheprincipleoftheDPMis touseinterface elementstosimulate thediscontinuityofthematrixcracks(Fig.10).Theseelementsmake itpossibleboth tosimulate thesignificantopeningsof theplies due tomatrixcrackingandtoaccountforthecouplingbetweenthematrix

crackingandtheinterlaminardamage(delamination).Thebehaviour lawoftheseinterfacesisbasedonadoublecriterion:

• AHashin’scriterion inneighbouringvolume elements;whenthis criterionisreached,theinterfaceelementisimmediatelybroken,

(10)

Fig.12. Experimentalandnumericalcomparisonofimpacttestofthe45° plate:force-displacementcurve(a)anddelaminatedinterfaces(b).(Forinterpretationof thereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

• Anenergydissipationintheinterfaceelement,drivenbythefracture toughness,alinearcouplingbetweenthemodesIandII/IIIanda lineardecreaseofthestressversusthedisplacement.Inthisinterface element,duetotheabsenceofrelevantdataontheFT,thevalues measuredintheinterlaminarinterfaceareused(Table1)andthe strainrateeffectisnotused.

Extrainterfaceelementsareusedtosimulatetheinterlaminar dam-age.Theseinterfaceelementsareofcourse,theonesmentionedin Sec-tionII,concerning theENFtest.Thestrainrateeffectisusedandits effectwillbedetailed.

Fibredamageisalsotakenintoaccountbyusingcontinuumdamage mechanicsinthevolumeelementswithadamagecriterion basedon

asimplelongitudinalstraincriteriononsetandanenergydissipation basedontheFToffibrefailure[33].

3.2. Impactmodel

Impacttests were performedon the carbon/PEEKlaminate men-tionedabove,withfourdifferentstackingsequencesof32pliesanda totalthicknessof4.51mm:

• [452,−452,02,902]2S:referredtoasthe45° stackingsequence,

• [02,452,902,−452]2S:referredtoasthe0° stackingsequence,

(11)

Fig.13. Experimentalandnumericalcomparisonofimpacttestofthe0° plate:force-displacementcurve(a)anddelaminatedinterfaces(b).(Forinterpretationof thereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

• [902,−452,02,452]2S:referredtoasthe90° stackingsequence(0° stackingsequencewitha90° rotation).

Theimpactset-upwasstandardizedaccordingtotheAITM1–0010 (Fig.11).Animpactorof2.03kgwasusedandtheinitialvelocitywas setsoastoobtainimpactenergiesof10,20and30J.Thisarticlemainly focusesontheresultsobtainedwiththe30Jimpact.

Theforce-displacementcurvesobtainedexperimentallyand numer-icallyareplottedinFigs.12a,13a,14aand15aforthe45°,0°,30° and 90° plates,respectively. Forthe45° plate,thecurves obtained with-out strain rateeffect andwiththe highspeed andlow speedFT of 1and2.7N/mm(Fig.12a),arealsoplotted.Forallcases,the corre-lationbetweentheexperimentalimpactandthecorrespondingmodel isgood.However,thenumericalresultsexhibitahigherstiffnessthan theassociatedexperimentalcurves.Thismaybedueeithertothe non-linearityoftheelasticstiffnesswhichisnottakenintoaccount,orto

anunderestimationofthedamageinthethicknessoftheplatesince, withtheDPM,thedamageintheout-of-planedirectionisnot consid-eredbecauseitisclassicallyveryweakcomparedtothein-plane dam-age.However,thisdamagecouldaddanadditionaldisplacement.The higherstiffnessofthemodelalsogeneratesalowermaximum displace-ment.Thetestisdrivenbyimpactenergy.Therefore,iftheforceis over-estimated,thedisplacementisunderestimated. Inthesameway, the energydissipated,correspondingtotheareaoftheforce-displacement curve,isoverestimatedbythemodel(about9Jfortheexperimentsand 11.5Jforthemodel).Thehigherstiffnessofthemodelshouldpartly ex-plainthisdiscrepancy.Globally,modelpredictionsareconsideredgood enoughforfurtherstudyofthestrainrateeffectoftheinterlaminarFTin modeII.

Thedelaminatedsurfacesfromtheexperiment(obtainedbyC-scan) andfromtheFEmodelaredisplayedinFigs.12b,13b,14band15b.The C-scanisclassicallyshownwithathicknessindicatormakingitpossible

(12)

Fig.14. Experimentalandnumericalcomparisonofimpacttestofthe30° plate:force-displacementcurve(a)anddelaminatedinterfaces(b).(Forinterpretationof thereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

toevaluatethepositionsofthedelaminatedinterfaces.Theinterface numbermaynotbe perfectlyaccuratebecauseitwassometimes dif-ficulttoseparatetwocloseinterfacesandtheultrasonicinvestigation involvedsomeuncertainty.Onecandistinguishthedouble-plyat mid-thickness.Tocomparethemodelwiththeexperiment,thedelaminated interfaceswerecolouredwiththesamecoloursastheC-scan.Thered colourcorrespondstopristineareas.DuetheuncertaintyoftheC-scan procedure,theremaybesome misinterpretationinthecolourofthe delaminatedinterfaceobtainednumerically.Onaverage,thisapproach providesarapidwaytocomparethedelaminatedinterfaces. Compar-isonsbetweenC-scanandDPMaresatisfactoryoverallbutdiscrepancies canbefound.Forthe45° plate(Fig.12b),thethreedelaminated inter-facesattheleft ofthepicturearewellreproducedbythemodelbut thedelaminatedinterfaceobtainednumericallyattheright,isclearly overestimated.Severaldelaminatedinterfaces nearthenon-impacted sidee.g.theinterfaces2,3and4forthe0° and90° plates,seemtobe underestimatedbythemodel.Thisdiscrepancycouldbedueto

under-estimationof thefibrefailure.Whenthereisasmallamountoffibre failure,thedelaminatedinterfacesaremostlythemid-thicknessones, duethehighshearinthiszone.However,whenthefibrefailure devel-opsfurther,theinterfaceslocatednearthenon-impactedsidetendto delaminate.Togiveabetterideaoftheextentofthepredictedfibre damage,thetopleftpartofFig.16showsthefibredamageobtained afterimpactonthe45° plate.Thebluecolourmeansnofibredamage andtheredmeanstotalfibredamage(atthetopright,thefibredamage correspondstotheimpactmodelwithoutthestrainrateeffectand,at thebottom,toanimpactonacarbon/epoxyplate).Itisclearthatthere isaverysmallamountoffibredamageandthedelaminatedinterfaces atmid-thicknessareclearlyvisible.

Anotherimportantfeatureistheunsymmetricalshapeofthe delam-inatedsurface.Fromaglobalpointofview,thisasymmetryis repro-ducednumericallyevenifthemodelisperfectlysymmetrical.TheFE modelsareindeedtotallysymmetrical(centralsymmetry),whichis,of course,notthecasefortheexperiments.Duringtheexperiments,even

(13)

Fig.15. Experimentalandnumericalcomparisonofimpacttestofthe90° plate:force-displacementcurve(a)anddelaminatedinterfaces(b).(Forinterpretationof thereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

thoughtheplatewaspositionedwithgreatcareandtheimpactorwell guided,themarginoferrorinpositionoftheimpactorpointisestimated at±1mm.Fornumericalresults,theproblemisperfectlysymmetrical andthepositioningoftheunsymmetricalareawaschoseninorderto beconsistentwiththeexperiments,andthustomakecomparisons eas-ier.Otherresultsintheliteratureshow anasymmetryofthedamage

[49,50].Itseemsthattheasymmetryismainlyobservedwhenthe de-laminationissituatednearthemid-thickness.Inthepresentstudy,the asymmetryisoften,butnotalways,observedfor30Jimpact.Fig.17

presentsthreeC-scansof30Jimpacttestson30° plateasanexample. Thethreetestsareexactlythesame,exceptfortheuncertainties re-latedtothemanufacturingprocessandtotheexperiment.Amongthe threetests,twoareunsymmetricalandaresimilar,andoneis symmet-rical.Thisdistributionisfairlyrepresentativeofsomecampaigntests performedon similarplates. Inordertocomparethisparticular fea-turewiththeFEmodel,theimpactpointwasshifted1mmleft,right,

downorupforafewimpactmodels.Formostofthemodels,thisled tonosignificantdifferencewiththeperfectlycentredmodelbut,ina fewconfigurations,differenceswerefound.Forexample,Fig.18shows theresultoftheimpactmodelonthe0° platewitha1mmoffset(to theleft).Thereisasignificantdifferencewiththecentredimpactmodel (Fig.13b).Thisfeatureisrepresentativeofwhatisobserved experimen-tallyandshouldbeexplainedbytheinstabilityofthepropagationofthe delaminationsatmid-thickness.Unlikethedelaminationspropagating nearthenon-impactedside,whicharealmostsymmetricandseem sta-ble,thepropagationatmid-thicknessseemslessstable.Thispointcould alsobe relatedtothehighstrainrateeffectobserved withthis type ofimpact.Ifthedelaminationsatmid-thicknessareunstable,thenthe crackgrowthvelocitycouldbehigherthantheclassicaldelamination nearthenon-impactedsideandwouldhighlightthestrainrateeffect. Thisis,however,putforwardonlyasapossibleexplanationandwill havetobeexaminedthroughextraresearch.

(14)

Fig.16. Fibrefailureobtainednumericallyforthecarbon/PEEK45° platewiththestrainrateeffect,withthehighspeedFT,andforcarbon/epoxyplate.(For interpretationofthereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

Fig.17. Experimentaltestsonthe30° plate:delaminatedinterfaces.

(15)

Fig.19. EffectoftheFTonthedelaminatedinterfacesofthe45° plateimpact.

(16)

Fig.21. Numericalcomparisonofcarbon/PEEKandcarbon/epoxylaminateplateinimpacttestofthe45° plate:force-displacementcurve(a)anddelaminated interfaces(b).(Forinterpretationofthereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

3.3. Effectoffracturetoughness

Onaverage,thestrainrateeffectseemstobeabletoaccountforthe largedelaminatedsurfaceareaobservedduringimpact.Toconfirmthis, impactmodelswererunwiththestrainratementionedabove(leftof

Fig.19)andwithoutanystrainrateeffect,withFTsof1and2.7N/mm (rightofFig.19).Ontheonehand,itisclearthatthedamagesimulated withtheFTmeasuredatlowspeed(2.7N/mm)stronglyunderestimated thedelaminatedarea.Ithastobenotedthatthisvalueof2.7N/mmis thestandardvalue(determinedusingindustrialnorms).This configura-tionalsoexhibitstoomuchfibredamageonthetwofirstpliessituated neartheimpactedside.

Thisfibrefailureisvisibleduethedelaminationoftheinterfaces13 and14(Fig.19).Thisgreaterfibredamageisconfirmedbycomparing thefibredamagevariablewiththestrainrateeffect(topleftofFig.16) andforthehighervalueoftheFT(toprightofFig.16).Thefibredamage

withthelowvalueofFTisnotrepresentedbecauseitissimilartothe oneobservedwiththestrainrateeffect.

Ontheotherhand,theglobalshapeofthedelaminatedinterfaces obtainedwith1N/mmoffractureisrelativelysimilartothatobtained withthestrainrateeffect.Thisislogicalbecause,oncethecrackgrowth starts, the FTdecreases quickly tothis value due tothe strain rate (Fig.6).Onlythedelaminationoftheinterfacesneartheimpactedside (interfaces12,13and14)ismodifiedbetweenthelowvalueofFTand thestrainrateeffect.

Inordertoenrichthecomparisonbetweentheexperimentandthe DPM,impacttestsat10Jand20Jwereperformedandnumerically simulatedonthe45° plate(Fig.20).Globally,theincreaseofthe delami-natedsurfacewiththeimpactenergylevelistakenintoaccountmoreor lesswellbythemodelusingthestrainrateeffect.Again,thefibrefailure ofthefirstplylocatedontheimpactedsideseemsunderestimated.Its failureisclearlyobservedinthe20Jimpactbythecleardelamination

(17)

Table2

Mechanicalpropertiesofcarbon/epoxyUDplyusedasparametersoftheDPM. Tensile Young’s modulus in fibre direction, E lt 130 GPa

Compressive Young’s modulus in fibre direction, E lc 100 GPa

Young’s modulus in transverse direction, E t 7.7 GPa

In-plane shear modulus, G lt 4.75 GPa

Poisson’s ratio, ϑlt 0.3

Tensile failure strain in fibre direction, 𝜀 lt 0.018

Compressive failure strain in fibre direction, 𝜀 lc − 0.0125

Tensile failure stress in transverse direction, 𝜎tt 60 MPa

Compressive failure stress in transverse direction, 𝜎tc − 250 MPa

In-plane shear failure stress, 𝜏ltr 110 MPa

Interlaminar fracture toughness in mode I , G Ic 0.5 N/mm

Interlaminar fracture toughness in mode II , G IIc 1.6 N/mm

Tensile fracture toughness in fibre direction, G If,t 100 N/mm

Compressive fracture toughness in fibre direction, G If,c 30 N/mm

Density, 𝜌 1600 kg.m −3

ofinterface14(Fig.20b).Itcanbenotedthatthedelaminatedsurface areameasuredduringthe20Jimpactissymmetricalwiththecentral pointoftheplate,unlikethedelaminatedsurfaceobservedinthe30J impact(Fig.12b).Fromexperimentalandnumericalobservations,the asymmetryofthedelaminatedsurfaceseemstoappearbetween20and 30J.Nevertheless,theasymmetryissometimesnotobtainedwiththe experiment,evenat30J.

3.4. Comparisonwiththermosetcomposite

Inordertocomparethethermoplasticresinwithathermosetresin, aconfigurationwith acarbon/epoxyplatewasmodelledfor the45° plateimpact.Onlythesimulationwasrun,andthematerialparameters weretakenfrompreviousstudies(Table2).Severalexperimentshave alreadybeenperformedwiththesematerialparameters[42,43,45,50]

andtheauthorshaverelativelyhighconfidenceintheassociatedresult. NostrainrateeffectwasusedforthissimulationbecausetheFTinmode IIdoesnotseemtovarysignificantlyforepoxyresin.Moreexactly,the resultsfoundintheliterature[51,52]andinourexperimentsdonot evidenceastrainrateeffectforModeII,unlikeintheworkofFriedrich etal.[13], whomeasuredastrainrateeffectforepoxyresinsimilar tothatforPEEK resin.Thebehaviourdifferencemaycomefromthe differenttypesofepoxypolymerresinsused,butthisquestionremains openatthisstage.

Thecarbon/epoxyplateexhibitsaslightlysmallersizeof delami-nationthanthecarbon/PEEKplateinFig.21b.Thislowersizeof de-laminationforepoxy resinisdue tothehighervalueof FTin mode

II,1.6N/mm,comparedtothehighspeedvalueofFTforPEEKresin, 1 N/mm. An asymmetry of the delaminated interfaces of the car-bon/epoxyplatecanalsobeobserved(rightofFig.21b),especiallyin theonessituatedinthelowerpartofthethickness(interfaces3–5).

Theforce-displacementcurveofthecarbon/epoxyplateissimilar tothatofthecarbon/PEEK(Fig.21a).Thefibrefailurepatternisalso relativelyclosetothecarbon/PEEKone(Fig.16).Thedamageis actu-allylargerthantheonesimulatedwiththestrainrateeffectandslightly smallerthantheonesimulatedwiththehighvalueofFT.Itshouldbe noted(Fig.21b)thatthepatternshownwasrecordedattheendofthe impacttest,whentheloadhasreturnedtozero.Therefore,thepattern isrepresentativeofthedeformationoftheplateobtainedstraightafter impact.Theresidualindentationisslightlyreducedbyarelaxation phe-nomenonnotyettakenintoaccountintheDPM.Ultimately,theimpact behaviourofthecarbon/epoxyplateisrelativelysimilartotheimpact behaviourofthecarbon/PEEK,despitethehigherstaticvalueofFTfor PEEKresin.

Toconclude,eventhoughtheFTinmodeII(ormoreexactlythelow speedvalueoftheFT)ishigherforPEEKresinthanforepoxyresin,the delaminatedsurfaceislargerforPEEKresin.Thisisduetothestrain rateeffect,whichconsiderablyreducestheFT.Thisdecreaseisclearly aproblemforPEEKcompositelaminatesbecauseitlimitstheinterestof

thesematerialsforimpactdamagetolerance.Nevertheless,thisfeature needstobeconfirmedbyotherstudiesandwithotherthermoplastic resins.Inparticular,otherstackingsequencescouldleadtodifferent conclusions asthestackingsequencesusedinthis studyalways con-tainedtwoconsecutivepliesinthesamedirection,whichisknownto increasethedevelopmentofthedelaminatedarea.

4. Conclusion

AmodeltakingthestrainrateeffectoftheFTinmodeIIof inter-laminarinterfacesintoaccounthasbeendeveloped.Thefirstpartofthis researchwastoidentifythecorrectparametersusinganENFtest espe-ciallyset-uptogenerateunstablecrackgrowth.Processingtheresults madeitpossibletoexperimentallymeasurethevalueofFTinmodeII forhighspeedpropagationandtoidentifythestrainratebehaviourto beimplementedinthemodel.

Thesecondpartconsistedofsimulatingimpacttestswithdifferent stackingsequencesanddifferentimpactenergylevelswiththehelpof the DPMtaking thestrainrate effectinto account.TheDPM exhib-ited relativelygoodcorrelationswithexperiment.Itmadeitpossible toidentifysomeasymmetryofthedelaminatedinterfaces andto ob-servethecommonpropagationofgroupsofinterfacessituatednearthe mid-thicknessofthelaminatedplates.

Finally,theimpactdamageinthecarbon/PEEKofthis studywas comparedwiththatofclassicalcarbon/epoxyplateswiththehelpof numericalsimulations(DPM).Itshowedthat,whenthelowervalueof FTinmodeIIofPEEKresinwasusedforhighspeedpropagation,larger delaminatedareasweregenerated;contrarytotheresultexpectedwhen consideringthehigherFTofPEEKforlowspeedcrackgrowth.

Thisresultconfirmedtheconclusionsdrawninourpreviousstudy focusedonthemeasurementofFTinmodeIIusingtheENFtestandIRT technique[33].Italsoquestionstheinterestofcarbon/PEEKlaminate compositescomparedtocarbon/epoxylaminatecompositesintermsof impactdamagetoleranceproperties.Itwouldbeinterestinginthefuture toconfronttheresultsofthisresearchwithotherstudiesondifferent fibre/matrix combinationsandstackingsequencesandtopursuethe researchonthenumericalmodellingonthecompressionafterimpact behaviour.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

Acknowledgement

The authors gratefully acknowledge CALMIP (CALcul en Midi-Pyrénées,(https://www.calmip.univ-toulouse.fr)foraccesstotheHPC resourcesunderallocationp1026.

Supplementarymaterials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.jcomc.2020.100031.

References

[1] J. Morton , E.W. Godwin , Impact response of tough carbon fibre composites, Compos. Struct. 13 (1989) 19 .

[2] D.C. Prevorsek , H.B. Chin , A. Bhatnagar , Damage tolerance: design for structural integrity and penetration, Compos. Struct. 23 (1993) 12 .

[3] D. Garcia-Gonzalez, M. Rodriguez-Millan, A. Rusinek, A. Arias, Low temperature effect on impact energy absorption capability of PEEK composites, Compos. Struct. 134 (2015) 440–449, doi: 10.1016/j.compstruct.2015.08.090 .

[4] D. Garcia-Gonzalez, A. Rusinek, T. Jankowiak, A. Arias, Mechanical impact be- havior of polyether–ether–ketone (PEEK), Compos. Struct. 124 (2015) 88–99, doi: 10.1016/j.compstruct.2014.12.061 .

(18)

[5] K. Srinivasan, W.C. Jackson, B.T. Smith, J.A. Hinkley, Characterization of damage modes in impacted thermoset and thermoplastic composites, J. Reinf. Plast. Compos. 11 (10) (1992) 1111–1126, doi: 10.1177/073168449201101004 .

[6] P. Bajurko, Comparison of damage resistance of thermoplastic and thermoset carbon fibre-reinforced composites, J. Thermoplast. Compos. Mater. (2019), doi: 10.1177/0892705719844550 .

[7] I. De Baere, S. Jacques, W. Van Paepegem, J. Degrieck, Study of the mode I and mode II interlaminar behaviour of a carbon fabric reinforced thermoplastic, Polym. Test. 31 (2) (2012) 322–332, doi: 10.1016/j.polymertesting.2011.12.009 . [8] P. Davies , M.L. Benzeggagh , The delamination behavior of carbon fiber reinforced

PPS, in: Proceedings of the 32nd International SAMPE Symposium, 1987 . [9] F. Lachaud, B. Lorrain, L. Michel, R. Barriol, Experimental and numeri-

cal study of delamination caused by local buckling of thermoplastic and thermoset composites, Compos. Sci. Technol. 58 (5) (1998) 727–733, doi: 10.1016/S0266-3538(97)00153-X .

[10] T. O’Brien , Composite interlaminar shear fracture toughness, GIIc: shear measure- ment or sheer myth?, in: R. Bucinell (Ed.) Composite Materials: Fatigue and Fracture:

7th Volume , ASTM International, West Conshohocken, PA, 1998, pp. 3–18 . [11] B. Vieille, V.M. Casado, C. Bouvet, About the impact behavior of woven-ply carbon

fiber-reinforced thermoplastic- and thermosetting-composites: a comparative study, Compos. Struct. 101 (2013) 9–21, doi: 10.1016/j.compstruct.2013.01.025 . [12] B. Vieille, V.M. Casado, C. Bouvet, Influence of matrix toughness and ductil-

ity on the compression-after-impact behavior of woven-ply thermoplastic- and thermosetting-composites: a comparative study, Compos. Struct. 110 (2014) 207– 218, doi: 10.1016/j.compstruct.2013.12.008 .

[13] K. Friedrich, R. Walter, L.A. Carlsson, A.J. Smiley, J.W. Gillespie, Mechanisms for rate effects on interlaminar fracture toughness of carbon/epoxy and carbon/PEEK composites, J. Mater. Sci. 24 (9) (1989) 3387–3398, doi: 10.1007/BF01139070 . [14] L.C.M. Barbosa, D.B. Bortoluzzi, A.C. Ancelotti, Analysis of fracture tough-

ness in mode II and fractographic study of composites based on Elium ○R

150 thermoplastic matrix, Compos. Part B Eng. 175 (2019) 107082, doi: 10.1016/j.compositesb.2019.107082 .

[15] ‘Airbus Industrie Test Method. Fiber Reinforced Plastics Determination of Compres- sion Strength After Impact. AITM-1.0010 ′ . 1994.

[16] Z. Major , R.W. Lang , Rate dependent fracture toughness of plastics, in: European Structural Integrity Society, 32, Elsevier, 2003, pp. 187–198 .

[17] C.R. Siviour, J.L. Jordan, High strain rate mechanics of polymers: a review, J. Dyn. Behav. Mater. 2 (1) (2016) 15–32, doi: 10.1007/s40870-016-0052-8 .

[18] D. Lee, H. Tippur, P. Bogert, Quasi-static and dynamic fracture of graphite/epoxy composites: an optical study of loading-rate effects, Compos. Part B Eng. 41 (6) (Sep. 2010) 462–474, doi: 10.1016/j.compositesb.2010.05.007 .

[19] C.A. Weeksa , C.T. Sud , Modeling non-linear rate-dependant behavior in fiber èrein- forced composites, Compos. Sci. Technol. 58 (1998) 603–611 .

[20] M. Ploeckl , Effect of Strain Rate On the Tensile, Compressive, and Shear Re- sponse of Carbon-Fiber-Reinforced Thermoplastic Composites, Technische Univer- sität München, 2018 .

[21] L. Cadieu, J.B. Kopp, J. Jumel, J. Bega, C. Froustey, Strain rate ef- fect on the mechanical properties of a glass fibre reinforced acrylic ma- trix laminate. An experimental approach, Compos. Struct. 223 (2019) 110952, doi: 10.1016/j.compstruct.2019.110952 .

[22] H. Wafai, et al., In situ micro-scale high-speed imaging for evaluation of fracture propagation and fracture toughness of thermoplastic laminates subjected to impact, Compos. Struct. 210 (2019) 747–754, doi: 10.1016/j.compstruct.2018.11.092 . [23] V.L. Reis et al., ‘High Strain-Rate Behavior of Fiber-Reinforced

Thermoplastic Composites Under Compressive Loadings’, 2017, doi: 10.26678/ABCM.COBEM2017.COB17-1122 .

[24] S. Hashemi , A.J. Kinloch , J.G. Williams , The effects of geometry, rate and tempera- ture on the mode I, mode II and mixed-mode I/II interlaminar fracture of carbon-fi- bre/poly(ether-ether ketone) composites, J. Compos. Mater. 24 (1990) 39 . [25] M. Blyton , The Interlaminar Fracture of Composite Materials, University of Liver-

pool, 1999 .

[26] P. Compston , The e €ect of matrix toughness and loading rate on the mode-II inter- laminar fracture toughness of glass- ○Rbre/vinyl-ester composites, Compos. Sci. Tech-

nol. (2001) 13 .

[27] B.L.K. Blackman, ‘The failure of fibre composites and adhesively bonded fibre com- posites under high rates of test’, J. Mater. Sci., p. 16.

[28] W.J. Cantwell, M. Blyton, Influence of loading rate on the interlaminar fracture prop- erties of high performance composites - a review, Appl. Mech. Rev. 52 (6) (Jun. 1999) 199–212, doi: 10.1115/1.3098934 .

[29] A.J. Smiley , R.B. Pipes , Rate sensitivity of mode II interlaminar fracture toughness in graphite/epoxy and graphite/PEEK composite materials, Compos. Sci. Technol. 29 (1987) 15 .

[30] S. Hamdan, G.M. Swallowe, Crystallinity in PEEK and PEK after mechani- cal testing and its dependence on strain rate and temperature, J. Polym. Sci. Part B Polym. Phys. 34 (4) (1996) 699–705 AID-POLB10>3.0.CO;2-C, doi: 10.1002/(SICI)1099-0488(199603)34:4 < 699 .

[31] Z. El-Qoubaa, R. Othman, Tensile behavior of polyetheretherketone over a wide range of strain rates, Int. J. Polym. Sci. 2015 (2015) 1–9, doi: 10.1155/2015/275937 . [32] S. Mall, G.E. Law, M. Katouzian, Loading rate effect on interlaminar fracture tough- ness of a thermoplastic composite, J. Compos. Mater. 21 (6) (Jun. 1987) 569–579, doi: 10.1177/002199838702100607 .

[33] P. Garcia Perez, C. Bouvet, A. Chettah, F. Dau, L. Ballere, P. Pérès, Ef- fect of unstable crack growth on mode II interlaminar fracture toughness of a thermoplastic PEEK composite, Eng. Fract. Mech. 205 (2019) 486–497, doi: 10.1016/j.engfracmech.2018.11.022 .

[34] C.C. Chamis, P.L.N. Murthy, L. Minnetyan, Progressive fracture of polymer matrix composite structures, Theor. Appl. Fract. Mech. 25 (1) (1996) 1–15, doi: 10.1016/0167-8442(96)00002-X .

[35] T. Lisle, C. Bouvet, M.L. Pastor, P. Margueres, R. Prieto Corral, Damage analysis and fracture toughness evaluation in a thin woven composite laminate under static tension using infrared thermography, Compos. Part A Appl. Sci. Manuf. 53 (2013) 75–87, doi: 10.1016/j.compositesa.2013.06.004 .

[36] T. Lisle, C. Bouvet, N. Hongkarnjanakul, M.-.L. Pastor, S. Rivallant, P. Margueres, Measure of fracture toughness of compressive fiber failure in composite struc- tures using infrared thermography, Compos. Sci. Technol. 112 (2015) 22–33, doi: 10.1016/j.compscitech.2015.03.005 .

[37] T. Lisle, C. Bouvet, M.L. Pastor, T. Rouault, P. Marguerès, Damage of woven com- posite under tensile and shear stress using infrared thermography and micrographic cuts, J. Mater. Sci. 50 (18) (2015) 6154–6170, doi: 10.1007/s10853-015-9173-z . [38] O. Allix, P. Ladevéze, A. Corigliano, Damage analysis of interlaminar fracture spec-

imens, Compos. Struct. 31 (1) (1995) 61–74, doi: 10.1016/0263-8223(95)00002-X . [39] P. Davies , Protocols for interlaminar fracture testing of composites, ESIS-Polymers

and Composites Task Group Presented at the, IFREMER, Centre de Brest, 1993 . [40] A.B. Pereira, A.B. de Morais, A.T. Marques, P.T. de Castro, Mode II interlaminar

fracture of carbon/epoxy multidirectional laminates, Compos. Sci. Technol. 64 (10– 11) (2004) 1653–1659, doi: 10.1016/j.compscitech.2003.12.001 .

[41] J.W.S.B. Rayleigh, ‘The Theory of Sound, vol 2.’, 1896.

[42] C. Bouvet, B. Castanié, M. Bizeul, J.-.J. Barrau, Low velocity impact modelling in laminate composite panels with discrete interface elements, Int. J. Solids Struct. 46 (14–15) (2009) 2809–2821, doi: 10.1016/j.ijsolstr.2009.03.010 .

[43] C. Bouvet, S. Rivallant, J.J. Barrau, Low velocity impact modeling in composite lami- nates capturing permanent indentation, Compos. Sci. Technol. 72 (16) (2012) 1977– 1988, doi: 10.1016/j.compscitech.2012.08.019 .

[44] S. Rivallant, C. Bouvet, N. Hongkarnjanakul, Failure analysis of CFRP lam- inates subjected to compression after impact: FE simulation using discrete interface elements, Compos. Part A Appl. Sci. Manuf. 55 (2013) 83–93, doi: 10.1016/j.compositesa.2013.08.003 .

[45] J. Serra, C. Bouvet, B. Castanié, C. Petiot, Scaling effect in notched compos- ites: the Discrete Ply Model approach, Compos. Struct. 148 (2016) 127–143, doi: 10.1016/j.compstruct.2016.03.062 .

[46] HEXCEL, ‘HexTow Carbon Fiber Datasheet’. 2014. [47] GOODFELLOW, ‘GoodFellow Peek Resin Datasheet’. 2014.

[48] F. Lemarchand , Étude De L’apparition Des Contraintes Résiduelles Dans Le Procédé D’empilement Par Soudage Et Consolidation En Continu De Composites Thermoplas- tiques, Arts et Métiers ParisTech, 2008 .

[49] F. Léonard, J. Stein, C. Soutis, P.J. Withers, The quantification of impact damage dis- tribution in composite laminates by analysis of X-ray computed tomograms, Compos. Sci. Technol. 152 (2017) 139–148, doi: 10.1016/j.compscitech.2017.08.034 . [50] N. Hongkarnjanakul, C. Bouvet, S. Rivallant, Validation of low velocity impact mod-

elling on different stacking sequences of CFRP laminates and influence of fibre fail- ure, Compos. Struct. 106 (2013) 549–559, doi: 10.1016/j.compstruct.2013.07.008 . [51] J.W. Gillespie, L.A. Carlsson, A.J. Smiley, Rate-dependent mode I interlaminar crack

growth mechanisms in graphite/epoxy and graphite/PEEK, Compos. Sci. Technol. 28 (1) (1987) 1–15, doi: 10.1016/0266-3538(87)90058-3 .

[52] I. Maillet and L. Michel, ‘Effet De La Vitesse De Chargement Sur Le Taux De Resti- tution D’énergie D’un CFRP En Mode I et II’, p. 9, 2017.

Figure

Fig. 1. Effect of the crack growth speed on modes I and II FT for carbon/epoxy and carbon/peek composites (a) [13] , and ductile (b) and brittle behaviour (c) of delamination of PEEK resin [29] .
Fig. 2. FT in mode II versus crack growth evolution of the ENF tests [33] . (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
Fig. 3. ENF test setup.
Fig. 5. Model of the ENF test just before and just after the unstable crack growth. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
+7

Références

Documents relatifs

[r]

The Effects of Geometry, Rate and Temperature on Mode I, Mode II and Mixed-mode I/II Interlaminar Fracture Toughness of Carbon-fibre/poly(ether-ether ketone) Composites, Journal

SUR LES ERREURS EN ASSERVISSEMENT VISUEL Bernard ESPIAU Programme 4 | Robotique, image et vision Projet BIP Rapport de recherche n 2619 | Juillet 1995 | 58 pages.. Resume :

Face à ce métissage et aux classifications auquel il a pu donner lieu pendant la période de l’esclavage 13 , Confiant se place dans une position assez complexe, écrivant dans

نرقلا ( ةرتفلا كلت يف عمتجلما يف هطاشنو لواقلما ءازإ ةيبلسلا ةرظنلا هذه اصتقلإا ىلع يباجيلإا هريثأتو لواقلما ةناكمو رود مهف مدع ىلإ دوعت )رشع

In [1], we reported on a method for performing exact analytic 2D fan-beam reconstruction when the object of interest has under- gone a perfectly known rigid translation during

L'évaluation des sorties en débits du modèle hydrologique GRP (Cemagref) et de la chaîne de modélisation SIM (Météo- France ; débits générés dans le cadre de la

In this paper the concept of the Supernumerary Robotic Limbs (SRL), wearable robotic arms made to assist an operator with aircraft manufacturing tasks, was