• Aucun résultat trouvé

Progress in all-organic rechargeable batteries using cationic and anionic configurations: Toward low-cost and greener storage solutions?

N/A
N/A
Protected

Academic year: 2021

Partager "Progress in all-organic rechargeable batteries using cationic and anionic configurations: Toward low-cost and greener storage solutions?"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-01888154

https://hal.archives-ouvertes.fr/hal-01888154

Submitted on 27 Nov 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Progress in all-organic rechargeable batteries using

cationic and anionic configurations: Toward low-cost and

greener storage solutions?

Philippe Poizot, Franck Dolhem, Joël Gaubicher

To cite this version:

Philippe Poizot, Franck Dolhem, Joël Gaubicher. Progress in all-organic rechargeable batteries using

cationic and anionic configurations: Toward low-cost and greener storage solutions?. Current Opinion

in Electrochemistry, Elsevier, 2018, 9, pp.70 - 80. �10.1016/j.coelec.2018.04.003�. �hal-01888154�

(2)

Availableonlineatwww.sciencedirect.com

GraphicalAbstract

CurrentOpinioninElectrochemistryxxx(2018)xxx–xxx Progressinall-organicrechargeablebatteriesusing

cationicandanionicconfigurations:Towardlow-costand greenerstoragesolutions?

PhilippePoizot1 ,2 ,∗,FranckDolhem3 ,4 ,JoëlGaubicher1 1InstitutdesMatériauxJeanRouxel(IMN),Université deNantes,

UMRCNRS6502,2ruedelaHoussinière,B.P.32229,44322 NantesCedex3,France

2InstitutUniversitairedeFrance(IUF),1rueDescartes,75231

ParisCedex05,France

3LaboratoiredeGlycochimie,desAntimicrobiensetdesAgroressources

(LG2A),UMRCNRS7378,Université dePicardieJulesVerne,33 rueSaint-Leu,80039AmiensCedex,France

4RéseausurleStockageÉlectrochimiquedel’Énergie(RS2E),FR

(3)

Availableonlineatwww.sciencedirect.com

Review

Article

Progress

in

all-organic

rechargeable

batteries

using

cationic

and

anionic

configurations:

Toward

low-cost

and

greener

storage

solutions?

Philippe

Poizot

1,2,∗

,

Franck

Dolhem

3,4

and

Joël

Gaubicher

1 Q1

OurentryintotheFourthindustrialrevolutionsincetheturnof

1

thecenturyissettorevolutionizeourdailylifenotablywiththe

2

bloomingofdigitaltechnologiessuchascommunications,

3

artificialintelligence,technologiesrelatedtotheInternetof

4

Things,3-Dprintingornano/biotechnologies.Itishowever

5

hopedthisnewparadigmshiftwillintegratesustainable

6

developmentgoalsandactionstoaddressthecriticaldamage

7

causedbythepreviousindustrialrevolutionsespeciallythe

8

threatofglobalwarming.Wehavetobeparticularlyaware

9

thereremainstheurgentneedforcleanerenergytechnologies

10

whichcallsforaradicalchangeintheenergymixtofavor

11

renewableenergyandenvironmentallyresponsibleenergy

12

storagesolutions.Organicmaterialsshouldprovide

13

opportunitiestofurtherimproveexistingenergystorage

14

technologieswhileofferingsustainable,versatileand

15

potentiallylow-costenergystoragedevices.Thisreviewseeks

16

toprovideanupdateonall-organicbatteryassemblies

17

reportedtodateaswellassomeperspectiveswecanexpect

18

inthefuturenotablyforstationaryapplications.

19

Addresses

20

1InstitutdesMatériauxJeanRouxel(IMN),Université deNantes,UMR

21

CNRS6502,2ruedelaHoussinière,B.P.32229,44322NantesCedex 22

3,France 23

2InstitutUniversitairedeFrance(IUF),1rueDescartes,75231Paris

24

Cedex05,France 25

3LaboratoiredeGlycochimie,desAntimicrobiensetdes

26

Agroressources(LG2A),UMRCNRS7378,Université dePicardieJules 27

Verne,33rueSaint-Leu,80039AmiensCedex,France 28

4RéseausurleStockageÉlectrochimiquedel’Énergie(RS2E),FR

29

CNRS3459,AmiensCedex,France 30

Correspondingauthor.:Poizot,Philippe (philippe.poizot@cnrs-imn.fr)

31

CurrentOpinioninElectrochemistry2018,XX:XX–XX

ThisreviewcomesfromathemedissueonBatteriesand Superca-pacitors

EditedbyDanielBelanger

ForacompleteoverviewseetheIssueandtheEditorial

AvailableonlineXXXXXX2018

https://doi.org/10.1016/j.coelec.2018.04.003

2451-9103/© 2018ElsevierB.V.Allrightsreserved.

Introduction

32

Afewyears ago,we outlinedapersonalviewaboutthe 33

trickyquestionsofenergysupply,itsstorageandconver- 34

sionintheearly21stcenturyandunderlinedtheimpor- 35

tanceofdevelopingefficient,safebutalsolow-polluting 36

electrochemicalstoragesolutions[1].Todate,commercial 37

batteriesexclusivelyincludeinorganicelectrodemateri- 38

alsnotably3dtransitionmetalswhicharescarce,expen- 39

siveandenergygreedy[2].Incontrast,organicmaterials 40

enableaccesstolowcostandpossiblygreenercompounds 41

becausecomposed ofnaturallyabundantelements(i.e., 42

C,H,O,N orS)moreovertheyareeasierto recycle.In 43

addition,theyofferhighstructuraldesignabilitythrough 44

thewell-establishedprinciplesof organicchemistryand 45

notablyaccesstobothn-andp-typeelectrochemicalstor- 46

agemechanisms[3]makingvariouscellorelectrodecon- 47

figurationspossible(Figure1). 48

In10years,tremendousprogresshasbeenmadetopro- 49

moteorganiccompoundsinvariousrechargeablestorage 50

devicesgivingrisetonearly15publishedreviewarticles 51

especiallyforapplicationsinnon-aqueous(metallic)Lior 52

Na-basedbatteries;forveryrecentexamples,thereader 53

couldrefertorefs.[5–10].Notwithstandingthisabundant 54

literature,thereappeared to bea lackof acomprehen- 55

sivesummarydedicatedtoall-organiccells thatarealso 56

increasinginnumberthankstothisrapidprogressonor- 57

ganicelectrodematerials.Herein,wehaveattemptedto 58

fillthegapbythoroughlyreportingprototypeexamplesof 59

all-organicbatteriesinvestigateduntilnowincludingthe 60

pioneeringexamplesstudiedinthemid-80s.Onepartic- 61

ularexcitingoptionisthetruepossibilityofstoringelec- 62

tricitythroughcellreactionsdevoidofmetalsmakingthe 63

conceptofmolecular-ionbatteriespossibleaspointedout 64

byYao’sgroupinarecentvisionaryarticle[11••].Infact, 65

theshuttlingioncanbeeitherprotonsorammonium-type 66

cationsbutalsoanions.Inthelattercase,alargechoiceof 67

chemicalstructuresisaccessiblefromatomictomolecular 68

anions.Moreover,anionstendtoshowhigherlimitingmo- 69

larconductivityvaluesinordinaryorganicsolventsdueto 70

lowersolvationeffects.Inaqueouselectrolytes,promising 71

organicassembliesbasedontheuseoflow-costchemical 72

compoundscouldalsopavethewayforinnovative local 73

stationaryelectrochemicalstoragedevices. 74

www.sciencedirect.com CurrentOpinioninElectrochemistry2018,000:xxx–xxx

Pleasecitethisarticleas:Poizot,Dolhem,Gaubicher,Progressinall-organicrechargeablebatteriesusingcationicand anionicconfigurations:Towardlow-costandgreenerstoragesolutions?CurrentOpinioninElectrochemistry(2018),

(4)

2 BatteriesandSupercapacitors

ARTICLE

IN

PRESS

JID:COELEC [mNS;April19,2018;13:36]

Figure1

Schematicoffundamentalcellconfigurationsobtainedbyplayingwithbothn-andp-typeorganicelectroactivematerialsshownduringthedischarge process.(a)All-organiccellincorporatingn-typeelectrodematerialsonly(cationicrocking-chair).(b)Symmetricsituationwithp-typeelectrode materials(anionicrocking-chair).(c)Mixingbothn-andp-typeelectrodematerials(dual-ionconfiguration).Notethattheuseattheelectrodelevelof mixedn-/p-typemoietiescanbeenvisagedtoo[4].Inaddition,agivenorganicskeletonbearingaredox-activep-typemoietyexhibitsasarulea formalpotentialhigherthanthatofthecorrespondingn-typecounterpart.

Advances

in

non-aqueous

all-organic

75

batteries

76

All-organicbatteries arenaturally characterizedby very

77

different assemblies depending on the selected active

78

material (p- and/or n-type) as wellas the chemical

na-79

tureofthechargecarriers(cationicoranioniccharge

bal-80

ance).Therefore, weoptedfor asummary tableforthe

81

sake of comparison and to make the discussion easier.

82

Hence,Table1 liststhepossible organiccell

configura-83

tions,thechemicalnatureoftheusedelectrodematerials1

84

andelectrolyteaswellassomeperformancemetrics.First

85

ofall,itseemedtousrelevanttostartouroverviewwith

86

battery examples coupling inorganic and organic

elec-87

trodes.Inthisarea,sincearomaticcarboxylatesprovedto

88

beinteresting candidates as negative material [7],

Toy-89

ota Laboratoriesreportedin 2014[12]very good

elec-90

trochemical performance by coupling the high voltage

91

spinelLiNi0.5Mn1.5O4withdilithium2,6-naphthalene

di-92

carboxylateleadingto3.9VLi-ioncellsanddemonstrated

93

thepossibleconstructionof8V-bipolarlaminatedLi-ion

94

batteries(LIBs) delivering high specific powerand

en-95

ergyvalues(Table1,#1).Preliminarydatawerealso

pub-96

lishedbyMouetal.[13]usingacompositeanodemade

97

ofcalciumterephthalateball-milledwithgraphitefaceto

98

LiCoO2asthecathodematerial(Table1,#2).Medabalmi

99

etal.[14]madeaNa-ioncoin-cellprototypeoperatingat

100

∼3.2Vbyusingthesodiatedformof2,6-naphthalene

di-101

carboxylateand Na3V2O2(PO4)2/rGO(rGO standingfor

102

reduced graphene oxide) for thecathode side but

lim-103

1 Notethatthefollowingterms“cathode” and“anode” referto

posi-tiveandnegativeelectrodes,respectively.

itedstabilitiesuponcyclingwereobserved(Table1,#3). 104

Changingforap-typecathode,Fanetal.[15]recentlyre- 105

portedapotassium-based dual-ion fullbattery(PDIBs) 106

based on graphite anode, polytriphenylamine cathode, 107

and KPF6-based electrolyte (Table 1, #4) that shows 108

quitegoodcyclingstabilityover500cycles.Kangandco- 109

workers[16]examined inaparallel researchtheperfor- 110

manceofalithium-baseddual-ionfullbatteries(LDIBs) 111

withtheN,N-substitutedphenazine/Li4Ti5O12assembly 112

butthecyclabilitywasnotdiscussedatall(Table1,#5). 113

Thesecondsectionof Table1 concernsall-organic bat- 114

teriesincorporatingn-type materials only (cationiccon- 115

figuration). Our group [17] was the first to report an 116

all-organic Li-ion cell based on renewable raw materi- 117

alsthankstotheamphotericredoxpropertyofLi4C6O6 118

whichmakesthedesignofacellexhibiting∼1Vasout- 119

putvoltage(Table1,#6).Laterwetriedtogofurtherby 120

investigatingdilithium(2,5-dilithium-oxy)-terephthalate 121

(Li4-p-DHT)asanotherdual-functionelectrodematerial 122

deriving frombiomass[18].However, Chen’sgroupre- 123

portedthebestperformancewiththismaterial(Table1, 124

#7)atthe conditionto beprepared as nanosheets [19]. 125

ThissecondprototypeoforganicLIBsexhibitsanaver- 126

ageoperationvoltageof∼1.8Vandanenergydensityof 127

about130Wh/kgtogetherwithlongcyclinglife(1000cy- 128

cles)whensupportedongraphene[20••].Abiomolecule- 129

basedfullLIBwasevenproposed byHuetal.[21] us- 130

inganaturallyoccurringquinone (emodin)as thecath- 131

odeand lithiumhumatesas the anode.Nevertheless,a 132

fast capacity fading was observed probably due to the 133

poor stability of the electrode materials (emodin bears 134

threeOHgroupswhereaslithiumhumatescannotbewell 135

CurrentOpinioninElectrochemistry2018,000:xxx–xxx www.sciencedirect.com

Pleasecitethisarticleas:Poizot,Dolhem,Gaubicher,Progressinall-organicrechargeablebatteriesusingcationicand anionicconfigurations:Towardlow-costandgreenerstoragesolutions?CurrentOpinioninElectrochemistry(2018),

(5)

Pr ogr ess in all-organic rechargeable batteries using cationicand anionic configurations Poizot, Dolhem and Gaubicher 3

AR

TICLE

IN

PRESS

JID: COELEC [mNS; April 19, 2018;13:36 ] Table1 Organicbatteries.

(continuedonnextpage)

www .sciencedir ect.com Curr ent Opinion in Electr o chemistry 2018, 000 :xxx–xxx Please cite this article as: Poizot, Dolhem, Gaubicher , Progress in all-or ganic rechar geable batteries using cationic and anionic configurations: To w ar d low-cost and greener storage solutions? Current Opinion in Electrochemistry (2018), https://doi.or g /10.1016/j.coelec.2018.04.003

(6)

4 Batteries and Super capacitors

AR

TICLE

IN

PRESS

JID: COELEC [mNS; April 19, 2018;13:36 ] Table1(continued)

(continuedonnextpage)

Curr ent Opinion in Electr o chemistry 2018, 000 :xxx–xxx www .sciencedir ect.com Please cite this article as: Poizot, Dolhem, Gaubicher , Progress in all-or ganic rechar geable batteries using cationic and anionic configurations: To w ar d low-cost and greener storage solutions? Current Opinion in Electrochemistry (2018), https://doi.or g /10.1016/j.coelec.2018.04.003

(7)

Pr ogr ess in all-organic rechargeable batteries using cationicand anionic configurations Poizot, Dolhem and Gaubicher 5

AR

TICLE

IN

PRESS

JID: COELEC [mNS; April 19, 2018;13:36 ] Table1(continued)

(continuedonnextpage)

www .sciencedir ect.com Curr ent Opinion in Electr o chemistry 2018, 000 :xxx–xxx Please cite this article as: Poizot, Dolhem, Gaubicher , Progress in all-or ganic rechar geable batteries using cationic and anionic configurations: To w ar d low-cost and greener storage solutions? Current Opinion in Electrochemistry (2018), https://doi.or g /10.1016/j.coelec.2018.04.003

(8)

6 Batteries and Super capacitors

AR

TICLE

IN

PRESS

JID: COELEC [mNS; April 19, 2018;13:36 ] Table1(continued)

(a)Based onanodematerialweight.(b)Based oncathodematerialweight.(c)Based onthetotalbatteryweightor(c’)onanodeandcathodematerials.(d)rGOstandsforreducedgrapheneoxide(e)PAnistands forpolyanilineemeraldinebase.(f)P(AN-NA)standsforpoly(aniline/o-nitroaniline).(g)Initialcoulombicefficiency.

Curr ent Opinion in Electr o chemistry 2018, 000 :xxx–xxx www .sciencedir ect.com Please cite this article as: Poizot, Dolhem, Gaubicher , Progress in all-or ganic rechar geable batteries using cationic and anionic configurations: To w ar d low-cost and greener storage solutions? Current Opinion in Electrochemistry (2018), https://doi.or g /10.1016/j.coelec.2018.04.003

(9)

Progressinall-organicrechargeablebatteriesusingcationicandanionicconfigurationsPoizot,DolhemandGaubicher 7

ARTICLE

IN

PRESS

JID:COELEC [mNS;April19,2018;13:36]

characterized).Notethatapre-dischargestepof the

an-Q2

136

ode wasnecessaryprior to final assemblysince emodin

137

(quinoneform)isanon-lithiatedcompound(Table1,#8).

138

Similarly, Gutel and co-workers [22] assembled a LIB

139

ableto showanaveragecellvoltageof∼1.2Vandgood

140

cyclabilityover200cyclesfrompre-reduced

perylenete-141

tracarboxylatefacetoapolyimideasthecathode(Table 142

1,#9).TakingbenefitofthesuccessfulLi-ioncellbased

143

onLi4-p-DHT,Chen’sgroup[23]investigatedthe

sodi-144

ated counterpart material (Na4-p-DHT) and published

145

thefirstall-organicsodium-ionbattery(SIB),whichgives

146

anaverageoperationvoltageof∼1.8Vforaspecific

en-147

ergy of about65Wh/kg (Table 1,#10).Shaijumon and

148

co-workers [24]proposed as SIB the couplingbetween

149

N,N-diamino-3,4,9,10-perylenetetracarboxylicpolyimide

150

asthecathodewiththedisodiumterephthalate(Na2TP)

151

astheanode.AgainthelackofinsertedNa+inthepristine

152

polyimide forced them to electrochemically pre-reduce

153

Na2TPbeforeassembling(Table1,#11).Thecell

deliv-154

eredaninitialcapacityof 73mAh/gfor anaveragecell

155

voltageof∼1.35Vbutwithalimitedcyclingstability.Very

156

recently,Lietal.[25••]havegonebeyondbyassociating

157

Na2TPwithsodiatedpoly(2,5-dihydroxy-p-benzoquinoyl

158

sulfide)/rGO composite material (Table 1, #12). In the

159

continuityofourformerworksonLi4C6O6[17],in2016

160

Chen’sgroupconstructedthefirstexampleoforganic

K-161

ionbatteriesbasedonK4C6O6/K2C6O6system[26]which

162

displayedanoperationvoltageof ∼1.1V andanenergy

163

densityof35Wh/kg(Table1,#13).Othercationsthan

al-164

kalioneswerealsotestedasioniccarriers.Interestingly,

165

whenusingpre-reducedpoly(galvinoxylstyrene)withthe

166

tetrabutylammonium ion as the cathode together with

167

poly[4(nitronylnitroxyl)styrene)] as the anode, Nishide

168

andco-workers[27]constructedthefirstn-typefull

poly-169

merbatteryfreeofmetal.Thetestcellcertainlyexhibited

170

alimitedoutputvoltage(∼0.6V)butachievedimpressive

171

rateperformanceswith90%oftheoriginalcapacity

main-172

tainedat150Crate(Table1,#14).Morerecently Sjödin

173

andco-workers[28]reportedaproof-of-principlestudyon

174

anall-organicprotonbatteryalsodevoidofmetalsusing

175

poly(3,4-ethylenedioxythiophene)(PEDOT)

functional-176

izedeitherwithp-benzoquinone(cathode)or

dihydrox-177

yanthraquinone(anode)andworkingthankstoanoriginal

178

protonated pyridinium triflate-based non-aqueous

elec-179

trolyte(Table1,#15).

180

The thirdsectionof Table 1 concernsthedual-ion cell

181

configurationemployingnaturally(forpotentialreason)a

182

p-typeelectrodematerialforthecathodeside(Figure1);

183

in this cell configurationthe electrolyteis thereservoir

184

of ions for the charge compensation within electrode

185

materials. There are more examples reported in the

186

literature for this type of assembly, thefirst one dating

187

back to the 80s following the discovery of conducting

188

polymers. The first completely organic rechargeable

189

storage battery of this kind were described by

Mac-190

Diarmid and co-workers in 1981 by taking benefit of

191

thereversible n- and p-type electrochemicaldoping of 192

polyacetylene[29].However,neithercyclingcurvesnor 193

electrochemicalperformancedatawerementionedinthe 194

article (Table 1, #16). Then, polythiophene-based full 195

cellswereproposedbyInuishiandco-workersexhibiting 196

an energy density of ∼90W h/kg [30] (Table 1, #17). 197

Fifteen years ago, a new class of polymers emerged 198

consistingof apolymeric chainwith stable radical pen- 199

dantgroupsleadingtothedevelopmentoftheso-called 200

organic radical batteries (ORBs). Such systems possess 201

therightpropertiesto allowtheconstruction oforganic 202

dual-ioncells as well.Nishideandco-workers [31]pro- 203

posed the poly(galvinoxylstyrene) as an n-type redox 204

active polymer and used thepoly(TEMPO-substituted 205

norbornene)asthep-typeone(Table1,#18).Thetotally 206

organic polymer-based radical battery thus obtained 207

(also devoid of metals) gave an interesting power rate 208

capability since it retained 60% of its initial capacity 209

after 250 cycles at a 10C rate. Later, the same group 210 [27]usingpoly[4(nitronylnitroxyl)styrene)] assembled a 211

symmetric(poleless)cellexhibitinggoodcyclelife(more 212

than 250 cycles) at a60C rate (Table 1, #19). Deng et 213

al.[32]assembledalow-costall-organicdualionbattery 214

(PF6−/Na+) with poly(triphenylamine) as the p-type 215

material andpoly(anthraquinonyl sulfide) as then-type 216

one (Table 1, #20).The same anode was also used by 217

Caoand co-workers[33]together withapoly(aniline/o- 218

nitroaniline) and a plastic crystal electrolyte (Table 1, 219

#21).Subsequently,Yang’s groupproposed to assemble 220

poly(triphenylamine) with poly(3,4-dihexylthiophene) 221 [34](Table1,#22).Inanotherstudy,thisgroup[35]ex- 222

ploitedthegapinpotentialbetweenthep-andn-doping 223

processes occurring in poly(paraphenylene) (Table 1, 224

#23).However, compared to ORBs,such dual-ion cells 225

exhibitfeaturelesscyclingcurveswhich resemblemore 226

supercapacitorelectrochemicalprofiles.Anotherdual-ion 227

all-organicbatteryconsistinginpoly(2-vinylthianthrene) 228

as the positive material and poly(2-methacrylamide- 229

tetracyanoanthraquinodimethane) as the negative was 230

also investigated by Schubert’s group [36]. Although 231

the output voltage was only 1.35V, the cell was able 232

to sustain almost 70% of its initial capacity after 250 233

cycles(Table1,#24).Veryrecently,Dongetal.[37]were 234

abletocycle atvery low temperature(upto −70°C)a 235

dual-ioncellbasedonpoly(triphenylamine) and1,4,5,8- 236

naphthalenetetracarboxylic dianhydride (NTCDA)- 237

derived polyimide thanks to an ethyl acetate-based 238

electrolyte(2MLiTFSI)whichexhibitssufficientlyhigh 239

ionicconductivityatlowtemperature(Table1,#25). 240

Lastly, the fourth section of Table 1 recaps the few 241

examples of cell combining two p-type electrode ma- 242

terials. In fact, such cells are scarcer because p-type 243

compounds are naturally characterized by high formal 244

redox potentials except the single family of viologen- 245

related materials. Note that Lee et al. studied in 246

the 90s polypyrrole/polyaniline (PAni) then PAni/PAni 247

www.sciencedirect.com CurrentOpinioninElectrochemistry2018,000:xxx–xxx

Pleasecitethisarticleas:Poizot,Dolhem,Gaubicher,Progressinall-organicrechargeablebatteriesusingcationicand anionicconfigurations:Towardlow-costandgreenerstoragesolutions?CurrentOpinioninElectrochemistry(2018),

(10)

8 BatteriesandSupercapacitors

ARTICLE

IN

PRESS

JID:COELEC [mNS;April19,2018;13:36]

full cells but reported data were poor [38].

Pal-248

more and co-workers [39] have prepared a polypyrrole

249

with covalently bonded viologen (4,4-bipyridine)

moi-250

eties as the anode and polypyrrole doped with 2,2

-251

azino-bis-(3-ethylbenzothiazoline-6-sulfonicacid)forthe

252

cathode side, both releasing or accepting a

perchlo-253

rate anion during the redox processes. Experimentally

254

this battery exhibited a very low capacity (Table 1,

255

#26). Yao’s group proposed also such a molecular

ion-256

based "rocking-chair" type battery [11••] with poly(N

-257

vinylcarbazole)as thecathodeandalsoaviologen

poly-258

merastheanode(poly(1,1-pentyl-4,4-bipyridinium

di-259

hexafluorophosphate))(Table 1,#27).The performance

260

of thebatterywasmuchbetter with thislast

configura-261

tiongivingriseto∼1.8Vasoutputvoltagecoupledwith

262

capacityof100mAh/gcathode.

263

Promise

and

challenges

of

aqueous

organic

264

batteries

265

Organics can also operate in aqueous electrolytes.

Al-266

thoughattheexpenseofenergydensity,aqueous

rocking-267

chairbatteriesconstituteanovelandpromising

technol-268

ogyastheyareinherentlysafe,minimizecostand

envi-269

ronmental impactby comparison to other battery

tech-270

nologies[5,40–42],whichisparticularlyrelevantfor

pro-271

motinglow-costenergystoragesolutions.Thisapproach

272

isstillaffiliatedhowever,withrelativelylowenergy

den-273

sity,below50Wh/kg18650-cell2,whichputsevenmore

pres-274

sureonmaterial costsand durability in order to ensure

275

economicviability.Ithas beenrecently shownthatthe

276

electrochemical window of superconcentrated aqueous

277

electrolytes can be expanded to 3V thanks to the

for-278

mation of electrolyte–electrode interphase and unusual

279

watermoleculecoordinationenvironment[40,43].

How-280

ever,itshouldbestressedasfarasenergycost($/kWh)

281

isconcernedthisvoltagegainiscounterbalancedbythe

282

mass(∼2–5timesthatofa1Melectrolyte)andtheprice

283

of these additional salts.Indeed, a bulkenergy storage

284

unitwillonlybeimplementedifthecostperunitof

en-285

ergyfallsbelow0.03$/kWh,avaluelowerthanthecost

286

ofelectricityfromconventionalpowersources.This

im-287

pliesthatthedevicemustbeabletodelivermany

thou-288

sandsofcharge–dischargecyclesovermanyyears(which

289

for the time beingrules out zinc-based systems)to

in-290

surestoragecostremainsin thevicinityof 100$/kW h.

291

Moreover,aqueous batteries are intended for both

do-292

mesticandlarge-scaleapplicationsandthereforethe

enor-293

mousscaleoftherequiredenergytransitionplaceslimits

294

onpoorlyabundant,non-uniformlydistributedaswellas

295

monopolizedmetalresources.To sumup,therelatively

296

narrowelectrochemicalwindowavailableinaqueous

me-297

diatogetherwithcostsandabundanceissuesmakeseven

298

more challenging the development of appropriate host

299

2 The18650(18mm by65 mm)batteryisa sizeclassificationof

lithium-ionbatteries.

materialswithoptimalpotentialaswellashighchemical 300

andelectrochemicalstability. 301

One of the emerging approaches followed by several 302

groupsconsistsalsoinconsideringorganicactivemateri- 303

alstosubstituteinorganiconeswiththepromiseofabun- 304

dancyin elements,lower costsand high structuraldes- 305

ignability.Note that only five inorganic materials were 306

identified to design aqueous batteries (i.e., LiMn2O4 307 [44],Na3Ti2(PO4)3[44],FeandMn-basedPrussianBlue 308

derivatives[45]andNa3MnTi(PO4)3 [46]).Another de- 309

cisiveadvantageisrelatedto thepotential accesstosu- 310

periorspecificcapacities asorganics benefitfrommulti- 311

electronredoxreactions.Lastly,thelowvolumetricden- 312

sityoforganiccompoundsisobviouslynotasdetrimen- 313

tal for stationary application as it is for mobile ones. 314

Despitethesebenefits,severalkeyissuesremainandre- 315

centliteratureproves thedesignofeconomicallyviable 316

fullaqueous batteriesbasedonorganic materialsisstill 317

achallengingandexcitingprospect.First,as mentioned 318

earlierforstationarystoragethemostimportantcriterion 319

remainstheoverallcostofthestoragedevice.Consider- 320

ingaplausiblevoltageof1.2Vandcapacityof150mAh/g 321

forboththepositiveandthenegativematerials,ahypo- 322

thetical18,650fullcellshouldenableanenergydensity 323

ofabout56Wh/kg18650-cell basedon15 mAh/cm2 elec- 324

trodescontaining 80% of active material.In these con- 325

ditions,costsof goods should stay in thevicinity of 5– 326

10$/kgandthereforeanyorganicchemistryinvolvedfor 327

materialdesigncannotexceedoneortwosteps(asarule 328

of thumb,one step correspondsto ∼5 $/kg in the pig- 329

mentindustry).Thisalsoservestoreiteratethatneutral 330

pHandmolarrangesaltconcentrationoftheelectrolyte 331

shouldbepreferredtominimizeproductioncostsandcor- 332

rosionissues.Thesecondbottleneckarisesfromthecor- 333

relationbetweenthepotentialrangeoftheorganicmate- 334

rialsdependingonthep-or n-typecharacter.Foraque- 335

ousbatteriesplethoraofn-typeorganicmaterialscanbe 336

designedasanodematerialsallowingtheaccesstopoten- 337

tialsbelow −0.3Vvs.SCE (2.95Vvs.Li+/Liatneutral 338

pH)thanks tothecarbonyl/enolateredoxmoiety.How- 339

ever,withtheaimtofabricateatleast1Vcell,itisquite 340

challengingtoreachsufficientlyhighworkingpotentials 341

with n-type materials for the cathode side (>0.4V vs. 342

SCEor 3.65V vs.Li+/Li at neutralpH). Inversely, ex- 343

ceptfortheviologengroupforwhichredoxpotentialscan 344

fitthenegativeside,organicp-typeredoxcentersmatch 345

better the positive side. Consequently, cationic rocking- 346

chairaqueousbatteriesonlyexploithybridcellswithinor- 347

ganic(cathode)/organic(anode)combination. Yao’s group 348 [47••] (Table 1,#28) nicely illustratethe advantagesof 349

organicactivematerialsinthisfield.Indeed,theirstudy 350

demonstratedpolypyrene-4,5,9,10-tetraone (PPTO) can 351

store∼220 mA h/g (two fold whatcan be achieved by 352

bestinorganicmaterials)at∼−0.3Vvs.SCEenablinga 353

fullcell with LiMn2O4 (LMO) as the cathodematerial 354

tosustain∼90Wh/kgmaterialsformorethan3000cyclesat 355

CurrentOpinioninElectrochemistry2018,000:xxx–xxx www.sciencedirect.com

Pleasecitethisarticleas:Poizot,Dolhem,Gaubicher,Progressinall-organicrechargeablebatteriesusingcationicand anionicconfigurations:Towardlow-costandgreenerstoragesolutions?CurrentOpinioninElectrochemistry(2018),

(11)

Progressinall-organicrechargeablebatteriesusingcationicandanionicconfigurationsPoizot,DolhemandGaubicher 9

ARTICLE

IN

PRESS

JID:COELEC [mNS;April19,2018;13:36]

0.23A/g(1C⇔3500hcycling)withnearto100%

coulom-356

bicefficiency.Asacomparison,similarlyloadedcells

ex-357

ploitingLMOandLiTi2(PO4)3(LTP)leadtosimilar

en-358

ergy density and cyclability but with somewhat higher

359

estimated costsince PPTOwouldbe ∼10–15$/kg and

360

LTP higher than 20 $/kg [47].Another interesting

hy-361

brid cationic full cell from Ji’s group [48] consisted in

362

using an ammonium inserted Ni-based Prussian white

363

asthecathodeagainsta3,4,9,10-perylenetetracarboxylic

364

diimide in a 1M (NH4)2SO4 (Table 1, #29). This is

365

the first aqueous cell exchanging a non-metal cationic

366

charge carrier. Although the capacity retention is

mod-367

erate(67% upon 1000 cycles at3C rates)it enables up

368

to43Wh/kgmaterialswith1Vofvoltageat1.5Cbasedon

369

atwo-foldexcessofpositiveelectrode.Thesolefull

or-370

ganicaqueous cellstodate incorporaten-type materials

371

only(anionicconfiguration).Toourknowledgeonlytwo

372

systemshavebeenreportedsince2012:Nishideand

co-373

workersconsideredthinfilmbatteries(upto1mmthick)

374

fabricatedusingaTEMPOderivative,thepoly

(2,2,6,6-375

tetramethylpiperidin-4-yl) acrylamide (PTMA) as the

376

cathode coupled to two different polyviologen

deriva-377

tives, either highly cross-linked polyviologen hydrogel

378

(poly-(tripyridiniomesitylene))[49••]whichenablean

av-379

eragevoltageof∼1.3Vover2000cycles(Table1,#30),or

380

tothepoly(N-4,4-bipyridinium-N-decamethylene

dibro-381

mide)(Table 1,#31) whichsustainsmorethan2000

cy-382

cleswith1.2Vaveragevoltage[50].Recently,Dongetal.

383

[51]proposedafullorganicdual-ioncellbasedonp-type

384

polytriphenylamineandn-typepolynaphthalenediimide

385

polymersatthepositiveandnegativeelectrode,

respec-386

tively(Table1,#32).Despitethecellrequirestheuseof

387

a21mLiTFSIwater-in-saltelectrolytetopreventwater

388

oxidation,the authors showed near to 53W h/kgmaterials

389

and32kW/kgmaterials canbeobtainedfor1mg/cm2

elec-390

trodes.Anotherdirectionhasbeenrecentlyproposedby

391

our groupby coupling p-type bipyridinium and n-type

392

naphthalene diimide redox moietiesinto one of a new

393

family of non-soluble oligomerfor negative electrodes.

394

The latterwasshownto exchangebothcationsand

an-395

ionssimultaneouslyoncycling,thereforepavingtheway

396

to thedesignof anewtypeof dual cation–anionwhere

397

thesaltconcentrationdoesnotvaryoncycling.The

syn-398

ergisticcouplingofthetworedoxunitsenablestoreach

399

competitivecapacities rangingfrom60 to90 mAh/g in

400

bothneutral Na+ andMg2+ electrolytes ofmolarrange

401

concentration[4].

402

Conclusions

and

outlook

403

Thepeculiarfieldoforganicbatterieshasseensignificant

404

progresstheselastfewyearswithpromisingresearch

di-405

rectionsattractingpositivelymoreandmoreinterestfrom

406

the energystorage community.The unique features of

407

organicsincludingflexibility,processability,structure

di-408

versity as wellas thetruepossibility ofbeing prepared

409

fromrenewableresourcesandeco-friendlyprocessesare

410

todaysubstantiveargumentsevenifpracticalenergy

den-411

sityvaluesremainlow.LetusrecallthatNECgroupan- 412

nouncedORBsclosetoreachingthemarketin2012[52]. 413

However,improvementsarestillneededtopushforward 414

organicbatteriesespeciallytogetabetterstabilityupon 415

cycling.Infact,severalorganicmaterialsarenotablyprone 416

tosolubilityissues,includingsomepolymers.ThusNEC 417

haverecentlyreportedthattheuseofcross-linkedPTMA 418

gelsenableverygoodelectrochemicalperformancecom- 419

paredto linearPTMAwith∼100mAh/gPTMA formore 420

than500 cycles[53].Thisshortreviewwas alsotheoc- 421

casion to underline that the richness of the redox or- 422

ganic chemistry enables thedevelopment of both vari- 423

ousinnovativeelectrodematerialsandcellconfigurations. 424

Aqueous organic batteries appear notably as promising 425

devicesforstationaryelectricitystorageattheconditionto 426

havelowproductioncostsandlongcyclingstabilities.In 427

thisregard,thehighionicconductivityofaqueouselec- 428

trolytes that allows in principle to use ultra-thick elec- 429

trodesshouldenabletopullthepriceperunitofenergy 430

evenlower[54].Thisaspectcouldbeallthemoreimpor- 431

tantthat thepriceof actual organic activematerials re- 432

mainstoohigh(>5–10$/kg).Althoughitwasbeyondthe 433

scopeof thisarticle,itisworthnotingthatvery promis- 434

ingresultshavealsobeenreportedin regardtotheuse 435

oforganicredoxmaterialsfor theredoxflowtechnology 436

[55–57]. 437

References

and

recommended

reading

438

Papersofparticularinterest,publishedwithintheperiodofreview,have 439

beenhighlightedas: 440

Paperofspecialinterest 441

••Paperofoutstandinginterest. 442

1. PoizotP,DolhemF:Cleanenergynewdealforasustainable 443

world:fromnon-CO2generatingenergysourcestogreener 444 electrochemicalstoragedevices.EnergyEnviron.Sci2011, 445

4:2003–2019.https://doi.org/10.1039/C0EE00731E. 446 2. EllingsenLA-W,Majeau-BettezG,SinghB,SrivastavaAK, 447 ValøenLO,StrømmanAH:Lifecycleassessmentofalithium-ion 448

batteryvehiclepack:LCAofaLi-ionbatteryvehiclepack.J. 449

Ind.Ecol.2014,18:113–124.https://doi.org/10.1111/jiec.12072. 450 3. GottisS,BarrèsA-L,DolhemF,PoizotP:Voltagegaininlithiated 451

enolate-basedorganiccathodematerialsbyisomericeffect. 452

ACSAppl.Mater.Interfaces2014,6:10870–10876. 453 https://doi.org/10.1021/am405470p. 454 4. PerticarariS,Sayed-Ahmad-BarazaY,EwelsC,MoreauP, 455 GuyomardD,PoizotP,OdobelF,GaubicherJ:Dualanion–cation 456

reversibleinsertioninabipyridinium–diamidetriadasthe 457

negativeelectrodeforaqueousbatteries.Adv.EnergyMater., 458 vol820181701988.https://doi.org/10.1002/aenm.201701988. 459 5. ChagnesA,SwiatowskaJ(Eds):LithiumProcessChemistry: 460

Resources,Extraction,Batteries,andRecycling.Amsterdam, 461

Boston,Heidelberg:Elsevier;2015. 462

6. HäuplerB,WildA,SchubertUS:Carbonyls:powerfulorganic 463

materialsforsecondarybatteries.Adv.EnergyMater.,vol52015 464 1402034.https://doi.org/10.1002/aenm.201402034. 465 7. OlteanV-A,RenaultS,ValvoM,BrandellD:Sustainablematerials 466

forsustainableenergystorage:organicNaelectrodes. 467

Materials2016,9:142.https://doi.org/10.3390/ma9030142. 468

www.sciencedirect.com CurrentOpinioninElectrochemistry2018,000:xxx–xxx

Pleasecitethisarticleas:Poizot,Dolhem,Gaubicher,Progressinall-organicrechargeablebatteriesusingcationicand anionicconfigurations:Towardlow-costandgreenerstoragesolutions?CurrentOpinioninElectrochemistry(2018),

(12)

10 BatteriesandSupercapacitors

ARTICLE

IN

PRESS

JID:COELEC [mNS;April19,2018;13:36]

8. ZhaoQ,GuoC,LuY,LiuL,LiangJ,ChenJ:Rechargeable

469

lithiumbatterieswithelectrodesofsmallorganiccarbonyl

470

saltsandadvancedelectrolytes.Ind.Eng.Chem.Res.2016, 471

55:5795–5804.https://doi.org/10.1021/acs.iecr.6b01462. 472

9. SchonTB,McAllisterBT,LiP-F,SeferosDS:Theriseoforganic

473

electrodematerialsforenergystorage.Chem.Soc.Rev.2016, 474

45:6345–6404.https://doi.org/10.1039/C6CS00173D. 475

10. ZhaoQ,LuY,ChenJ:Advancedorganicelectrodematerialsfor

476

rechargeablesodium-ionbatteries.Adv.EnergyMater.,vol7 477

20171601792.https://doi.org/10.1002/aenm.201601792. 478

11.

●● YaoM,SanoH,AndoH,KiyobayashiT:Molecularionbattery:a 479

rechargeablesystemwithoutusinganyelementalionsasa

480

chargecarrier.Sci.Rep.2015,5:10962. 481

https://doi.org/10.1038/srep10962. 482

Usingp-typepolymersasbothcathodeandanodematerialstogether 483

withamolecularionachargecarrierintheelectrolyte,thisarticle 484

reportsthepossiblefabricationofamolecularion-based“rocking 485

chair” batteryoperatinginaproticelectrolyte. 486

12.

● OgiharaN,YasudaT,KishidaY,OhsunaT,MiyamotoK,OhbaN: 487

Organicdicarboxylatenegativeelectrodematerialswith

488

remarkablysmallstrainforhigh-voltagebipolarbatteries. 489

Angew.Chem.Int.Ed.2014,53:11467–11472. 490

https://doi.org/10.1002/anie.201405139. 491

Usinganorganicanodetogetherwithahighpotentialspineltheauthors 492

demonstratedthefeasibilityoflaminatedcellsofhighspecificenergy 493

(300Wh/kgcell). 494

13. MouC,WangL,DengQ,HuangZ,LiJ:Calcium

495

terephthalate/graphitecompositesasanodematerialsfor

496

lithium-ionbatteries.Ionics2015,21:1893–1899. 497

https://doi.org/10.1007/s11581-014-1357-z. 498

14. MedabalmiV,KuanrN,RamanujamK:Sodiumnaphthalene

499

dicarboxylateanodematerialforinorganic–organichybrid

500

rechargeablesodium-ionbatteries.J.Electrochem.Soc.2018, 501

165:A175–A180.https://doi.org/10.1149/2.0731802jes. 502

15. FanL,LiuQ,XuZ,LuB:Anorganiccathodeforpotassium

503

dual-ionfullbattery.ACSEnergyLett2017,2:1614–1620. 504

https://doi.org/10.1021/acsenergylett.7b00378. 505

16. LeeM,HongJ,LeeB,KuK,LeeS,ParkCB,KangK: 506

Multi-electronredoxphenazineforready-to-chargeorganic

507

batteries.GreenChem2017,19:2980–2985. 508

https://doi.org/10.1039/C7GC00849J. 509

17. ChenH,ArmandM,CourtyM,JiangM,GreyCP,DolhemF, 510

TarasconJ-M,PoizotP:Lithiumsaltof

511

tetrahydroxybenzoquinone:towardthedevelopmentofa

512

sustainableLi-ionbattery.JAmChemSoc2009, 513

131:8984–8988.https://doi.org/10.1021/ja9024897. 514

18. RenaultS,GottisS,BarrèsA-L,CourtyM,ChauvetO,DolhemF, 515

PoizotP:AgreenLi–organicbatteryworkingasafuelcellin

516

caseofemergency.EnergyEnviron.Sci.2013,6:2124. 517

https://doi.org/10.1039/c3ee40878g. 518

19. WangS,WangL,ZhangK,ZhuZ,TaoZ,ChenJ:Organic

519

Li4C8H2O6nanosheetsforlithium-ionbatteries.NanoLett2013,

520

13:4404–4409.https://doi.org/10.1021/nl402239p1530-6984. 521

20.

●● ZhaoQ,WangJ,ChenC,MaT,ChenJ:Nanostructuredorganic 522

electrodematerialsgrownongraphenewithcovalent-bond

523

interactionforhigh-rateandultra-long-lifelithium-ion

524

batteries.NanoRes2017,10:4245–4255. 525

https://doi.org/10.1007/s12274-017-1580-9. 526

Thispaperreportsimpressiveelectrochemicalresultsforanall-organic 527

Li-ioncellbasedonLi4C8H2O6supportedongraphene,whichexhibits 528

capacitiesof191191mAh/gafter100cyclesat0.5Cand121 529

121mAh/gafter500cyclesat2C. 530

21. HuP,WangH,YangY,YangJ,LinJ,GuoL: 531

Renewable-biomolecule-basedfulllithium-ionbatteries.Adv.

532

Mater.2016,28:3486–3492. 533

https://doi.org/10.1002/adma.201505917. 534

22. IordacheA,DelhorbeV,BardetM,DuboisL,GutelT,PicardL: 535

Perylene-basedall-organicredoxbatterywithexcellent

536

cyclingstability.ACSAppl.Mater.Interfaces2016, 537

8:22762–22767.https://doi.org/10.1021/acsami.6b07591. 538

23. WangS,WangL,ZhuZ,HuZ,ZhaoQ,ChenJ:Allorganic 539

sodium-ionbatterieswithNa4C8H2O6.Angew.Chem.Int.Ed. 540 2014,53:5892–5896.https://doi.org/10.1002/anie.201400032. 541 24. BandaH,DamienD,NagarajanK,HariharanM,ShaijumonMM:A 542

polyimidebasedall-organicsodiumionbattery.J.Mater.Chem. 543

A2015,3:10453–10458.https://doi.org/10.1039/C5TA02043C. 544 25.

●● Lipolymer/RGOA,FengZ,SuncompositeY,ShangasL,XuhighL:performancePorousorganiccathodeforhalf 546 545

andfullsodiumionbatteries.J.PowerSour.2017,343:424–430. 547 https://doi.org/10.1016/j.jpowsour.2017.01.079. 548 Theauthorsassembleanall-organicrocking-chairtypefullcellSIB 549

usingasodiatedpolymericcathode. 550

26. ZhaoQ,WangJ,LuY,LiY,LiangG,ChenJ:Oxocarbonsaltsfor 551

fastrechargeablebatteries.Angew.Chem.Int.Ed.2016, 552

55:12528–12532.https://doi.org/10.1002/anie.201607194. 553 27. SugaT,SugitaS,OhshiroH,OyaizuK,NishideH:p-andn-type 554

bipolarredox-activeradicalpolymer:towardtotallyorganic 555

polymer-basedrechargeabledeviceswithvariable 556

configuration.AdvMater.2011,23:751–754. 557

https://doi.org/10.1002/adma.201003525. 558 28.

● EmanuelssonprotonbatteryR,.J.SterbyAm.Chem.M,StrømmeSoc.2017,M,Sjödin139:4828–4834.M:Anall-organic 559 560 https://doi.org/10.1021/jacs.7b00159. 561 Theall-organicbatteryproposedbytheauthorsworkswithoutany 562 metallicelement(exceptcurrentcollectors)andusinganinnovative 563 non-aqueousproticelectrolyte.Thefullcellobtainedshoworiginal 564

results. 565

29. MacInnesD,DruyMA,NigreyPJ,NairnsDP,MacDiarmidAG, 566 HeegerAJ:Organicbatteries:reversiblen-andp-type 567

electrochemicaldopingofpolyacetylene,(CH)x.J.Chem.Soc. 568

Chem.Commun.1981:317. 569

https://doi.org/10.1039/c39810000317. 570 30. KanetoK,YoshinoK,InuishiY:Characteristicsofpolythiophene 571

battery.Jpn.J.Appl.Phys.1983,22:L567. 572

https://doi.org/10.1143/JJAP.22.L567. 573 31. SugaT,OhshiroH,SugitaS,OyaizuK,NishideH:Emerging 574

n-typeredox-activeradicalpolymerforatotallyorganic 575

polymer-basedrechargeablebattery.Adv.Mater.2009, 576

21:1627–1630.https://doi.org/10.1002/adma.200803073. 577 32. DengW,LiangX,WuX,QianJ,CaoY,AiX,FengJ,YangH:Alow 578

cost,all-organicNa-ionbatterybasedonpolymericcathode 579

andanode.Sci.Rep.2013,3:2671. 580

https://doi.org/10.1038/srep02671. 581 33. ZhuX,ZhaoR,DengW,AiX,YangH,CaoY:Anall-solid-state 582

andall-organicsodium-ionbatterybasedonredox-active 583

polymersandplasticcrystalelectrolyte.Electrochim.Acta2015, 584

178:55–59.https://doi.org/10.1016/j.electacta.2015.07.163. 585 34. ZhuLM,ShiW,ZhaoRR,CaoYL,AiXP,LeiAW,YangHX: 586

n-Dopablepolythiophenesashighcapacityanodematerials 587

forall-organicLi-ionbatteries.J.Electroanal.Chem.2013, 588

688:118–122.https://doi.org/10.1016/j.jelechem.2012.06.019. 589

35. ZhuLM,LeiAW,CaoYL,AiXP,YangHX:Anall-organic 590

rechargeablebatteryusingbipolarpolyparaphenyleneasa 591

redox-activecathodeandanode.Chem.Commun.2013, 592

49:567–569.https://doi.org/10.1039/c2cc36622c. 593 36. WildA,StrumpfM,HäuplerB,HagerMD,SchubertUS: 594

All-organicbatterycomposedofthianthrene-and 595

TCAQ-basedpolymers.Adv.EnergyMater.,vol72017n/a-n/a. 596 https://doi.org/10.1002/aenm.201601415. 597

37. DongX,GuoZ,GuoZ,WangY,XiaY:Organicbatteries 598

operatedat−70°C.Joule2018. 599

https://doi.org/10.1016/j.joule.2018.01.017. 600 38. LeeJY,OngLH,ChuahGK:Rechargeablethinfilmbatteriesof 601

polypyrroleandpolyaniline.J.Appl.Electrochem.1992, 602

22:738–742.https://doi.org/10.1007/BF01027503. 603 39. SenS,SaraidaridisJ,KimSY,PalmoreGTR:Viologensascharge 604

carriersinapolymer-basedbatteryanode.ACSAppl.Mater. 605

Interfaces2013,5:7825–7830. 606

https://doi.org/10.1021/am401590q. 607

CurrentOpinioninElectrochemistry2018,000:xxx–xxx www.sciencedirect.com

Pleasecitethisarticleas:Poizot,Dolhem,Gaubicher,Progressinall-organicrechargeablebatteriesusingcationicand anionicconfigurations:Towardlow-costandgreenerstoragesolutions?CurrentOpinioninElectrochemistry(2018),

(13)

Progressinall-organicrechargeablebatteriesusingcationicandanionicconfigurationsPoizot,DolhemandGaubicher 11

ARTICLE

IN

PRESS

JID:COELEC [mNS;April19,2018;13:36]

40. SuoL,BorodinO,SunW,FanX,YangC,WangF,GaoT,MaZ, 608

SchroederM,vonCresceA,RussellSM,ArmandM,AngellA, 609

XuK,WangC:Advancedhigh-voltageaqueouslithium-ion

610

batteryenabledby“water-in-bisalt” electrolyte.Angew.Chem.

611

Int.Ed.2016,55:7136–7141. 612

https://doi.org/10.1002/anie.201602397. 613

41. WangF,SuoL,LiangY,YangC,HanF,GaoT,SunW,WangC: 614

SpinelLiNi0.5Mn1.5O4cathodeforhigh-energyaqueous

615

lithium-ionbatteries.Adv.EnergyMater.,vol72017n/a-n/a. 616

https://doi.org/10.1002/aenm.201600922. 617

42. YamadaY,YamadaA:Superconcentratedelectrolytestocreate

618

newinterfacialchemistryinnon-aqueousandaqueous

619

rechargeablebatteries.Chem.Lett.2017,46:1056–1064. 620

https://doi.org/10.1246/cl.170284. 621

43. SuoL,BorodinO,WangY,RongX,SunW,FanX,XuS, 622

SchroederMA,CresceAV,WangF,YangC,HuY-S,XuK, 623

WangC:“Water-in-salt” electrolytemakesaqueoussodium-ion

624

batterysafe,green,andlong-lasting.Adv.EnergyMater.,vol7 625

20171701189.https://doi.org/10.1002/aenm.201701189. 626

44. WhitacreJF,ShanbhagS,MohamedA,PolonskyA,CarlisleK, 627

GulakowskiJ,WuW,SmithC,CooneyL,BlackwoodD, 628

DandreaJC,TruchotC:Apolyionic,large-formatenergy

629

storagedeviceusinganaqueouselectrolyteandthick-format

630

compositeNaTi2(PO4)3/activatedcarbonnegativeelectrodes.

631

EnergyTechnol.2015,3:20–31. 632

https://doi.org/10.1002/ente.201402127. 633

45. LeeH-W,WangRY,PastaM,WooLeeS,LiuN,CuiY:Manganese

634

hexacyanomanganateopenframeworkasahigh-capacity

635

positiveelectrodematerialforsodium-ionbatteries.Nat.

636

Commun.2014,5:5280.https://doi.org/10.1038/ncomms6280. 637

46. GaoH,GoodenoughJB:Anaqueoussymmetricsodium-ion

638

batterywithNASICON-structuredNa3MnTi(PO4)3.Angew.

639

Chem.Int.Ed.2016,55:12768–12772. 640

https://doi.org/10.1002/anie.201606508. 641

47.

●● LiangY,JingY,SGheytani,LeeK-Y,LiuP,FacchettiA,YaoY: 642

Universalquinoneelectrodesforlongcyclelifeaqueous

643

rechargeablebatteries.Nat.Mater.2017,16:841–848. 644

https://doi.org/10.1038/nmat4919. 645

Authorsprovedtheversatilityofanorganicquinone-basedpolymerby 646

assemblinghighlyperformanthybridinorganic/organicfullcells 647

showinglongcyclelifeandhighenergydensityinacidic,neutraland 648

basicaqueousmedia. 649

48. WuX,QiY,HongJJ,LiZ,HernandezAS,JiX:Rocking-chair

650

ammonium-ionbattery:ahighlyreversibleaqueousenergy

651

storagesystem.Angew.Chem.Int.Ed.2017,56:13026–13030. 652

https://doi.org/10.1002/anie.201707473. 653

49.

●● SanoPolyviologenN,TomitahydrogelW,HarawithS,Minhigh-rateC-M,LeecapabilityJ-S,OyaizuforK,anodesNishideH: 654 655

towardanaqueouselectrolyte-typeandorganic-based 656

rechargeabledevice.ACSAppl.Mater.Interfaces2013, 657

5:1355–1361.https://doi.org/10.1021/am302647w. 658 Theintroductionthisnewp-typepoly(tripyridiniomesitylene)viologen 659 derivativedelivering165165mAh/gpavesthewaytomuchimproved 660 energydensityforfullorganicanionicrockingchairbatteries. 661 50.

●● ChikushipolyacrylamideN,YamadaforanH,aqueousOyaizuK,electrolyte-typedNishideH:TEMPO-substitutedand 662 663

organic-basedrechargeabledevice.Sci.ChinaChem.2012, 664

55:822–829.https://doi.org/10.1007/s11426-012-4556-3. 665 Usingptyperedoxactivepolymers,authorsprovedforthefirsttimethe 666 highreversibilityofanionicrockingchairfullcellsinneutralaqueous 667

media. 668

51. DongX,YuH,MaY,BaoJL,TruhlarDG,WangY,XiaY: 669

All-organicrechargeablebatterywithreversibilitysupported 670

by“water-in-salt” electrolyte.Chem.Eur.J.2017,23:2560–2565. 671 https://doi.org/10.1002/chem.201700063. 672 52. IwasaS,YasuiM,NishiT,NakanoK:Developmentoforganic 673

radicalbattery.NECTech.J.2012,7:102–106. 674

53. IwasaS,NishiT,SatoH,NakamuraS:Flexibilityandhigh-rate 675

dischargepropertiesoforganicradicalbatterieswithgel-state 676

electrodes.J.Electrochem.Soc.2017,164:A884–A888. 677

https://doi.org/10.1149/2.1631704jes. 678 54. PHEVBatteryCostAssessment|DepartmentofEnergy,(n.d.). 679 https://energy.gov/eere/vehicles/downloads/ 680 phev-battery-cost-assessment-2(accessedFebruary24,2018). 681 55. HuskinsonB,MarshakMP,SuhC,ErS,GerhardtMR,GalvinCJ, 682 ChenX,Aspuru-GuzikA,GordonRG,AzizMJ:Ametal-free 683

organic–inorganicaqueousflowbattery.Nature2014, 684

505:195–198.https://doi.org/10.1038/nature12909. 685 56. OritaA,VerdeMG,SakaiM,MengYS:Abiomimeticredoxflow 686

batterybasedonflavinmononucleotide.Nat.Commun.2016, 687

7:13230.https://doi.org/10.1038/ncomms13230. 688 57. WinsbergJ,HagemannT,JanoschkaT,HagerMD,SchubertUS: 689

Redox-flowbatteries:frommetalstoorganicredox-active 690

materials.Angew.Chem.Int.Ed.2017,56:686–711. 691

https://doi.org/10.1002/anie.201604925. 692

www.sciencedirect.com CurrentOpinioninElectrochemistry2018,000:xxx–xxx

Pleasecitethisarticleas:Poizot,Dolhem,Gaubicher,Progressinall-organicrechargeablebatteriesusingcationicand anionicconfigurations:Towardlow-costandgreenerstoragesolutions?CurrentOpinioninElectrochemistry(2018),

Références

Documents relatifs

The use of quinones as high-performance anode materials for aqueous rechargeable batteries recently showed remarkable results [9] (see Table 2) in cells that are based on the

Février 2016 : Festival Les Hivernales - Avignon Avril 2016 : Festival Pas Sages - Saint-Brieuc Juin 2016 : Festival Agitato - Le Traingle, Rennes Septembre 2016 : Festival Banc

Progress is being reported by a number of groups in the production of auxetic fibres and textiles with several different approaches being considered. Fibre production is limited at

The salt used in commercial Li-ion batteries is almost exclusively lithium hexafluorophosphate (LiPF 6 ) [4], because its solutions in dipolar aprotic organic

b) Déterminer m pour que la distance MN soit maximale. c) En déduire le tableau de variation de la fonction

Where structures are available for proteins, there is a link from the graphical views to the corresponding Protein Data Bank (PDB) structures and a separate line in the display,

The relationship between serotonin and yawning is however not straightforward in rats: 5-HT2C receptor agonists do not induce yawning when they are directly injected into the

Allez au texte intégral (full text) de cet article en ligne, puis cliquez sur CFPlus dans le menu en haut, à droite de la page.. We’re all in