• Aucun résultat trouvé

Carbon nanotube/alumina and graphite/alumina composite coatings on stainless steel for tribological applications

N/A
N/A
Protected

Academic year: 2021

Partager "Carbon nanotube/alumina and graphite/alumina composite coatings on stainless steel for tribological applications"

Copied!
10
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 16746

To link to this article : DOI:10.1016/j.mtcomm.2016.07.007

URL :

http://dx.doi.org/10.1016/j.mtcomm.2016.07.007

To cite this version :

Hentour, Karim and Marsal, Alexis and Turq,

Viviane and Weibel, Alicia and Ansart, Florence and Sobrino,

Jean-Michel and Chen, Yan Ming and Garcia, Julien and Cardey,

Pierre-François and Laurent, Christophe Carbon nanotube/alumina and

graphite/alumina composite coatings on stainless steel for

tribological applications. (2016) Materials Today, vol. 8. pp.

118-126. ISSN 1369-7021

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Carbon

nanotube/alumina

and

graphite/alumina

composite

coatings

on

stainless

steel

for

tribological

applications

Karim

Hentour

a,b

,

Alexis

Marsal

a,b

,

Viviane

Turq

a

,

Alicia

Weibel

a

,

Florence

Ansart

a

,

Jean-Michel

Sobrino

b

,

Yan

Ming

Chen

b

,

Julien

Garcia

b

,

Pierre-Franc¸

ois

Cardey

c

,

Christophe

Laurent

a,∗

aCIRIMAT,UniversitédeToulouse,CNRS,INPT,UPS,118,RoutedeNarbonne,31062,ToulouseCedex9,France

bCETIM(CentreTechniquedesIndustriesMécaniques),52,AvenueFélixLouat,CS80067,60304,SenlisCedex,France

cCETIM(CentreTechniquedesIndustriesMécaniques),7,RuedelaPresse,CS50802,42952,Saint-ÉtienneCedex1,France

Keywords:

Carbonnanotubes

Graphite Alumina

Solgelcoatings

Friction Wear

a

b

s

t

r

a

c

t

Carbon/aluminacoatingsonstainlesssteelarepreparedbyasol-gelroute,usingeithercarbonnanotubes (8wallsonaverage)orgraphiteflakes.Thefrictioncoefficientagainstasteelballisdecreasedbyafactor of4–5comparedtopurealuminaandwearisreducedbyafactorof2withgraphiteflakes.ARaman spectroscopystudyofselectedspecimensoutsideandinsidethewornsurfaceshowsthatthecarbon nanotubesarenotdramaticallydamagedwhereasthegraphiteflakesarebrokenintographenelayers. Thereasonswhygraphiteismoreeffectivethanthecarbonnanotubes,forthesamecarboncontent,to improvethetribologicalbehaviorarediscussed.

1. Introduction

Austeniticstainless steels arewidely used in theaerospace, energy,medical and foodindustries becauseoftheirresistance to corrosion but they are highly susceptible to adhesive wear (seizure), therefore leading to a significant loss of profitability and possiblytosomeenvironmentalimpact.Carbon-containing compositesareofparticularinterestasself-lubricatingmaterials showingahighresistancetofrictionandwear,preventingtheneed forliquidlubricants.Reportsonthetribologicalbehaviorof metal-[1–11]and ceramic-matrix[12–17] bulk compositescontaining carbonnanotubes(CNTs)areincreasinglyabundant.However,the comparisonoftheresultsreportedbydifferentgroupsishampered notablybecausedifferentCNTsareused,thepreparation routes markedlydifferandthetribologicaltestingconditions (counter-face,load,slidingdistance,relativehumidity,temperature)vary widely.Moreover,itiseitherundesirableorimpossibletousebulk compositesfor applicationssuchastheprotectionof austenitic steels.Therefore,compositecoatingsaretobepreferred,suchas CNT-metalelectrolesscoatings[3]andplasma-sprayedCNT/Al2O3

coatings[18,19].Balanietal.[18]reportedthattheslidingwear

∗Correspondingauthor.

E-mailaddress:laurent@chimie.ups-tlse.fr(C.Laurent).

volumelossofa8wt.%CNT/Al2O3coatingagainstaZrO2pin(dry

conditions, normal load 48N) was49 times lower than for an Al2O3coating.Keshrietal.[19]reporteda72%increaseinwear

resistanceagainsta WCball(298K,ball-on-disktribometer)for a8wt.%CNT/Al2O3 coatingcomparedtoAl2O3.Note thatthese

resultsarepartlyattributedtoindirecteffectsofthepresenceof CNTs,such asalocally enhanced densificationofthewear sur-faceandahighertoughnessofthecoatingthroughCNTsbridging betweenthesplatsand/orAl2O3grains.Graphite/Al2O3bulk

com-positeswereshown[20]tohaveafrictioncoefficienthalfofthat ofpureAl2O3.Alowshearstrengthintheslidingdirectionand

highcompressionstrengthinthedirectionoftheload(i.e. perpen-diculartotheslidingdirection)arebeneficialtolowerthefriction coefficient.Laminatedgraphite/Al2O3 compositeswerereported

[21]toshowsignificantlybetterfrictionandwearbehaviorsthan monolithicgraphite/Al2O3composites(againstanAl2O3ball,dry

conditionsroomtemperature)becausegraphiteparticlescanbe easilydraggedontothefrictionsurfacefromthegraphitelayers. Changesinthelayerspacingandinthegraphitevolumefraction affectthe formation oflubricating and transferring films, load-bearing capacities and wear mechanisms of thematerials. The aimsofthepresentworkaretoshapeCNT/Al2O3coatingsontoan

austenitic304-Lstainlesssteelsubstrate,tocomparetheir tribo-logicalbehaviortothatofpureAl2O3andgraphite/Al2O3coatings

(3)

Fig.1.TEMimagesoftheCNTs(aandb)andFESEMimage(c)andTEMimage(d)ofgraphiteflakes.

andtoexplainwhygraphiteismoreeffectivethanCNTstoimprove thetribologicalbehavior.

2. Experimentalmethods 2.1. Rawmaterials

ACNTsampledescribedindetailelsewhere[10]waspurchased fromNanocyl(Belgium).TEMimages(Fig.1aandb)showthatthe CNTsaremostlynotbundledandcontainafairnumberofdefects alongtheirlengths.CNTswith3–22wallsareobserved.CNTswith 8wallsaredominant(30%)withCNTswith7and9walls(both16%) thesecondmostabundantpopulations.

Theaveragenumber ofwallsis equal to8.5(rounded to8). TheaverageCNTouterdiameteris10.2nmandlengthisbelow 1.5mm.Thespecificsurfaceareaofthesampleis242m2g−1,in

agreementwithcalculationsfromgeometricaldata[22].TheCNTs werecarboxyl-functionalizedwithanitricacidsolution(3molL−1)

as described elsewhere[23]. Graphite platelets (Fig. 1c and d) werepurchasedfromAbcr(Germany).Flakesabout15nmthick areagglomeratedintoplateletsabout1.5mminsize.Thespecific surfaceareaofthesampleis20m2g−1.

Anaqueousaluminumchloridehexahydrate(AlCl3·6H2O)

solu-tion(0.13molL−1)waspouredintoanexcessofammoniasolution

Fig.2. Measured carboncontent versustheexpectedcarbon content forthe

CNT/Al2O3(N)andgraphite/Al2O3coatings( ).Thesolidlineshowstheexpected

carboncontent(i.e.1for1).

(5molL−1)undermagneticstirringatroomtemperature.The

so-obtainedboehmite(AlOOH)precipitatewasfiltered,washedwith deionizedwaterandoven-driedovernight,producingaboehmite

(4)

powder.Aknownamountofthispowderwasdispersedinto deion-izedwaterandthesolutionwaspeptizedwitha3.1vol.%solution ofaceticacid(100%)andstirredfor24h,producingaboehmite col-loidalsol.Carbonwasaddedindifferentproportions(6,8,10,12 and14gL−1 forCNTsand5,10,25and50gL−1forgraphite),as

requiredforthestudy.Thecarbon-boehmitesolsweresonicated (VibraCell75042sonotrode),1hforCNTsand0.5hforgraphite.

Stainless steel disks (AISI 304-L, diameter 30mm, thickness 5mm,arithmeticaverageroughnessRa0.6mm)wereusedas sub-strates.Thediskswerefirstpre-treatedusingaroutineinvolving alkalinedegreasing,acidpicklingandnitricacidpassivation[24]. 2.2. Preparationofthecoatings

Al2O3andcarbon-Al2O3coatingswerepreparedbydip-coating

followedbythermaltreatments[24].Thestainlesssteelsubstrates weredippedintotheboehmiteorcarbon-boehmitecolloidalsols andwithdrawnatacontrolledspeed(300mmmin−1),resultingin

thedepositionofasollayerontothesubstrate.Afterremovingof theexcessliquid,dryinginair(80◦C,2h)provokedsolvent

evapo-rationandtransformationofthesolinaxerogel.Aheat-treatment inN2(500◦C,25min,heatingrate100◦Ch−1,naturalcooling)then

resultedintheformationoftheAl2O3andcarbon-Al2O3coatings.

Thecoatingswillbereferredtohereafterbyaletter(TforCNTsorG

forgraphite)andanumberdenotingitsmeasuredcarboncontent (weight%),i.e.T18orG21.

2.3. Characterization

The viscosity of the sols was measured using a viscometer (LAMYRM100)inaTaylor-Couetteconfigurationatashearrange of966–2900s−1.Grazing incidenceX-raydiffraction(XRD)was

carriedoutonthesubstrateandonthecoatingsusingaSiemens D5000diffractometerwithCuKaX-raysource.XRDpatternswere collectedatroomtemperatureby0.02◦(2u)scanningstepsover

the10–100◦range.Thecarboncontentinthecarbon-Al

2O3

coat-ingswasobtainedusinganelectronmicroprobe(EPMA,Cameca SXFive).Thesurfaceofthecoatingswasobservedby field-emission-gunscanningelectronmicroscopy(FESEM,JEOLJSM6700F)and interferentialrugosimetry(ZygoNewView100).Thethicknessof thecoatingswasdeterminedoncross-sectionalSEMimages(SEM JEOL35CF).Crosssectionswerepreparedbycryo-fracturationon notchedsamples.The weartrackswereobserved by3Doptical profilometry(SENSOFARSneox)andopticalmicroscopy(Keyence VHX-1000E). Selected samples were studied by Raman spec-troscopy(Horiba800spectrometerusing633nmlaserexcitation). Thespectrarepresentresultsobtainedfromthreedifferentareas inagivensample.

Fig.3.FESEMimagesshowingthesurfaceoftheCNT/Al2O3(18wt.%)(a)andgraphite/Al2O3(21wt.%)(b)coatingsandhighermagnificationimagesshowingcracksmade

(5)

Fig.4. FESEMimagesshowingcross-sectionsoftheCNT/Al2O3(18wt.%)coating(a)(whitearrowsindicateCNTs)andgraphite/Al2O3(21wt.%)(b)coating;higher

magnifi-cationimagesshowCNTs(c)andgraphiteplatelets(d),respectively.

2.4. Nano-indentationandtribologicaltesting

Instrumented indentation tests were conducted (in air at roomtemperature,maximumnormalload600mN,load/unloading rate 800mNmin−1, dwell 60s, maximum penetration depth

100–300nm) witha Berkovich nano-indenter(CSM Instrument UltraNanoindenter)inordertorecordtheloadversus penetra-tiondepthandtoevaluatetheYoung’smodulusandhardnessof theraw(i.e.un-polished)coatings.Frictiontestswereperformed usingaball-on-diskgeometryinrotarymode(CSMTribometer)in compliancetotheASTMG99internationalstandard.Tests(normal load2N,rotatingspeed10cms−1andtotalslidingdistance250m)

wereperformedatroomtemperatureinambientairwitha40–60% relativehumidity.Theun-polishedsurfaceswererubbedagainsta 316-Lsteelball10mmindiameter.Thefrictionalforcetransferred toaloadcellwasrecordedthroughoutthetest.Allfrictiontests wererepeatedthreetimes,showingidenticalresults.

3. Resultsanddiscussion

3.1. Compositionandmicrostructureofthecoatings

Theviscosityofthesolincreasesmarkedlyupontheincreasein CNTcontent,from11mPas(pureboehmitesol)to28mPasforthe solwithacarbonproportionof14gL−1.Bycontrast,theviscosity

ofthegraphite-boehmitesolsremainsconstantforallthe stud-iedcarbonconcentrationrange(5–50gL−1)andisonlymarginally

higherthanforpureboehmite(13vs11mPas).Thiscouldreflect thehigheraspectratio(length/diameter)ofthe8CNTs(150) com-paredtothatofgraphite(1).Thedifferentcarbonproportions(6,8, 10,12and14gL−1for8CNTsand5,10,25and50gL−1forgraphite)

inthestartingsolsshouldyieldcarboncontentsinthecoatings equalto12,14,16,18,20wt.%for8CNTsand7.9,14.6,30,60wt.% forgraphite.Theactualmeasuredcarboncontentis7–27%lower thanexpectedfortheCNT/Al2O3coatings(Fig.2),butthe

discrep-ancytendstodiminishforhighercontents,andis62–68%lower thanexpectedforthegraphite/Al2O3coatings(Fig.2),indicating

thatcarbonspecies,inparticularthegraphiteparticles,tendtobe drainedbygravityduringthewithdrawingstepofdip-coatingif theviscosityofthesolistoolow.

AnalysisoftheXRDpattern(notshown)fortheun-coated304-L steelsubstraterevealstheaustenite(111)and(200)peaks(major phase)andaweakferriticormartensiticpeak(minorphase).For theAl2O3 coating,thesteelpeaksarelessintenseandnopeaks

correspondingtocrystallizedAl2O3aredetected.Forthe

carbon-Al2O3coatings,veryweaksteelpeaksaredetectedinadditiontoa

strongCNT-orgraphite(002)peak.Again,nopeakscorresponding toAl2O3aredetected,showingthatAl2O3hereiseitheramorphous

(6)

Fig.5.LoadversusdisplacementplotsmeasuredwithaBerkovichnano-indenter

(a),Young’smodulus(b)andhardness(c)versuscarboncontent.

Fig.6.Frictioncoefficientagainstasteelballversustheslidingdistanceforthe

un-coatedsubstrateandtheAl2O3,CNT/Al2O3(18wt.%)andgraphite/Al2O3(21wt.%)

coatings.Thetestloadisequalto2N.

Fig.7.Steady-statefrictioncoefficientagainstasteelballversuscarboncontentfor

theAl2O3( ),CNT/Al2O3(N)andgraphite/Al2O3( )coatings.

FESEMobservationsofthesurfaceofthecoatingsreveala homo-geneousdistributionoftheCNTs(Fig.3a)andgraphiteplatelets (Fig.3b, back-scatteredelectronimageinchemical composition mode).Cracks(Fig.3candd),weregeneratedonpurposeby per-forminghigh-loadindentations.CNTsareobservedbridgingthe crack(Fig.3c),ascouldbeexpectedfrompreviousresults[23,25], whereastheshorterplateletsdonot(Fig.3d).

Cross-sectionsimagessuchasthoseshownforT18andG21 sug-gestthattheTcoatings(Fig.4a)arelessroughthantheGcoatings (Fig.4b),asconfirmedbywhite-lightinterferometry.Notethatthe crackbetweensubstrateandcoating(Fig.4a)wasformedbecause thecrosssectionwaspreparedbycryo-fracturation.TheCNTsare homogenouslydispersedwithinthecoating(Fig.4c).Thegraphite plateletsmostlyformmicrometer-sizedagglomerates(Fig.4b)but individualplateletsnotthickerthan50nmareobservedina higher-magnificationimage(Fig.4d).Thethicknessofthecoatingswas evaluatedonsimilarimages.Itincreasesupontheincreasein car-boncontentfrom1mmforAl2O3toabout7mmforT18andabout

5mmforG21.

Aboveacarboncontentof10wt.%,thehigherthicknessofthe TcoatingscomparedtothatoftheGcoatingscouldbeattributed tothehigherviscosityofthecorrespondingsols.Thearithmetic average roughness (Ra) calculated from white-light

interferen-tial rugosimetry images (not shown) is equal to about 0.4mm for both the steel substrate and the Al2O3 coating, 0.8mm for

theGcoatingsandonly0.2mmfortheTcoatings,inagreement with the FESEM observations where the T18 coating (Fig. 4a) seemstobemorelevelingtowardstheroughnessofthesteel sub-strate.

3.2. Nano-indentation

Typicalload-penetrationdepthplotsmeasuredwithaBerkovich nano-indenterareshown in Fig.5a. Themaximum penetration depthwaskeptlowerthanthetenthofthecoatingthicknessforall samples,inordertoneglecttheinfluenceofthesubstrateonthe calculatedmechanicalproperties.Analysisofsuchcurvesbythe OliverandPharrmethod[26]showsthattheYoung’smodulusof thecoatings(Fig.5b)steadilydecreasesupontheincreasein car-boncontent,from41GPaforAl2O3to9GPaforG21.Thehardness

(7)

Fig.8.Opticalimagesshowingtheweartrackfortheun-coatedsubstrate(a)andtheAl2O3(c),CNT/Al2O3(18wt.%)(e)andgraphite/Al2O3(21wt.%)(g)coatingsandthe

correspondingsteelballs(b,d,fandh,respectively).

andthendecreasessharply,reachingonly200MPaforG21.FESEM observationofthesurfacesdonotindicateacorrespondinglylower densification,thusthiscouldreflectalowercrystallizationstate ofAl2O3,lesscohesivegrainboundariesoraweakcarbonmatrix

interface.

3.3. Tribologicaltesting

Typicalcurvesshowingthefrictioncoefficientagainstasteelball versustheslidingdistanceareshowninFig.6.Thecurvesforthe un-coatedsteelandAl2O3coatingareveryunstable,whichcould

(8)

Fig.9.WidthoftheweartracksversuscarboncontentfortheAl2O3( ),CNT/Al2O3

(N)andgraphite/Al2O3( )coatings.

(itwasneitherquantifiednorimaged).FortheT18coating,there isarunning-inperiodofabout20m, withamarkedincreaseof thefrictioncoefficient,andafterwhichitisstabilized.Thiscould revealthatthecoatingisseparatedfromthesubstrate(reflecting totalwear)veryearlyinthetest,possiblyreflectingaweak coat-ing/substrateinterface.Theso-produceddebriswouldstayinthe trackandseeminglyshowalubricatingrolethatpureAl2O3does

not,whichcouldbeinagreementwithreportsbyotherauthors [18,19].FortheG21coating,thereisasmallbutregularincrease uptoaslidingdistanceofabout200m.

Therefore,forallspecimens,theaveragesteady-statefriction coefficient(m)wascalculatedforthelast50mofthetests.The Al2O3 coating (=0.95) doesnot provideany improvementon

frictionbehavior over un-coatedsteel (=0.80).By contrast,m decreasesupontheincreaseincarboncontent(Fig.7),very progres-sivelyfortheTcoatings(reaching0.26forT18)andmoreabruptly fortheGcoatingsforwhichaplateauatabout=0.17isreached forG5.

Post-testoptical observationsof the weartracksof selected coatingsandthecorrespondingsteelballsarepresentedinFig.8. The wear tracks of the composite coatings appear to be less wide and partially covered with a black film-like layer. This tribologically-formedfilmwastransferredtothesteelball, sug-gestingthattheobservedlubricatingeffectduringslidingmaybe atleastpartiallyrelatedtothesmearingofatribofilmoverthe con-tactarea.Thewidthoftheweartracks(Fig.9),measuredonsimilar opticalimages,islowerforthecompositecoatingsthanforthe Al2O3coating(>1000mm).Thevalueisconstant(about650mmfor

theTsamples)anddecreasingdownto300mmfortheGspecimens. Weartracksofselectedsamples(T18andG21)wereobserved bynon-contactopticalprofilerimaging (Fig.10aand c)andthe correspondingprofilesperpendiculartothetrack(Fig.10bandd) wereusedtomeasuretheirhalf-widthanddepth.NotethatforT18 (Fig.10b),thedepthoftheprofileisclosetothecoatingthickness (7mm,Fig.7)whichcouldconfirmtotalwearasnotedabove.The wearvolume(Vw)wascalculatedforahalf-ellipsetrackaccording

toEq.(1):

VW

!

mm3



=1/2.prd.2pL (1)

with r=track half-width (mm), d=track depth (mm), L=outer radiusofthecirculartrack(10mm).

Fig.10.White-lightinterferometryimagesoftheweartracksandthe

correspond-ingprofilesfortheCNT/Al2O3(18wt.%)coating(aandb)andthegraphite/Al2O3

(21wt.%)coating(candd).

ThecalculatedwearvolumeforT18andG21isequalto0.20and 0.06mm3,respectively.G21isthemostwear-resistantcomposite

coatingcomparedtoun-coatedsteel(0.30mm3)orAl

2O3coating

(0.12mm3).

4. Discussion

Althoughadetailedinvestigationofthewearmechanismsas performedbyotherauthors[18,19]iswellbeyondthescopeofthis workandwarrantsfurtherstudies,itwasfoundofparticular inter-esttostudytheweartracksbyRamanspectroscopy.TypicalRaman spectraforT18andG21,insideandoutsidethewornsurface,are showninFig.11.TheratiobetweentheintensitiesoftheDbandand theGband(ID/IG)wascalculatedfromthespectra.Ahigherratio

isgenerallyattributedtothepresenceofmorestructuraldefects (moresp3carbon).Interestingly,thespectraforT18(Fig.11a)are

remarkablysimilartoeachotherandtheID/IGratioaresimilartoo

(1.83outsideand1.90inside).Moreover,itisalsosimilartotheID/IG

ratio(1.86and1.88)reported[23]fortherawandfunctionalized CNTs(sameprovider,samebatch),respectively.Theseresults indi-catethattheCNTsdonotsufferdrasticdeterioration.Itisprobable thatthemoredefectiveCNTs,thosewithahighnumberofwalls, aredestroyedbecauseofthestrongwear,veryearlyinthefriction test,resultingintheformationofacarbon/CNT/Al2O3tribofilm,the

subsequentbehaviorofwhichdoesnotfavorCNTdestructionand delamination.Bycontrast,theID/IGratioforG21(Fig.11b)increases

significantlyfrom0.42(outside,and0.40forrawgraphite)to1.22 (inside),whichcouldindicatesomedestructionofthegraphite

(9)

par-Fig.11.TypicalRamanspectraoutsideandinsidetheweartrackfortheCNT/Al2O3

(18wt.%)(a)andgraphite/Al2O3(21wt.%)(b)coatings.

ticlesduringthefrictiontest.Theso-generateddebriswouldform alubricatingfilm,loweringtheshearingresistance.

Asmentioned above,theCNTsdo notappear tobestrongly damaged duringthefrictiontest andtherefore thetotal carbon contentinthesamplesishigherthanthecontributing,or “use-ful”,carbon.Therelativeweightofeachwallwascalculated[27] anda plot(similar totheoneinFig.7)ofthesteady-state fric-tioncoefficientversusthecorrected carboncontentwasdrawn (Fig.12a),consideringthattheinnermostwallisinactive(i.e.one countsonly7walls),thenthatthetwoinnermostwallsareinactive (i.e.onecountsonly6walls),andsoonuntilonecountsonlythe outerwall,whichcontributesonly16.5%tothetotalweightofthe CNT.Thecorrespondingcurvesgraduallyshifttotheleftand inter-estinglythedatawhenconsideringonlytheouterwall(labelled 1WinFig.12a)fallreasonablyinlinewiththoseofthegraphite curve,formingwhatweconsidertobea“master-curve”.This sug-geststhatinsteadofusingweightorvolumiccarboncontents,the appropriateunitfortribologicalbehaviorcouldbethesurfacearea developedbytheinvolvedcarbonspecies.FortheCNT/Al2O3

spec-imens,thecontributingsurfaceareaisthusestimated,admittedly roughly,asthatcalculatedfortheouterwallonly,consideringthe geometriccharacteristicsoftheCNTsdescribedinSection2.1and nobundling.Assumingthatthecontributingsurfaceareais con-stantduringthefrictiontest,foragivensample,thecorresponding plotoffrictioncoefficientversussurfaceareaformsthebasisof

Fig.12.(a)Steady-statefrictioncoefficientversuscorrectedcarboncontent,

con-sideringonlythenumberofwallsconsideredactivefortheprocess(seetextfor

details).Curvesfor8,4,2and1wallsareshown.Thearrowshowsthegradualshift

totheleft;(b)steady-statefrictioncoefficientversusthesurfaceareaofthecarbon

speciesinvolvedinthefrictionphenomena(seetextfordetails)fortheCNT/Al2O3

(triangles)andgraphite/Al2O3( )coatings.Theerrorbarshavebeenomittedfor

clarity.

another“master-curve”(Fig.12b).For thegraphite/Al2O3

speci-mens,thecarbonflakeswerefirstdescribedascylinders1.5mmin diameterand1.5mmthick(whichobviouslyisfartoothick)toget athestartingdataforthecalculation:theinitialnumberofcarbon flakesforagivenweightcontentandthecorrespondingsurfacearea (theverticallateralareaofthecylinderwasneglected).Then,the cylinderswerehorizontally“sliced”inhalf,thuseachtimedoubling thesurfaceareadevelopedbythecarbon,untilareasonablefitwith the“master-curve”(Fig.12b)wasobtained.Thisoccurredafter slic-ing11timesandcorrespondstoacarbonlayerabout730pmthick, i.e.closetotwolayersofgraphene,whichreasonablysupportsthe findingthatitisthegraphene(graphite)surfaceavailablethatis importantforthereductionoffrictionandwearandthatitsinitial form(eitherCNTsorgraphiteflakes)isun-important.Therefore, ourresultssuggestthatselectinggraphiteflakesismore conve-nientbecause,firstitiseasiertodisperseintotheboehmitesol andseconditismorereadilydelaminatedandbrokenintothinner flakes(alsocalledfew-layered-graphene)duringthetest,therefore providingmoredesirablelubricatingsurfacearea.

(10)

5. Conclusions

Carbon/Al2O3coatingson304-Lstainlesssteelpreparedusing

eitherCNTs(averagenumberofwalls=8)orgraphiteflakespresent alowerfrictioncoefficient(reducedbyafactorof4–5)andlower wear(reducedbyafactorof 2forgraphiteflakes)againststeel compared to a pureAl2O3 coating. The CNTs and

micrometer-sizedgraphiteagglomeratesarehomogenouslydispersedwithin thecoatings,thethicknessofwhichisinthe1–7mmrange.There isnodramaticdeteriorationofthestructureoftheCNTsduringthe frictiontestwhereasthegraphiteflakesarepartiallydestroyed. TheCNT/Al2O3coatingisseparatedfromthesubstrateveryearly

inthetest,reflectingtotalwear,andtheso-produceddebriswould showa lubricating rolethat pureAl2O3 doesnot,but however

lessefficientlythanforgraphite/Al2O3coatings.Theso-generated

debris forma lubricatingfilm,which is transferredtothesteel ball,suggestingthattheobservedlubricatingeffectduringsliding maybeatleastpartiallyrelatedtothesmearingofatransferred filmoverthecontactarea.Somesimplemodelingshowsthatonly theouterwallof theCNTscontributes tothesliding, in agree-mentwiththeobservedabsenceofmajordeterioration,andthat thetotalavailablecarbonsurfaceareainthespecimenisthe rele-vantparameter.Therefore,itisshownthatgraphiteflakesaremore efficientthanCNTs,atleastintheseexperimentaltribological con-ditions,becausetheyarereadilydelaminatedintothinnerflakes (few-layered-graphene)duringthetest,providingmoredesirable lubricatingsurfacearea.Theseresultsprovideimportantguidelines forthedesignofself-lubricatingcarbon/Al2O3coatingsandfuture

workdirectionsinclude:thepreparationofgraphite/Al2O3coatings

withthinnergraphiteflakes,andanin-depthstudyofthe influ-enceofthechangeinthecoatingsthickness,Young’smodulusand hardnessevolutionsthatwereshowntooccurupontheincreasein carboncontent.

Acknowledgements

ThisworkwasperformedwithintheframeworkofCETIMAT, ajointlaboratorybetweenCETIMandCIRIMAT.K.Hentourand A. Marsal thank CETIM for the doctoral thesis grants. FESEM observationsandelectronmicroprobeanalyseswereperformedat theCentredemicrocaractérisationRaimondCastaing—UMS3623, Toulouse.TheauthorsalsothankDr.Ph.DeParsevalforassistance intheelectronmicroprobeanalyses.

References

[1]J.P.Tu,Y.Z.Yang,L.Y.Wang,X.C.Ma,X.B.Zhang,Tribologicalpropertiesof

carbonnanotube-reinforcedcoppercomposites,Tribol.Lett.10(2001)

225–228,http://dx.doi.org/10.1023/A.1016662114589.

[2]S.R.Dong,J.P.Tu,X.B.Zhang,Aninvestigationoftheslidingwearbehaviorof

Cu-matrixcompositereinforcedbycarbonnanotubes,Mater.Sci.Eng.A313

(2001)83–87,http://dx.doi.org/10.1016/S0921-5093(01)00963-7.

[3]W.X.Chen,J.P.Tu,L.Y.Wang,H.Y.Gan,Z.D.Xu,X.B.Zhang,Tribological

applicationofcarbonnanotubesinametal-basedcompositecoatingand

composites,Carbon41(2003)215–222,

http://dx.doi.org/10.1016/S0008-6223(02)00265-8.

[4]B.Lim,C.Kim,B.Kim,U.Shim,S.Oh,B.Sung,J.Choi,SeunghyunBaik,The

effectsofinterfacialbondingonmechanicalpropertiesofsingle-walled

carbonnanotubereinforcedcoppermatrixnanocomposites,Nanotechnology

17(2006)5759,http://dx.doi.org/10.1088/0957-4484/17/23/008.

[5]K.T.Kim,S.I.Cha,S.H.Hong,Hardnessandwearresistanceofcarbonnanotube

reinforcedCumatrixnanocomposites,Mater.Sci.Eng.A449–451(2007)

46–50,http://dx.doi.org/10.1016/j.msea.2006.02.310.

[6]S.R.Bakshi,D.Lahiri,A.Agarwal,Carbonnanotubereinforcedmetalmatrix

composites—areview,Int.Mater.Rev.55(2010)41–64,http://dx.doi.org/10.

1179/095066009X12572530170543.

[7]C.B.Lin,Z.-C.Chang,Y.H.Tung,Y.-Y.Ko,Manufacturingandtribological

propertiesofcoppermatrix/carbonnanotubescomposites,Wear270(2011)

382–394,http://dx.doi.org/10.1016/j.wear.2010.11.010.

[8]K.Rajkumar,S.Aravindan,Tribologicalstudiesonmicrowavesintered

copper-carbonnanotubecomposites,Wear270(2011)613–621,http://dx.

doi.org/10.1016/j.wear.2011.01.017.

[9]C.Guiderdoni,C.Estournès,A.Peigney,A.Weibel,V.Turq,C.Laurent,The

preparationofdouble-walledcarbonnanotube/Cucompositesbyspark

plasmasintering,andtheirhardnessandfrictionproperties,Carbon49(2011)

4535–4543,http://dx.doi.org/10.1016/j.carbon.2011.06.063.

[10]C.Guiderdoni,E.Pavlenko,V.Turq,A.Weibel,P.Puech,C.Estournès,A.

Peigney,W.Bacsa,C.Laurent,Thepreparationofcarbonnanotube

(CNT)/coppercompositesandtheeffectofthenumberofCNTwallsontheir

hardness,frictionandwearproperties,Carbon58(2013)185–197,http://dx.

doi.org/10.1016/j.carbon.2013.02.049.

[11]Z.Xu,Q.Zhang,X.Shi,W.Zhai,Q.Zhu,Comparisonoftribologicalproperties

ofNiAlmatrixcompositescontaininggraphite,carbonnanotubes,or

graphene,J.Mater.Eng.Perform.24(2015)1926–1936,http://dx.doi.org/10.

1007/s11665-015-1482-5.

[12]J.-W.An,D.-H.You,D.-S.Lim,Tribologicalpropertiesofhot-pressed

alumina-CNTcomposites,Wear255(2003)677–681,http://dx.doi.org/10.

1016/s0043-1648(03)00216-3.

[13]D.-S.Lim,D.-H.You,H.-J.Choi,S.-H.Lim,H.Jang,EffectofCNTdistributionon

tribologicalbehaviorofalumina-CNTcomposites,Wear259(2005)539–544,

http://dx.doi.org/10.1016/j.wear.2005.02.031.

[14]Z.H.Xia,J.Lou,W.A.Curtin,Amultiscaleexperimentonthetribological

behaviorofalignedcarbonnanotube/ceramiccomposites,Scr.Mater.58

(2008)223–226,http://dx.doi.org/10.1016/j.scriptamat.2007.09.039.

[15]G.Yamamoto,M.Omori,K.Yokomizo,T.Hashida,K.Adachi,Structural

characterizationandfrictionalpropertiesofcarbonnanotube/alumina

compositespreparedbyprecursormethod,Mater.Sci.Eng.B148(2008)

265–269,http://dx.doi.org/10.1016/j.mseb.2007.09.013.

[16]I.Ahmad,A.Kennedy,Y.Q.Zhu,Wearresistantpropertiesofmulti-walled

carbonnanotubesreinforcedAl2O3nanocomposites,Wear269(2010)71–78,

http://dx.doi.org/10.1016/j.wear.2010.03.009.

[17]A.Kasperski,A.Weibel,D.Alkattan,C.Estournès,V.Turq,C.Laurent,A.

Peigney,Microhardnessandfrictioncoefficientofmulti-walledcarbon

nanotube-yttria-stabilizedZrO2compositespreparedbysparkplasma

sintering,Scr.Mater.69(2013)338–341,http://dx.doi.org/10.1016/j.

scriptamat.2013.05.015.

[18]K.Balani,S.P.Harimkar,A.Keshri,Y.Chen,N.B.Dahotre,A.Agarwal,

Multiscalewearofplasma-sprayedcarbon-nanotube-reinforcedaluminum

oxidenanocompositecoating,ActaMater.56(2008)5984–5994,http://dx.

doi.org/10.1016/j.actamat.2008.08.020.

[19]A.K.Keshri,A.Agarwal,Wearbehaviorofplasma-sprayedcarbon

nanotube-reinforcedaluminumoxidecoatinginmarineand

high-temperatureenvironments,J.Therm.SprayTechnol.20(2011)

1217–1230,http://dx.doi.org/10.1007/s11666-011-9669-2.

[20]C.-Y.Yu,B.J.Kellett,Tribologyofalumina–graphitecomposites,in:J.B.WJr.

(Ed.),Proc.20thAnnu.Conf.Compos.Adv.Ceram.Mater.Struct.Ceram.Eng.

Sci.Proc.,JohnWiley&Sons,Inc.,1996,pp.220–227,http://dx.doi.org/10.

1002/9780470314821.ch26http://onlinelibrary.wiley.com.

[21]J.Song,Y.Zhang,Y.Su,Y.Fang,L.Hu,Influenceofstructuralparametersand

compositionsonthetribologicalpropertiesofalumina/graphitelaminated

composites,Wear338–339(2015)351–361,http://dx.doi.org/10.1016/j.wear.

2015.07.017.

[22]A.Peigney,C.Laurent,E.Flahaut,R.R.Bacsa,A.Rousset,Specificsurfacearea

ofcarbonnanotubesandbundlesofcarbonnanotubes,Carbon39(2001)

507–514,http://dx.doi.org/10.1016/S0008-6223(00)00155-X.

[23]A.Kasperski,A.Weibel,C.Estournès,C.Laurent,A.Peigney,Multi-walled

carbonnanotube—Al2O3composites:covalentornon-covalent

functionalizationformechanicalreinforcement,Scr.Mater.75(2014)46–49,

http://dx.doi.org/10.1016/j.scriptamat.2013.11.015.

[24]A.Marsal,F.Ansart,V.Turq,J.P.Bonino,J.M.Sobrino,Y.M.Chen,J.Garcia,

Mechanicalpropertiesandtribologicalbehaviorofasilicaor/andalumina

coatingpreparedbysol–gelrouteonstainlesssteel,Surf.Coat.Technol.237

(2013)234–240,http://dx.doi.org/10.1016/j.surfcoat.2013.06.037.

[25]A.Peigney,F.L.Garcia,C.Estournès,A.Weibel,C.Laurent,Tougheningand

hardeningindouble-walledcarbonnanotube/nanostructuredmagnesia

composites,Carbon48(2010)1952–1960,http://dx.doi.org/10.1016/j.carbon.

2010.01.063.

[26]W.C.Oliver,G.M.Pharr,Measurementofhardnessandelasticmodulusby

instrumentedindentation:advancesinunderstandingandrefinementsto

methodology,J.Mater.Res.19(2004)3–20,http://dx.doi.org/10.1557/jmr.

2004.0002.

[27]C.Laurent,E.Flahaut,A.Peigney,Theweightanddensityofcarbonnanotubes

versusthenumberofwallsanddiameter,Carbon48(2010)2994–2996,

Figure

Fig. 1. TEM images of the CNTs (a and b) and FESEM image (c) and TEM image (d) of graphite flakes.
Fig. 3. FESEM images showing the surface of the CNT/Al 2 O 3 (18 wt.%) (a) and graphite/Al 2 O 3 (21 wt.%) (b) coatings and higher magnification images showing cracks made on purpose, with bridging CNTs for the CNT/Al 2 O 3 (18 wt.%) coating (c) and non-br
Fig. 4. FESEM images showing cross-sections of the CNT/Al 2 O 3 (18 wt.%) coating (a) (white arrows indicate CNTs) and graphite/Al 2 O 3 (21 wt.%) (b) coating; higher magnifi- magnifi-cation images show CNTs (c) and graphite platelets (d), respectively.
Fig. 5. Load versus displacement plots measured with a Berkovich nano-indenter (a), Young’s modulus (b) and hardness (c) versus carbon content.
+4

Références

Documents relatifs

The objective of this work is to study the evolution of superficial temperature in a dry dynamic contact copper- graphite and graphite-graphite and make a

3Deportment of Soil Science of Temperate Ecosystems, lJniversity of Gottingen, Gdttingen, Germony 4Chair of Soil Physics, lJniversity of Bayreuth, Bayreuth,

In any case, the presence of shear stress at the ceramic side, near the joint interface, in combination with the ten- sile stresses that are present, may cause cracks in the joint,

The effect of the residual stresses on the strength of joints fabricated between alumina–alumina or alumina and the nickel base alloy HAYNES  214 TM using a solid-state

E. evidence for the presence of F-centres conse- quent to blackening of this material. It is also possible that our dendrites are a localised form of the same

Even if this synthesis is the more promising route to synthesized nanostructured mesoporous alumina, drawbacks have been discerned for this synthesis procedure that are: (1)

(3) Transpassive dissolution of chromium from Fe-26Cr can only take place on the second potential cycle once iron in the film has undergone reductive dissolution leading

This interlinking method has been applied to the encyclopedic resources in English (DBpedia [Auer et al. 2013]) on which we obtained good results [Lesnikova et al. Though this