• Aucun résultat trouvé

Protein folding at extreme temperatures: current issues

N/A
N/A
Protected

Academic year: 2021

Partager "Protein folding at extreme temperatures: current issues"

Copied!
9
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Seminars

in

Cell

&

Developmental

Biology

jo u r n al hom ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / s e m c d b

Review

Protein

folding

at

extreme

temperatures:

Current

issues

Georges

Feller

LaboratoryofBiochemistry,CenterforProteinEngineering-InBioS,UniversityofLiège,InstituteofChemistryB6a,4000Liège-SartTilman,Belgium

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received25February2017

Receivedinrevisedform18August2017

Accepted5September2017

Availableonline25September2017

Keywords: Proteinfolding Extremophiles Triggerfactor Prolylisomerization Thermodynamicstability

a

b

s

t

r

a

c

t

Therangeoftemperaturescompatiblewithlifeiscurrentlyestimatedfrom−25◦C,asexemplifiedby metabolicallyactivebacteriabetweenseaicecrystals,andupto122◦Cinhydrothermalventsas exem-plifiedbythearchaeonMethanopyruskandleri.Inthecontextofproteinfolding,assoonasapolypeptide emergesfromtheribosome,itisexposedtotheeffectsofenvironmentaltemperatures.Recent investi-gationshaveshownthattherateofproteinfoldingisnotadaptedtoextremetemperaturesandshould beveryfastathightemperatureandlowincoldenvironments.Thislackofadaptationisdrivenby kineticconstraintsonproteinstability. Tocounteractthedeleteriouseffectsoffastproteinfolding inhyperthermophiles,chaperonessuchastheTriggerFactorholdandslowdowntherateoffolding intermediates.Prolylisomerization,arate-limitingstepinthefoldingofmanyproteins,isstrongly temperature-dependentandimpairsfoldingofpsychrophilicproteinsinthecold.Thisiscompensatedby reductionoftheprolinecontentincold-adaptedproteins,byanincreasednumberofprolylisomerases encodedinthegenomeofpsychrophilicmicroorganismsandbyoverexpressionofprolylisomerases underlowtemperaturecultivation.Afterfolding,thenativestateisreachedandalthoughextremophilic proteinssharethesamefold,dramaticdifferencesinstabilityhavebeenrecordedbydifferentialscanning calorimetry.

©2017ElsevierLtd.Allrightsreserved.

Contents

1. Introduction...129

2. Thefoldingrateisnotadaptedtoextremetemperatures...130

3. Thetriggerfactorrescuesproteinfoldingathightemperature...131

4. Prolylisomerizationimpairsproteinfoldinginpsychrophiles...132

4.1. Theprolinecontentinproteinsispositivelycorrelatedwithenvironmentaltemperature...132

4.2. Thenumberofprolylisomerasesinextremophilicgenomesiscorrelatedwithtemperature...132

4.3. Prolylisomerasesareoverexpressedinpsychrophiles...133

5. Thermodynamicstabilityofextremophilicproteins...134

5.1. Microcalorimetricstudies...134 5.2. Stabilitycurves...134 6. Conclusions...135 Acknowledgments...135 References...135 1. Introduction

Inrecentyears,microbiologicalinvestigationsofenvironments previously regarded asabiotic have considerably expandedthe

Abbreviations: TF,triggerfactor;PPIase,prolylisomeraseorpeptidyl-prolyl

cis/transisomerase; GFP,green fluorescentprotein; DSC,differentialscanning

calorimetry.

E-mailaddress:gfeller@ulg.ac.be

spectrum of biological temperatures. Metabolically active bac-teria have been found at −20◦C, thriving in the liquid brine

veinsbetweenseaicecrystals[1,2].Morerecently,thebacterium Planococcus halocryophilus isolated from Arctic permafrost was found togrowand todivide at −15◦C and to displayresidual

metabolic activityat −25◦C [3], which possibly represents the

lowertemperaturelimitbeforedormancy.Theselowtemperature extremophiles are termed psychrophiles. At the other extrem-ityofthetemperaturerangecompatiblewithlife,thermophiles areknownfordecadesbuthyperthermophiles havepushedthe https://doi.org/10.1016/j.semcdb.2017.09.003

(2)

playa pivotalrole astheydrivethecellcycle andmetabolism. Atlowtemperature,enzymeshavetoremainactiveandproteins havetomaintainadequatefunctionaldynamicsattemperatures thatslowdownmolecularmotions.Thisisreachedbyadopting amobileandflexiblestructurethroughreductionofalltypesof weakinteractionsinvolvedintheshapingofproteinconformation suchashydrogenbonds,saltbridges,vanderWaalscontacts,helix dipole,etc.andthehydrophobiceffect.Butthepricetopayforsuch animprovedstructuraldynamicsisthepronouncedheat-labilityof psychrophilicproteins[8–12].Incontrast,thermophilicand hyper-thermophilicproteinshavetomaintainafunctionalnativestate atelevatedtemperaturesthatwouldotherwiseunfoldmesophilic proteins.Their robustand heat-stablestructure arisesfromthe improvementinstrengthandnumberofalltypesofweak inter-actionsandstructuralfactorsstabilizingtheproteinconformation [13–15].

Here,wewillfocusonproteinfolding,acrucialtopicforthe biophysicalunderstandingoflifeatextremetemperatures.Indeed, assoonasanascentpolypeptideemergesfromtheribosome,it isexposedtotheeffectsofenvironmentaltemperatures.Recent investigationshaveaddressedsomeessentialquestions:i)whatis theeffectofextremeenvironmentaltemperaturesontheprotein foldingrate;ii)theTriggerFactor(TF)isthefirstchaperone interact-ingwithnascentchains:howdoesithelpproteinfoldingatextreme temperatures;iii)howdoprolylisomerasescatalyzeprolyl isomer-ization,arate-limitingstepinproteinfoldingandiv)whatarethe propertiesofthefinalnativestateofproteinadaptedtothese tem-peratures?Manyofthereviewedresultshavebeenobtainedwith TFasamodelprotein.InBacteria,TFisaribosome-bound chaper-oneinteractingwithvirtuallyallsynthesizedpolypeptidesandit alsopossessesapeptidyl-prolylcis/transisomerase(PPiase) activ-ity[16].Thischaperonehasbeenisolatedfrommodel bacteria: theAntarcticpsychrophilePseudoalteromonashaloplanktis,afast growingstrainatlowtemperature[17],themesophilicreference EscherichiacoliandthehyperthermophileThermotogamaritima[4].

2. Thefoldingrateisnotadaptedtoextremetemperatures Inordertodeterminethefoldingrateconstant,theunfolded protein(usuallyinureaorguanidiniumchloride)isdilutedwitha bufferanditsrefoldingismonitoredbyastopped-flow spectropho-tometerastheprocessiscompletedwithinafewseconds.Similar experimentsareperformedforunfolding,startingwiththenative state(Fig.1).

Byusingarangeoffinaldenaturantconcentrations,a“Chevron plot”isconstructed(seeFig.2asanexample).

Theleft armof theplot correspondsto foldingkinetics and therightarmdepictsunfoldingkinetics.Finally,themostrelevant parameters,themicroscopicrateconstantsforfoldingkf(H2O)and

forunfoldingku(H2O)areobtainedbyextrapolationontheYaxis,

i.e.intheabsenceofdenaturant,inH2O.

Fig. 1.Representative folding and unfolding fluorescence traces recorded by

stopped-flow.Rateconstantsareobtainedbyadjustingoneorseveralexponential

functionstothekinetictraces.Unpublisheddatafrom[18]usingapsychrophilicTF.

Fig.2. Chevronplotsoftherateconstantskappforunfolding(closedsymbols,right

arms)andrefolding(opensymbols,leftarms)oftryptophansynthase␣subunit

fromthepsychrophileS.frigidimarina(,)andfromthemesophileE.coli(䊉,)at

25◦C.

Reprintedfrom[19]bypermissionofOxfordUniversityPress.

Becausetheserateconstantsstronglydifferinproteinsandare alsoaffected bytheexperimental setup,it isessential to com-pareseriesofhomologousextremophilicproteinsunderthesame experimentalconditions[20].Thishasbeenperformedusingthe above-mentionedTF[18].Forthesakeofclarity,Fig.3isa simpli-fiedversionoftheoriginalwork(onlythemainphasesaredepicted) thatallowsonetodrawseveralconclusions.Asfarasfoldingis con-cerned,atthesametemperature,thepsychrophilicTF(Fig.3,left panel,blueline)foldsslowerthanitsmesophilichomologue(black line)and thehyperthermophilicprotein(redline) foldsslightly faster.Inthenarrowwindowoftemperatureaccessibleto stopped-flowexperiments,thetemperaturedependenceofthisfoldingrate wassimilarfor thethree proteins.Accordingly,onehasto con-cludethatthefoldingrateisnotadaptedtoextremetemperatures becauseunderenvironmentalconditionsthehyperthermophilic proteinshouldfoldextremelyfast,whereasthepsychrophilic pro-teinshouldfoldevenslowerinthecold.Thesameobservationwas madeforapsychrophilictryptophansynthasesubunit(Fig.2)as comparedwithitsE.colihomologue[19]andsuggestsacommon behaviorofcold-adaptedproteins.Ontheotherhand,proteinsfrom

(3)

Fig.3. Close-upofordinateextrapolationsfromChevron-plots.Dataareshownfor

psychrophilic(blue),mesophilic(black)andhyperthermophilic(red)TFsat9◦C.

Extrapolationsoftherateconstantsforthedeterminationofthemicroscopicrate

constantsforfoldingkf(H2O)andunfoldingku(H2O)intheabsenceofdenaturant.

Adaptedfrom[18].

thermophilesandhyperthermophilesgenerallyfoldslightlyfaster [21–23]orwithsimilarrateconstants[21,24–26]ascomparedwith theirmesophilichomologues.

In contrastto folding, thedifferences in theunfolding rates of extremophilic TF are much larger (Fig. 3, right panel). The hyperthermophilicproteinunfoldsveryslowly,whereasthe psy-chrophilicproteinunfoldsfasterascomparedwiththemesophilic counterpart. In fact, the slow unfolding of hyperthermophilic proteinshasbeenpreviouslyidentifiedasthemainkinetic con-tributiontotheunusuallyhighstabilityoftheseproteins[24–29]. Indeed,inasimpletwo-stateequilibriumbetweentheunfolded stateUandthenativestateNshowninEq.(1),

Ukf

ku

N (1)

aforwarddisplacementoftheequilibriumtowardsN,i.e.an increaseofstability,isobtainedbyaslowerunfoldingrateku,as observedinheat-stableproteins.Conversely,abackward displace-mentoftheequilibrium,i.e.adecreaseofstability,isreachedby afasterunfolding rateku andthisisprecisely whatisobserved for thenatively unstable psychrophilicproteins (Figs. 2 and 3) [18,19]andalsopredictedbymoleculardynamicssimulations[30]. Verysignificantly,stabilizationofapsychrophilicalpha-amylase bysite-directedmutagenesisresultsinaslowerunfoldingrateof themutants[31],underliningthekineticstrategyleadingtothe nativelyunstableconformationofpsychrophilicproteins. There-fore,thereisafinetuningoftheunfolding ratevalues inorder toadjustproteinstabilitytotheenvironmentaltemperature.This resultsinacontinuumfromfasttoslowunfoldingratesinunstable tohyperstableproteins.

However,thesamerationalecanbeappliedtothefoldingrate kf.InEq.(1),anincreaseinstabilityisobtainedbyafastfolding ratekf,whereasa lowerstability isreachedbya slowerfolding rate.Again,thisisexactlywhatisobservedforhyperthermophilic and psychrophilicproteins, respectively (Figs. 2 and 3). Signifi-cantlyalso,allmutantsofahyperthermophilicenzymedestabilized

Fig.4. GFPrefoldingassistedbytriggerfactors.Dataareshownforpsychrophilic

(blue),mesophilic(black)andhyperthermophilic(red)TFs.Refoldingtimecourses

ofacid-denaturedGFPat15◦Crecordedbyfluorescence.Fluorescenceintensity

(extrapolatedtotheinfinite)ofspontaneouslyrefoldedGFP(noTF)istakenas100%.

Adaptedfrom[33].

bysite-directedmutagenesisdisplayedbothfasterunfoldingrates and slowerfolding rates than thewild-type protein [25,32]. In summary, the nativelyunstable structure ofpsychrophilic pro-teinsisgainedviabothafastunfoldingrateandaslowfolding rate.Conversely,hyperthermophilicproteinsarecharacterizedby aslowunfoldingrateand,toalowerextent,byafastorunchanged foldingrate.Itfollowsthatthefoldingratecannotbeadaptedto extremetemperaturesbecauseadjustmentsofproteinstabilityto environmentaltemperatureisunderkineticcontrol.Loweringthe foldingrateinhyperthermophileswouldresultinprotein desta-bilization,whereasacceleratingthefoldingrateinpsychrophiles wouldincreaseproteinstability.

What are the physiological consequences for the nascent polypeptide?Intuitively,theslowfoldingrateofpsychrophilic pro-teinsshouldnotbeaconcern,exceptthatitcontributestoslow downthecellcycle,asobservedintheenvironmentbutresulting frommany othertemperature sensitivecellularevents. In con-trast,boththefastfoldingrateofhyperthermophilicproteinsand hightemperatureshouldhavedeleteriouseffectsforthenascent polypeptidebecausetheyincrease theprobabilityofmisfolding eventsandaggregationofmisfoldedspecies.Thisaspectisanalyzed inthenextsection.

3. Thetriggerfactorrescuesproteinfoldingathigh temperature

Ifthefoldingrateisnotadaptedtoextremetemperaturesinthe testtube,chaperonescanhaveapivotalroletorescueprotein fold-inginvivo.TFisthefirstfoldingassistantactingco-translationally onsynthesizedpolypeptidesinbacteria.Thisisanobvious candi-datetotesttheeffectsofchaperonesandthishasbeenperformed usingtheabove-mentionedextremophilicTFs[33].Fig.4illustrates a classical refoldingexperiment in whichaciddenatured green fluorescentprotein(GFP)isallowedtorefoldafterbuffer neutral-ization,eitheraloneorinthepresenceofaddedTF.Thefluorescence intensityofGFP isdirectlyproportional totheconcentrationof nativeGFPin theexperiment.ThemesophilicTF fromE.coliis averyefficientfoldasethatcanimprovetheyieldofnativeGFP upto150%.ThepsychrophilicTFisalsoafoldasewithhowevera weakerchaperoneactivity.Thiscanbetentativelyrelatedtothefact thatlowtemperatureslowsdownproteinfoldingandreducesthe probabilityofmisfoldingandaggregation.Asamatteroffact,low

(4)

Fig.5. GFPrefoldinginthepresenceofTFfromthehyperthermophileT.maritima

andGroELSat15◦C.FluorescencetimecoursesofGFPaloneandinthepresenceof

GroELS,TmTForTmTF+GroELS.Inthesequentialexperiment,additionofGroELS

after300sisindicatedbyanarrow.

Adaptedfrom[33].

Fig.6.Transandcisisomersofapeptidyl-prolylpeptidebond.

Reprintedwithpermissionfrom[41].Copyright2009AmericanChemicalSociety.

temperaturecultivationofE.colifrequentlyavoidstheformationof insolubleinclusionbodiesofrecombinantproteins[34],aswellas expressioninapsychrophilichostatlowtemperature[35]. Further-more,lowtemperatureweakensthehydrophobiceffect.Therefore, anefficientfoldaseispossiblynotrequiredbypsychrophilesincold conditions.Butthemostinsightfulresultwasobtainedwiththe hyperthermophilicTF.AsshowninFig.4,TFfromT.maritimais notafoldase(itdoesnotpromotethespontaneousGFPrefolding) butinsteaditisaholdase:itbindstotherefoldingGFPand dras-ticallydecreasesitsfoldingrate.Accordingly,theholdasefunction ofthisTFshouldberegardedasthemainadaptationin hyperther-mophilicbacteriainordertocounteractthedeleteriouseffectsof hightemperatureonproteinfolding.

Interestingly,whenthewell-knownGroELSchaperoneisadded to the refolding mixture, a burst in refolded GFP is observed (Fig.5).Asimilarresulthasbeenreportedfor thethermophilic TF fromThermus thermophilus[36].This strongly suggests that thehyperthermophilicTF actsasa carrieroffolding intermedi-atesfordeliverytodownstreamchaperonesandfinalmaturation. Furthermore,thestronglyimprovedyieldofnativeGFPinthe pres-enceofbothTFandGroELSsuggeststhatthehyperthermophilicTF maintainsintermediatespeciesinafolding-competentstatewhich favorstheactionofdownstreamchaperones.

To explore the holdase function, ANS titration and isother-maltitrationcalorimetryhaverevealedahydrophobicchaperone cavitywhichpotentiallybindsapolarcomponentsoffolding inter-mediates, therefore lowering their rate of internalization and consequently the folding rate of the client protein [33]. The stoichiometryofinteractionwith␣-casein,anintrinsically disor-deredprotein(nativelyunfolded),indicatedahighernumber of

proteins[39].Thisarisesfromtheweakstericconstraintsexerted bythepyrrolidineringofprolinetofavoreitherthecisorthetrans conformationintheunfoldedstateandtotheslowisomerization involvingtherotationaboutthepeptidebond,whichhasapartial double-bondcharacter(Fig.6).Itfollowsthatthetimespentby foldingintermediatestoexploretheconformationalspaceandto adopttherequiredprolylcisortransconformationislongerthan forotheraminoacidsidechainswhicharealmostinvariably con-strainedintrans.Prolylisomerizationintrinsicallypossessesahigh activationenergyandisthereforestronglytemperaturedependent [40].Inthecontextofextremetemperatures,onecanintuitively assumethatprolylisomerizationisveryfastinhyperthermophiles andshouldnotbeaconcernforproteinfolding.Incontrast,slow prolylisomerizationatlowtemperatureshouldimpairthefolding ofpsychrophilicproteins.Severallinesofevidenceindicatethat thisisindeedtheactualsituation.

4.1. Theprolinecontentinproteinsispositivelycorrelatedwith environmentaltemperature

The first observation refers tothe proline content which is low in psychrophilicproteinsand high in heat-stable polypep-tides.Forinstance,inhomologousalpha-amylases(∼50kDa)the psychrophilicenzymecontains13prolines,themesophilic homo-loguehas19prolinesandtheheat-stableenzymehas25prolines, i.e.nearly twicethecontentof thecold-adaptedprotein.These differenceshavebeenrelatedtoadjustmentsofproteinstability [8,10,11].Indeed,intheprolineresidue,thestructureofthe pyrro-lidineringbondedtothemainchainnitrogenlocksadihedralangle andseverelyrestrictsrotationsofthebackbone.Thislocal rigid-ityinducedbytheprolylresidueisawell-knownstructuralfactor improvingproteinstability[14,15,42].Consequently,heat-stable proteinsdisplayahighprolinecontent,whereaspsychrophilic pro-teinstendtodecrease thiscontent inorder toreacha natively unstableconformation.Inthecontextofproteinfolding,thehigh prolinecontentofhyperthermophilicproteinsshouldnotbea con-cernasaresultoffastprolylisomerizationathightemperature, whereasthelowprolinecontentofpsychrophilicproteinsreduces theprobabilityofslowandrate-limitingfoldingsteps.Therefore, thelowprolinecontentinpsychrophilicpolypeptideshastwo dis-tinctcontributions:itavoidsprolyl-limitedfoldingeventsandit destabilizesthenativestate.

4.2. Thenumberofprolylisomerasesinextremophilicgenomesis correlatedwithtemperature

Cellsareequippedwithspecialized catalysts,peptidyl-prolyl cis/transisomerases(PPiasesorrotamases),whichspeed-upprolyl isomerization in proteins. Fig. 7 illustrates a classical exper-iment in which increasing amounts of PPiase proportionally accelerate the folding of a proline-limited protein, revealing a trueenzymatic activity[43].The second observationindicating

(5)

Fig.7. CatalyticactivityofPPiasesonproteinfolding.Therefoldingrateofamodel

protein(RCM-T1,reducedandcarboxymethylatedribonucleaseT1)limitedby

pro-lineisomerizationcanbeslow(1).AdditionofincreasedamountsofPPiase(2–7)

acceleratesthefoldingrateofthemodelprotein,asshownbytheincreasesof

fluorescence.

Reprintedfrom[43]bypermissionfromMacmillanPublishers:TheEMBOJournal.

Copyright1997.

Table1

Prolylisomerasesencodedinthegenomeofrepresentativeextremophilicand

mesophilicGram-negativebacteriaandtheirenvironmentaltemperatures.

Strain Temperature PPiasegenes Colwelliapsychrerythraea34H <0◦C 18

PseudolateromonashaloplanktisTAC125 <0◦C 15

Pseudomonasextremaustralis14-3 <0◦C 14

EscherichiacoliK12 37◦C 10

ThermusthermophilusHB8/HB27 65◦C 4

ThermotogamaritimaMSB8 85–90◦C 1 AquifexaeolicusVF5 85–95◦C 1

that prolyl isomerization is influenced by extreme

tempera-turesisthenumberofgenesencoding PPiasesinextremophilic

genomes. Various types of PPiases are expressed in cells

(FKBP-type, cyclophilin-type, parvulin-type) and all have been

screened in representative extremophilic genomes using MaGe

(www.genoscope.cns.fr/agc/microscope/home/index.php).

Table1 shows that when compared withE. coli, the Gram-negativemesophilicreference,psychrophilicgenomes containa highernumberofPPiasegenes,nearlytwiceforC.psychrerythrae. Conversely,whenthegrowthtemperatureincreases,thenumber ofPPiasesgraduallydropsto4genesat 65◦C andto1 geneat 85–95◦C.Gram-positivebacteriaencodealowernumberofPPiases butthesametrendisobserved.ThestrainsPlanococcusantarcticus andP.halocryophilusthrivingaround0◦Cencode7and6PPiases, respectively,whereasthemesophilesB.subtilisandEnterococcus speciesallcontain4PPiases.IncontrastGeobacillusand Thermin-colaspeciesthrivingat60◦Conlycontain3PPiases.Butthemost convincingevidencethatthePPiasegenomiccontentiscorrelated totemperatureisprovidedbymethanogenicarchaeabecausethey havecolonizedthelargestrangeofenvironmentaltemperatures.As showninTable2,mesophilicarchaeaencode4–5PPiases,whereas inthe65–85◦Crangeonly2PPiasesarefound.Significantly,M. kandleri,themost heat-resistantorganismknownto date,only encodesonePPiase.Inaddition,thegenomeofmost hyperther-mophilicarchaeasuchasPyrococcusfuriosus,Sulfolobussolfataricus orThermococcusspeciesalsoonlyencodesonePPiase.

Overall, this analysis is a strong indication that prolyl iso-merization is sufficiently fast at high temperature, whereas in psychrophilesthisisomerizationrequirespowerfulcatalytic assis-tancebyafullsetofPPiases.Furthermore,thepersistenceofonly onePPiaseinhyperthermophilicarchaeasuggeststhatthefolding ofa subset ofessential proteinsis limitedby prolyl isomeriza-tion. Alternatively, other functionsof archaeal PPiases, suchas

Table2

Prolylisomerasesencodedinthegenomeofrepresentativeextremophilicand

mesophilicmethanogenicarchaeaandtheirenvironmentaltemperatures.

Strain Temperature PPiasegenes Methanosarcinabarkeri 25◦C 5 Methanosarcinaacetivorans 37◦C 5 Methanosarcinamazei 37◦C 5 Methanococcusmaripaludis 37◦C 4 Methanococcusaeolicus 45–50◦C 3 Methanothermobacterthermautotrophicus 65–70◦C 2 Methanocaldococcusjannaschii 85◦C 2 Methanopyruskandleri 122◦C 1

Fig.8. CatalysisofrefoldingofRCM-T1(reducedandcarboxymethylated ribonu-cleaseT1).DataforthepsychrophilicTF(,blue),E.coliTF(䊉,black)andthe hyperthermophilicTF(䊏,red).Theapparentrateconstantofprolylisomerization duringrefoldingofRCM-T1isplottedasfunctionoftheTFconcentration. Adaptedfrom[33].

chaperoneoranti-aggregationactivities,couldberesponsiblefor theirgenomicpersistence[44].Itshouldbementioned thatthe aboveanalysisdepictsageneraltrendbutnotanabsoluteruleas exceptionsoccurinthedatabase.Thisanalysisstronglyrelieson thequalityofgenomeannotationsandotherfactors,suchasthe microorganismlifestyle(salinity,pressure,ecologicalniche...),are possiblyinvolved.

4.3. Prolylisomerasesareoverexpressedinpsychrophiles

Enzymeactivitydisplaystypicaladaptivetraitsto environmen-taltemperature[8,45] andit wasthereforeofinterest tocheck PPiasesactivityinextremophiles.ThereisonlyonePPiaseshared bymodelextremophilicbacteriaandthisistheTFagain.The PPi-aseactivitywasanalyzedusingnewlydevelopedsubstratesand methodologies[33].Fig.8depictssuchanexperiment inwhich theincreaseofthefoldingrateofaproline-limitedprotein sub-strateisplottedasafunctionofthePPiaseconcentrationinorder tocalculatethe catalyticefficiency kcat/Km ofthe isomerization reaction.ItcanbeseenthatthePPiaseactivityofthe hyperther-mophilicproteinisextremelylowandclosetothedetectionlimit. Thiswasexpected becausehyperthermophilicenzymes require hightemperaturetobecomefullyactivatedandtheirrigid struc-tureprecludessignificantactivity,evenatroomtemperature.More surprisingwasthesamePPiaseactivitysharedbyboththe psy-chrophilicandmesophilicTFs.Indeed,inmostcasestheactivity of psychrophilic enzymes is very high in order to compensate for the decreaseof reaction rates inherent tolow temperature [10–12].ThepsychrophilicPPiaseescapesthisrulebutthereasons

(6)

Fig.9. Thermalunfoldingofextremophilicproteins.ThermogramsofDNA-ligases

recordedbydifferentialscanningmicrocalorimetryshowing,fromlefttoright,

psy-chrophilic(blue),mesophilic(black)andhyperthermophilic(red)proteins.

Adaptedfrom[52].

remainunclear.Thiscanbetentativelyrelatedtothepeculiarbut stillhypotheticalreactionmechanismofPPiases[46]which possi-blyprecludescoldadaptation.However,proteomicstudieshave broughtanunsuspectedanswertothis paradox[47].Indeed, it wasfoundthatthis TFisoverexpressed nearly40timesbythe psychrophile P.haloplanktis under low temperaturecultivation. Apparently,ifthePPiasespecificactivitycannotbeimprovedatlow temperature,themicroorganismadaptsbydramaticallyincreasing theenzymeconcentrationandthereforetheavailablecellular PPi-aseactivity.Moreover,overexpressionofPPiaseshasbeenreported inalmostallproteomicstudiesofpsychrophilessofar[48]andthis isprobablythemostfirmlyestablishedresultsharedbyproteomics ofpsychrophiles.Again,thispointstothenegativeeffectof pro-lylisomerizationonfoldingofpsychrophilicproteinsandtothe requirementofcatalyticassistancebyPPiases.

5. Thermodynamicstabilityofextremophilicproteins

Afterallfoldingevents,thenativestateisreachedandalthough extremophilicproteinssharethesamefoldand3Dstructures,they display dramatic differences in terms of stability. The energet-icsofstructurestability wasessentiallyanalyzedbydifferential scanningcalorimetry(DSC)ofhomologousextremophilicproteins [18,45,49–53].

5.1. Microcalorimetricstudies

Ademonstrativeexampleofmicrocalorimetricrecordsforthe heat-inducedunfoldingofextremophilicproteinsisillustratedin Fig.9.Theseproteinsclearlyshowdistinctstabilitypatternsthat evolvefromasimpleunfoldingprofileintheunstablepsychrophilic proteintoamorecomplexprofileinthestablehyperthermophilic counterpart.Theunfoldingofthecold-adaptedproteinoccursat muchlowertemperaturesasindicatedbythetemperatureof half-denaturationTm=33◦C,givenbythetopofthetransition(Table3). Accordingly,this proteinspontaneouslyunfoldsat amesophilic temperatureof37◦C.Bycontrast,thehyperthermophilicprotein unfoldsaround 100◦C. Melting point values up to 150◦C have beenreportedforhyperthermophilicarchaealproteins[54,55].The calorimetricenthalpyHcal(areaunderthecurvesinFig.9) cor-respondstothetotalamountofheatabsorbedduringunfolding, butitalsoreflectstheenthalpyofdisruptionofbondsinvolvedin

ingtoacooperative,all-or-noneprocess,revealingauniformlylow stabilityofitsarchitecture.Bycontrast,bothhomologousproteins displaytwotothreetransitions(indicatedbydeconvolutionofthe heatcapacityfunctionin Fig.9).Therefore, theconformationof thesemesophilicandhyperthermophilicproteinscontains struc-turalblocksorunitsofdistinctstabilitythatunfoldindependently. Fromtheseobservations,itcanbeconcludedthatpsychrophilic proteinspossessafragilemolecularedificethatisuniformly unsta-bleand stabilizedbyfewerweakinteractionsthanhomologous mesophilicproteins.Bycontrast,hyperthermophilicproteinsare robustmolecules,madeofvariousstabilitydomainsandstabilized byahighnumberofenthalpy-drivenweakinteractions.

5.2. Stabilitycurves

Thethermodynamicstabilityofaproteinthatunfoldsreversibly accordingto a two-state mechanism (between thenativestate NandtheunfoldedstateU)isdescribedbytheclassical Gibbs-Helmholtzrelation:

GN-U = HN-U−TSN-U (2)

Thelatterrelationcanberewrittenforanytemperature(T)using theparametersdeterminedexperimentallybyDSC:

GN-U(T) = Hcal(1-T/Tm)+Cp(T-Tm)-TCpln(T/Tm) (3)

whereCpisthedifferenceinheatcapacitybetweenthenative andtheunfoldedstate.ComputingEq.(3)inatemperaturerange wherethenativestateprevailsinsolutionprovidestheprotein stability curve[56],i.e. the free energyof unfolding as a func-tion of temperature (Fig. 10). In other words,this is thework requiredtodisruptthenativestateatanygiventemperature[57] andisalsoreferredtoasthethermodynamicstability.Bydefinition, GN-UiszeroatTm,atequilibrium.AttemperaturesbelowTm,the stabilityincreases,asexpected,butperhapssurprisinglyforthe non-specialist,thestabilityreachesamaximumthenitdecreases atlowertemperatures(Fig.10).Infact,thisfunctionpredictsa tem-peratureofcold-unfolding,whichisgenerallynotobservedbecause itoccursbelow 0◦C [58].Increasingthestabilityofa proteinis essentiallyobtainedbyliftingthecurvetowardshigherfreeenergy values[59,60],asexemplifiedbythehyperthermophilicprotein (Fig.10),whereasthelowstability ofapsychrophilicproteinis reachedbyaglobalcollapseofitscurve.Inallcases,thereisno sig-nificantshiftofthecurvestowardshighorlowtemperatures.Asfar asextremophilesareconcerned,oneofthemostpuzzling obser-vationsisthatmostproteinsobeythispattern,i.e.whateverthe microbialsource,eitherfromhotspringsorfromseaice,the maxi-malstabilityoftheirproteinsisclusteredaroundroomtemperature [59,61,62].Thisindicatesthatthevariousandsometimesopposites forcesdrivingfoldingareoptimallybalancedinthistemperature range.Itshouldbenotedthatwhenstabilitycurvesarecomputed fromequilibriumunfoldingbychemicaldenaturants,shiftsofthe temperatureformaximalstabilitytowardshigherorlower

(7)

temper-Fig.10.Gibbsfreeenergyofunfolding,orconformationalstability,ofhomologous

proteins.Theworkrequiredtodisruptthenativestateisplottedasafunctionof

temperatureforpsychrophilic(blue,PhTF),mesophilic(black,EcTF)and

hyperther-mophilic(red,TmTF)proteins.

Adaptedfrom[18].

atureshavebeenreported[24,63].Suchdiscrepanciesremaintobe clarifiedbutpossiblyoriginatefromthedistinctunfolding mech-anismsandthenatureoftheunfoldedstates.TheCpparameter inEq.3contributestothecurvatureofthestabilitycurveanda decreaseofthisvalueinducesaflatteningofthefunction. Reduc-tionoftheCpvaluehasbeenreportedforsomethermophilicand hyperthermophilicproteins[18,23,64–66].Ithasbeenshownthat thedifferenceinheatcapacitybetweenthenativeandunfolded statesdecreaseswithtemperatureandvanishesataround120◦C formostmesophilicproteins[67].Itfollowsthatthehigherthe meltingtemperature,thelowertheCpvalue.

Accordingtothebell-shapedstabilitycurve,the environmen-taltemperaturesformesophilesandhyperthermophileslieonthe rightlimbofthecurveandobviously,thethermaldissipativeforce isusedtopromotemolecularmotionsinthesemolecules.By con-trast,theenvironmentaltemperaturesforpsychrophileslieonthe leftlimbofthestabilitycurve.Itfollowsthatmolecularmotions inproteinsatlowtemperaturesaregainedfromthefactors ulti-matelyleadingtocold-unfolding[49],i.e.thehydrationofpolar andnon-polargroupsandtheweakeningofthehydrophobiceffect [68].Theoriginofflexibilityinpsychrophilicproteinsatlow tem-peraturesis therefore drasticallydifferentfrommesophilic and hyperthermophilicproteins,thelattertakingadvantageofthe con-formationalentropyrisewithtemperaturetogaininmobility.

Asurprisingconsequenceofthefreeenergyfunctionforthe psychrophilicproteinshowninFig.10isitsweakstabilityatlow temperatureswhencomparedwithmesophilicandthermophilic proteins, whereasit wasintuitively expectedthat cold-adapted proteinsshouldalsobecoldstable.Thisproteinisinfactbothheat andcoldlabile.Asaresult,coldunfoldingofpsychrophilicproteins hasbeenexperimentallyrecordedatthetemperaturepredictedby thestabilitycurve[18,49],providingvalidationofthefreeenergy function.

6. Conclusions

Theliteratureonproteinfoldingintemperatureextremophiles is still scarcebut this shouldimprove rapidlybecause, besides fundamentalaspects,thetopicissignificantlyrelevantin biotech-nology,suchasfortheexpressionofsolublerecombinantproteins atlowtemperaturebypsychrophiles[35]orforthesynthesisof

robustenzymecatalystsusedinharshindustrialconditions[69]. The topicis alsoof interest for astrobiologyas lifemight have evolvedoncoldorhotplanets[70].Theavailableresultsunderline thenecessityofinvestigatingseriesofhomologousextremophilic andmesophilicproteinsinordertoscreenthelargestspectrum of biological temperatures. Current studiesusing extremophilic proteinswhichunfoldfullyreversiblyaccordingtoaperfect two-statemechanismshouldrefinetheavailabledata.Multidisciplinary approachesarealsoneededbecause,forinstance,coldadaptation isnotalwaystheconverseofhotadaptation.Inaddition,multiple factorscanbeinvolvedasillustratedherebychaperonesorbythe effectofprolylisomerization.

Finally, the main drawback in protein folding studies of extremophilesisthefactthattherelatedexperimentscannotbe performed at theenvironmentaltemperatures. Atlow temper-atures, condensation on optics strongly perturbs spectroscopic signals and requires abundant nitrogen flushing, which is not alwaystechnicallyfeasible.Athightemperatures,foldingevents becomesofastthattheycannotberecordedandallmodelprotein substratesusedintheseexperimentsaremesophilic,suchasGFP, andunfoldoraggregateattemperatureswellbelowthose encoun-teredbythermophiles.Inallcases,resultsobtainedinalimited windowoftemperatures, aswellastheassociated values,have tobeextrapolatedtoeitherloworhightemperatures,whichcan becontroversial.Reviewersaresometimesreluctanttotakethese limitationsintoaccount.

Acknowledgments

I gratefully thank AndréMatagne (Liège University), Philipp Schmidpeter and Franz Schmid (Bayreuth University) for their expertscientificinputinsomeofourworkscitedhere.Ialsothank S.D’Amicoforhisearliercontribution,aswellaspreviousPhD stu-dents,F.Piette,C.Struvay,A.CipollaandA.GodinduringtheirFRIA fellowship.Worksattheauthor’slaboratoryweresupportedbythe F.R.S-FNRS,Belgium(FondsdelaRechercheFondamentaleet Col-lective,contractnumbers2.4535.08,2.4523.11andU.N009.13)and bytheBelgianprogramofInteruniversityAttractionPoles(iPros P7/44)initiatedbytheFederalOfficeforScientific,Technicaland CulturalAffairs.

References

[1]J.W.Deming,Psychrophilesandpolarregions,Curr.Opin.Microbiol.5(2002) 301–309,S1369527402003296.

[2]K.Junge,H.Eicken,J.W.Deming,BacterialActivityat−2to−20degreesCin

Arcticwintertimeseaice,Appl.Environ.Microbiol.70(2004)550–557,http://

dx.doi.org/10.1128/AEM.70.1.550-557.2004.

[3]N.C.Mykytczuk,S.J.Foote,C.R.Omelon,G.Southam,C.W.Greer,L.G.Whyte,

Bacterialgrowthat−15degreesC;molecularinsightsfromthepermafrost

bacteriumPlanococcushalocryophilusOr1,ISMEJ.7(2013)1211–1226,http://

dx.doi.org/10.1038/ismej.2013.8.

[4]H.Latif,J.A.Lerman,V.A.Portnoy,Y.Tarasova,H.Nagarajan,A.C.

Schrimpe-Rutledge,R.D.Smith,J.N.Adkins,D.H.Lee,Y.Qiu,K.Zengler,The

genomeorganizationofThermotogamaritimareflectsitslifestyle,PLoSGenet.

9(2013)e1003485,http://dx.doi.org/10.1371/journal.pgen.1003485.

[5]G.Deckert,P.V.Warren,T.Gaasterland,W.G.Young,A.L.Lenox,D.E.Graham,

R.Overbeek,M.A.Snead,M.Keller,M.Aujay,R.Huber,R.A.Feldman,J.M.

Short,G.J.Olsen,R.V.Swanson,Thecompletegenomeofthe

hyperthermophilicbacteriumAquifexaeolicus,Nature392(1998)353–358,

http://dx.doi.org/10.1038/32831.

[6]E.Blochl,R.Rachel,S.Burggraf,D.Hafenbradl,H.W.Jannasch,K.O.Stetter,

Pyrolobusfumarii,gen.andsp.nov.,representsanovelgroupofarchaea,

extendingtheuppertemperaturelimitforlifeto113degreesC,

Extremophiles1(1997)14–21,http://dx.doi.org/10.1007/s007920050010.

[7]K.Takai,K.Nakamura,T.Toki,U.Tsunogai,M.Miyazaki,J.Miyazaki,H.

Hirayama,S.Nakagawa,T.Nunoura,K.Horikoshi,Cellproliferationat122

degreesCandisotopicallyheavyCH4productionbyahyperthermophilic

methanogenunderhigh-pressurecultivation,Proc.Natl.Acad.Sci.U.S.A.105

(8)

[15]C.Vieille,G.J.Zeikus,Hyperthermophilicenzymes:sources,uses,and

molecularmechanismsforthermostability,Microbiol.Mol.Biol.Rev.65

(2001)1–43,http://dx.doi.org/10.1128/MMBR.65.1.1-43.2001.

[16]A.Hoffmann,B.Bukau,G.Kramer,Structureandfunctionofthemolecular

chaperoneTriggerFactor,Biochim.Biophys.Acta2010(1803)650–661,

http://dx.doi.org/10.1016/j.bbamcr.2010.01.017.

[17]C.Medigue,E.Krin,G.Pascal,V.Barbe,A.Bernsel,P.N.Bertin,F.Cheung,S.

Cruveiller,S.D’Amico,A.Duilio,G.Fang,G.Feller,C.Ho,S.Mangenot,G.

Marino,J.Nilsson,E.Parrilli,E.P.Rocha,Z.Rouy,A.Sekowska,M.L.Tutino,D.

Vallenet,G.vonHeijne,A.Danchin,Copingwithcold:thegenomeofthe

versatilemarineAntarcticabacteriumPseudoalteromonashaloplanktis

TAC125,GenomeRes.15(2005)1325–1335,http://dx.doi.org/10.1101/gr.

4126905.

[18]C.Struvay,S.Negro,A.Matagne,G.Feller,Energeticsofproteinstabilityat

extremeenvironmentaltemperaturesinbacterialtriggerfactors,

Biochemistry52(2013)2982–2990,http://dx.doi.org/10.1021/bi4002387.

[19]D.Mitsuya,S.Tanaka,H.Matsumura,N.Urano,K.Takano,K.Ogasahara,M.

Takehira,K.Yutani,M.Ishida,Strategyforcoldadaptationofthetryptophan

synthasealphasubunitfromthepsychrophileShewanellafrigidimarina

K14-2:crystalstructureandphysicochemicalproperties,J.Biochem.155

(2014)73–82,http://dx.doi.org/10.1093/jb/mvt098.

[20]A.A.Nickson,J.Clarke,Whatlessonscanbelearnedfromstudyingthefolding

ofhomologousproteins?Methods52(2010)38–50,http://dx.doi.org/10.

1016/j.ymeth.2010.06.003.

[21]D.Perl,C.Welker,T.Schindler,K.Schroder,M.A.Marahiel,R.Jaenicke,F.X. Schmid,Conservationofrapidtwo-statefoldinginmesophilic,thermophilic andhyperthermophiliccoldshockproteins,Nat.Struct.Biol.5(1998) 229–235,PMID:9501917.

[22]T.B.Topping,L.M.Gloss,Stabilityandfoldingmechanismofmesophilic,

thermophilicandhyperthermophilicarchaelhistones:theimportanceof

foldingintermediates,J.Mol.Biol.342(2004)247–260,http://dx.doi.org/10.

1016/j.jmb.2004.07.045.

[23]M.Wallgren,J.Aden,O.Pylypenko,T.Mikaelsson,L.B.Johansson,A.Rak,M.

Wolf-Watz,Extremetemperaturetoleranceofahyperthermophilicprotein

coupledtoresidualstructureintheunfoldedstate,J.Mol.Biol.379(2008)

845–858,http://dx.doi.org/10.1016/j.jmb.2008.04.007.

[24]K.A.Luke,C.L.Higgins,P.Wittung-Stafshede,Thermodynamicstabilityand

foldingofproteinsfromhyperthermophilicorganisms,FEBSJ.274(2007)

4023–4033,http://dx.doi.org/10.1111/j.1742-4658.2007.05955.x.

[25]A.Mukaiyama,K.Takano,Slowunfoldingofmonomericproteinsfrom

hyperthermophileswithreversibleunfolding,Int.J.Mol.Sci.10(2009)

1369–1385,http://dx.doi.org/10.3390/ijms10031369.

[26]K.Ogasahara,M.Nakamura,S.Nakura,S.Tsunasawa,I.Kato,T.Yoshimoto,K.

Yutani,Theunusuallyslowunfoldingratecausesthehighstabilityof

pyrrolidonecarboxylpeptidasefromahyperthermophile,Pyrococcusfuriosus:

equilibriumandkineticstudiesofguanidinehydrochloride-induced

unfoldingandrefolding,Biochemistry37(1998)17537–17544,http://dx.doi.

org/10.1021/bi9814585.

[27]J.Okada,T.Okamoto,A.Mukaiyama,T.Tadokoro,D.J.You,H.Chon,Y.Koga,K.

Takano,S.Kanaya,Evolutionandthermodynamicsoftheslowunfoldingof

hyperstablemonomericproteins,BMCEvol.Biol.10(2010)207,http://dx.doi.

org/10.1186/1471-2148-10-207.

[28]B.A.Kelch,D.A.Agard,Mesophileversusthermophile:insightsintothe

structuralmechanismsofkineticstability,J.Mol.Biol.370(2007)784–795,

http://dx.doi.org/10.1016/j.jmb.2007.04.078.

[29]P.Wittung-Stafshede,Slowunfoldingexplainshighstabilityofthermostable

ferredoxins:commonmechanismgoverningthermostability?Biochim.

Biophys.Acta2004(1700)1–4,http://dx.doi.org/10.1016/j.bbapap.2004.04.

002.

[30]X.Du,P.Sang,Y.L.Xia,Y.Li,J.Liang,S.M.Ai,X.L.Ji,Y.X.Fu,S.Q.Liu,

Comparativethermalunfoldingstudyofpsychrophilicandmesophilic

subtilisin-likeserineproteasesbymoleculardynamicssimulations,J.Biomol.

Struct.Dyn.35(2017)1500–1517,http://dx.doi.org/10.1080/07391102.2016.

1188155.

[31]A.Cipolla,S.D’Amico,R.Barumandzadeh,A.Matagne,G.Feller,Stepwise

adaptationstolowtemperatureasrevealedbymultiplemutantsof

psychrophilicalpha-amylasefromAntarcticbacterium,J.Biol.Chem.286

(2011)38348–38355,http://dx.doi.org/10.1074/jbc.M111.274423.

[37]F.U.Hartl,M.Hayer-Hartl,Convergingconceptsofproteinfoldinginvitroand

invivo,Nat.Struct.Mol.Biol.16(2009)574–581,http://dx.doi.org/10.1038/

nsmb.1591.

[38]A.T.Large,M.D.Goldberg,P.A.Lund,Chaperonesandproteinfoldinginthe

archaea,Biochem.Soc.Trans.37(2009)46–51,http://dx.doi.org/10.1042/

BST0370046.

[39]R.L.Baldwin,Thesearchforfoldingintermediatesandthemechanismof

proteinfolding,Annu.Rev.Biophys.37(2008)1–21,http://dx.doi.org/10.

1146/annurev.biophys.37.032807.125948.

[40]F.X.Schmid,Prolylisomerizationinproteinfolding,in:J.Buchner,T.

Kiefhaber(Eds.),ProteinFoldingHandbook,Wiley-VCH,Weinheim,2005,pp.

916–945,http://dx.doi.org/10.1002/9783527619498.ch25.

[41]G.Zoldak,T.Aumuller,C.Lucke,J.Hritz,C.Oostenbrink,G.Fischer,F.X.

Schmid,Alibraryoffluorescentpeptidesforexploringthesubstrate

specificitiesofprolylisomerases,Biochemistry48(2009)10423–10436,

http://dx.doi.org/10.1021/bi9014242.

[42]K.Watanabe,T.Masuda,H.Ohashi,H.Mihara,Y.Suzuki,Multipleproline

substitutionscumulativelythermostabilizeBacilluscereusATCC7064oligo-1,

6-glucosidase.Irrefragableproofsupportingtheprolinerule,Eur.J.Biochem.

226(1994)277–283,http://dx.doi.org/10.1111/j.1432-1033.1994.tb20051.x.

[43]C.Scholz,G.Stoller,T.Zarnt,G.Fischer,F.X.Schmid,Cooperationofenzymatic

andchaperonefunctionsoftriggerfactorinthecatalysisofproteinfolding,

EMBOJ.16(1997)54–58,http://dx.doi.org/10.1093/emboj/16.1.54.

[44]T.Maruyama,R.Suzuki,M.Furutani,Archaealpeptidylprolylcis-trans

isomerases(PPIases)update2004,Front.Biosci.9(2004)1680–1720,http://

dx.doi.org/10.2741/1361.

[45]S.D’Amico,J.C.Marx,C.Gerday,G.Feller,Activity-stabilityrelationshipsin

extremophilicenzymes,J.Biol.Chem.278(2003)7891–7896,http://dx.doi.

org/10.1074/jbc.M212508200.

[46]S.T.Ladani,M.G.Souffrant,A.Barman,D.Hamelberg,Computational

perspectiveandevaluationofplausiblecatalyticmechanismsof

peptidyl-prolylcis-transisomerases,Biochim.Biophys.Acta2015(1850)

1994–2004,http://dx.doi.org/10.1016/j.bbagen.2014.12.023.

[47]F.Piette,S.D’Amico,C.Struvay,G.Mazzucchelli,J.Renaut,M.L.Tutino,A.

Danchin,P.Leprince,G.Feller,Proteomicsoflifeatlowtemperatures:trigger

factoristheprimarychaperoneintheAntarcticbacteriumPseudoalteromonas

haloplanktisTAC125,Mol.Microbiol.76(2010)120–132,http://dx.doi.org/10.

1111/j.1365-2958.2010.07084.x.

[48]F.Piette,C.Struvay,G.Feller,Theproteinfoldingchallengeinpsychrophiles:

factsandcurrentissues,Environ.Microbiol.13(2011)1924–1933,http://dx.

doi.org/10.1111/j.1462-2920.2011.02436.x.

[49]G.Feller,D.d’Amico,C.Gerday,Thermodynamicstabilityofacold-active

alpha-amylasefromtheAntarcticbacteriumAlteromonashaloplanctis,

Biochemistry38(1999)4613–4619,http://dx.doi.org/10.1021/bi982650+.

[50]T.Thomas,R.Cavicchioli,Effectoftemperatureonstabilityandactivityof

elongationfactor2proteinsfromAntarcticandthermophilicmethanogens,J.

Bacteriol.182(2000)1328–1332,

http://dx.doi.org/10.1128/JB.182.5.1328-1332.2000.

[51]T.Collins,M.A.Meuwis,C.Gerday,G.Feller,Activity,stabilityandflexibilityin

glycosidasesadaptedtoextremethermalenvironments,J.Mol.Biol.328

(2003)419–428,http://dx.doi.org/10.1016/S0022-2836(03)00287-0.

[52]D.Georlette,B.Damien,V.Blaise,E.Depiereux,V.N.Uversky,C.Gerday,G.

Feller,Structuralandfunctionaladaptationstoextremetemperaturesin

psychrophilic,mesophilic,andthermophilicDNAligases,J.Biol.Chem.278

(2003)37015–37023,http://dx.doi.org/10.1074/jbc.M305142200.

[53]A.Cipolla,F.Delbrassine,J.L.DaLage,G.Feller,Temperatureadaptationsin

psychrophilic,mesophilicandthermophilicchloride-dependent

alpha-amylases,Biochimie94(2012)1943–1950,http://dx.doi.org/10.1016/j.

biochi.2012.05.013.

[54]D.M.LeMaster,J.Tang,G.Hernandez,Absenceofkineticthermalstabilization

inahyperthermophilerubredoxinindicatedby40microsecondfoldinginthe

presenceofirreversibledenaturation,Proteins57(2004)118–127,http://dx.

doi.org/10.1002/prot.20181.

[55]M.Sawano,H.Yamamoto,K.Ogasahara,S.Kidokoro,S.Katoh,T.Ohnuma,E.

Katoh,S.Yokoyama,K.Yutani,Thermodynamicbasisforthestabilitiesof

threeCutA1sfromPyrococcushorikoshii,Thermusthermophilus,andOryza

sativa,withunusuallyhighdenaturationtemperatures,Biochemistry47

(9)

[56]W.J.Becktel,J.A.Schellman,Proteinstabilitycurves,Biopolymers26(1987)

1859–1877,http://dx.doi.org/10.1002/bip.360261104.

[57]P.L.Privalov,Stabilityofproteins:smallglobularproteins,Adv.ProteinChem. 33(1979)167–241,PMID:44431.

[58]P.L.Privalov,Colddenaturationofproteins,Crit.Rev.Biochem.Mol.Biol.25

(1990)281–305,http://dx.doi.org/10.3109/10409239009090613.

[59]S.Kumar,R.Nussinov,Experiment-guidedthermodynamicsimulationson

reversibletwo-stateproteins:implicationsforproteinthermostability,

Biophys.Chem.111(2004)235–246,http://dx.doi.org/10.1016/j.bpc.2004.06.

005.

[60]A.Razvi,J.M.Scholtz,Lessonsinstabilityfromthermophilicproteins,Protein

Sci.15(2006)1569–1578,http://dx.doi.org/10.1110/ps.062130306.

[61]D.C.Rees,A.D.Robertson,Somethermodynamicimplicationsforthe

thermostabilityofproteins,ProteinSci.10(2001)1187–1194,http://dx.doi.

org/10.1110/ps.180101.

[62]S.Kumar,C.J.Tsai,R.Nussinov,Maximalstabilitiesofreversibletwo-state

proteins,Biochemistry41(2002)5359–5374,http://dx.doi.org/10.1021/

bi012154c.

[63]O.Garcia-Arribas,R.Mateo,M.M.Tomczak,P.L.Davies,M.G.Mateu,

Thermodynamicstabilityofacold-adaptedprotein,typeIIIantifreeze

protein,andenergeticcontributionofsaltbridges,ProteinSci.16(2007)

227–238,http://dx.doi.org/10.1110/ps.062448907.

[64]S.Knapp,A.Karshikoff,K.D.Berndt,P.Christova,B.Atanasov,R.Ladenstein,

ThermalunfoldingoftheDNA-bindingproteinSso7dfromthe

hyperthermophileSulfolobussolfataricus,J.Mol.Biol.264(1996)1132–1144,

http://dx.doi.org/10.1006/jmbi.1996.0701.

[65]B.S.McCrary,S.P.Edmondson,J.W.Shriver,Hyperthermophileproteinfolding

thermodynamics:differentialscanningcalorimetryandchemical

denaturationofSac7d,J.Mol.Biol.264(1996)784–805,http://dx.doi.org/10.

1006/jmbi.1996.0677.

[66]S.Robic,M.Guzman-Casado,J.M.Sanchez-Ruiz,S.Marqusee,Roleofresidual

structureintheunfoldedstateofathermophilicprotein,Proc.Natl.Acad.Sci.

U.S.A.100(2003)11345–11349,http://dx.doi.org/10.1073/pnas.

1635051100.

[67]P.L.Privalov,A.I.Dragan,Microcalorimetryofbiologicalmacromolecules,

Biophys.Chem.126(2007)16–24,http://dx.doi.org/10.1016/j.bpc.2006.05.

004.

[68]G.I.Makhatadze,P.L.Privalov,Energeticsofproteinstructure,Adv.Protein. Chem.47(1995)307–425,PMID:8561051.

[69]M.S.Urbieta,E.R.Donati,K.G.Chan,S.Shahar,L.L.Sin,K.M.Goh,Thermophiles

inthegenomicera:biodiversity,science,andapplications,Biotechnol.Adv.

33(2015)633–647,http://dx.doi.org/10.1016/j.biotechadv.2015.04.007.

[70]C.Moissl-Eichinger,C.Cockell,P.Rettberg,Venturingintonewrealms?

Microorganismsinspace,FEMSMicrobiol.Rev.40(2016)722–737,http://dx.

Figure

Fig. 2. Chevron plots of the rate constants k app for unfolding (closed symbols, right arms) and refolding (open symbols, left arms) of tryptophan synthase ␣ subunit from the psychrophile S
Fig. 4. GFP refolding assisted by trigger factors. Data are shown for psychrophilic (blue), mesophilic (black) and hyperthermophilic (red) TFs
Fig. 5. GFP refolding in the presence of TF from the hyperthermophile T. maritima and GroELS at 15 ◦ C
Fig. 7. Catalytic activity of PPiases on protein folding. The refolding rate of a model protein (RCM-T1, reduced and carboxymethylated ribonuclease T1) limited by  pro-line isomerization can be slow (1)
+3

Références

Documents relatifs

Finally, we examine how drugs targeting the protein folding activity of the ribosome could be active against mammalian prion and other protein aggregation-based diseases, making

S. Guillaumin, et al.. Muscle protein turnover in broiler chickens: effects of high ambient temperatures and dietary protein intake.. Muscle protein turnover in broiler..

In fact, whilst earlier comparison between the src and the spectrin SH3 domains suggested this class of proteins to fold via a robust two-state mechanism

While bounded model checking of timed automata has been explored in the literature based on the satisfiability of Boolean con- straint formulas over linear arithmetic

In another example, the acid-denatured states of ribonuclease, lysozyme and chymotrypsinogen, all three common model globular proteins for the study of protein folding, have shown

As previously mentioned, one of the main difficulties of the protein folding problem is the existence, in phase space, of a large number of local

For non chiral chains, a mean field study of this model shows that a classical 6 collapse transition occurs first; at lower temperature,.. nematic order

With a simple definition based on the well-known NKModel, the motivation is to make the IFP problem more accessible to optimisation specialists and model experts.Furthermore