• Aucun résultat trouvé

X-ray tomography : a tool for revealing local distribution of liquid in structured packed columns

N/A
N/A
Protected

Academic year: 2021

Partager "X-ray tomography : a tool for revealing local distribution of liquid in structured packed columns"

Copied!
16
0
0

Texte intégral

(1)

1

X-ray tomography :

a tool for revealing local distribution of

liquid in structured packed columns

Dominique TOYE

dominique.toye@ulg.ac.be

Products, Environment, and Processes (PEPs) Department of Chemical Engineering

Université de Liège www. chemeng.ulg.ac.be

Contents



Introduction



Experimental setup



Results



Global hydrodynamic quantities



Influence of viscosity



Flow morphology



Conclusions

2

(2)

Structured packed columns

Gas/Vapor Gas/ Vapor Liquid Liquid

Packed column applications



Gas-liquid absorption  CO

2

capture



Solvent stripping  regeneration



Distillation

High performance structured packings



High void fraction

 low pressure drop  high capacity



High specific surface area

 high mass transfer properties

LIEGE - 11 May 2017 3

Structured packed columns

Gas/Vapor

Gas/ Vapor

Liquid

Liquid

Liquid flow hydrodynamics



Liquid holdup



Gas – liquid interfacial surface area



Liquid flow morphology

(films, rivulets…)

Reliable predictive models

 Characterisation of the fluid distribution

down to a very local scale







 X-ray tomography

(3)

5 X-ray source Voltage : 30 - 420 kV Current : 2 - 8 mA Focal spot : 0.8 mm Collimator : Pb Fan beam geometry Angle : 40° - Thickn.: 1 mm

Linear detector

1280 high energy photodiodes Pitch : 0.4 mm – H : 0.6 mm 12-bit (4096 intensity levels)

Rotating table 360° object rotation (tmes= 45 s)

Max diam. : 0.45 m Max. height: 3.80 m Toye et al., Meas. Sci. Technol.,

2005,16, 2213-2220

ULG X-ray tomograph

Packed column Operating modes 1- tomographic mode 2- radiographic mode LIEGE - 11 May 2017

Packed column

Liquid distributor Pall rings (HPall= 800 mm) 4 MellapakPlus 752.Y elements rotated by 90° (HMellapak= 800 mm)

Radiography of the column

(transparent PVC) Dbed= 100 mm Hbed= 1600 mm Operating conditions Liquid - Water (µ = 1 mPa.s) - Glycerine solutions (µ = 10 – 20 mPa.s) Flowrate : uL= 0 – 25 m3/m2.h Gas = Air LIEGE - 11 May 2017 6

(4)

Structured packing

MellapakPlus 752.Y geometrical properties

Packing element height 0.2 m Packing element diameter 0.10 m

(0.09 m) Specific surface area 510 m²/m³

Void fraction 97.5 % Corrugation angle 41° Corrugation base 9.85 mm Corrugation height 6.50 mm (Sulzer Chemtech) LIEGE - 11 May 2017 7 8

Image of dry packing image

Mellapak 752Y

(1)Column wall (2)Corrugated sheet (3) Wall wiper

(4) Hole Aferka et al., 2010, Chem. Eng. Sci., 65, 511–516

(5)

9

Methodology

uL= 23 m³m-²hWater -1

no gas flow

Grey = solid (binary image)

Blue = liquid (binary image) Aferka et al., 2007, Chem. Eng. Sci., 62, 6076-6080

Images of liquid distribution

LIEGE - 11 May 2017

10

Liquid distribution in cross sections

LIEGE - 11 May 2017 Uniform liquid distribution Film flow predominates At contact points between sheets, rivulets and/or flooded channels Mellapak 752Y Water uL= 23 m³m-²h-1 No gas flow H =500 mm H =800 mm H =600 mm H =700 mm

(6)

11

Image processing

Objective = quantitative analysis

1. Normalisation(partial volume effect)

 convert grayscale values into liquid holdup values  divide each pixel value by the value of a pixel

completely filled by liquid

 Distribution of liquid holdup

2.

Counting of interfacial pixels

(liquid – gas)  Distribution of gas-liquid interfacial area

LIEGE - 11 May 2017

Viva et al., 2011, Flow Meas Instrum, 22, 279-290

12

Method validation : liquid holdup

Comparison to experimental data

(global values averaged on 70 sections)

Viva, 2008, PhD thesis, University of Pisa

Very different methods: - quick closing valves + weighing - Tomo + geometrical LIEGE - 11 May 2017

(7)

13 LIEGE - 11 May 2017 Very different methods: - chemical - geometrical

Method validation : G-L interfacial area

Comparison to experimental data

(global values averaged on 70 sections)

Aferka et al., 2011, Chem. Eng. Sci. , 66, 3413-3422

14

LIEGE - 11 May 2017

Influence of liquid viscosity

Mellapak 752Y H = 300 mm uL= 17 m³m-²h-1 uG= 0 Water µ = 1 mPa.s

Aqueous solution of glycerine µ = 10 mPa.s Uniform liquid distribution Thicker liquid films Larger number of flooded channels between sheets

(8)

0 0,05 0,1 0,15 0,2 0 5 10 15 20 25 hL,t o t (-) uL(m³/m²h)

Water Glycerine 10 cP Glycerine 20 cP

On liquid holdup

µ

Each point = one operating condition

= averaged value over the whole packed bed (70 sections)

LIEGE - 11 May 2017 15

Bradtmöller et al., 2015, Ind. Eng. Chem. Res., 52, 2015, 2803-2815

On G-L interfacial area

0 100 200 300 400 500 0 5 10 15 20 25 aG L (m ²/ m ³) uL(m³/m²h)

Water Glycerine 10 cP Glycerine 20 cP

µ 

Each point = one operating condition

= averaged value over the whole packed bed (70 sections)

(9)

On axial profiles

Liquid hold-up uL= 17 m³/m²h E le va ti o n [m m ] Hold-up [-]

1 mPas 10 mPas 20 mPas

-17-K o lo n n e n h ö h e [ m m ] aeff[m²/m³]

1 mPas 10 mPas 20 mPas

uL= 17 m³/m²h

Gas-liquid interfacial surface area

E le va ti o n [ m m ]

70 cross-section images for each operating condition LIEGE - 11 May 2017

Liquid flow morphology

Flow structures

Films

 Ideal morphology

Contact point flow

 Liquid mixing

Flooded channels

 No transfer

-18-Liquid distribution Binary image LIEGE - 11 May 2017 Janzen et al., 2013, Chem. Eng. Sci., 102, 451-460

(10)

= Iterative method

Step 1 = Separation and labelling of each flow structure Step 2 = Classification based on the size and shape

-19-SIZE

Minimum and maximum Feret diameters (Fminand Fmax) computed on all flow structures

Fmin and Fmax= dimensions of the minimal enclosing parallelogram

LIEGE - 11 May 2017 Janzen et al., 2013, Chem. Eng. Sci., 102, 451-460

Flow structure classification

Flow structure classification

Step 1 = Separation and labelling of flow structures

-20-LIEGE - 11 May 2017

Janzen et al., 2013, Chem. Eng. Sci., 102, 451-460

Limited spatial resolution of the ULG X-ray CT Distinct flow structures may be adjacent  « seen » as a single structure

 Criterion for structure splitting

Elimination of pixels with the smallest number of neighbors

(erased pixels not lost = arbitrarily added to the main flow pattern = film flow)

5 . 0 _ < rect Feret t Flow_struc S S

(11)

Step 2 = Classification based on the size and shape

Flooded channels

Thickness ≥ distance between packing sheets

F

min

> 9 mm

-21-LIEGE - 11 May 2017

Flow structure classification

Step 2 = Classification based on the size and shape

Contact point flow

« Round » shape and

Fmin< 9 mm

-22-LIEGE - 11 May 2017

Flow structure classification

2 min max < F F

(12)

Step 2 = Classification based on the size and shape

Film flow

Elongated thin shape

and

Fmin< 9 mm

+ all remaining pixels (including erased pixels from structure separation)

-23-2 min max > F F LIEGE - 11 May 2017

Flow structure classification

Flow morphology: results

- 24 µ= 1 mPa.s uL= 17 m³/m²h µ= 10mPa.s uL= 17 m³/m²h µ= 20 mPa/s uL= 17 m³/m²h Films

Flooded channels Contact points

(13)

Flow morphology

-25-Films

µ  µ  LIEGE - 11 May 2017

Flooded

channels

Contact

points

Janzen et al., 2013, Chem. Eng. Sci., 102, 451-460

26

Influence of liquid flowrate

LIEGE - 11 May 2017

Flooded channels Contact points Films

(14)

27

Influence of liquid viscosity

LIEGE - 11 May 2017

Flooded channels Contact points Films

uL= 17 m/h

Hydrodynamic Analogy model

dH α α α α zL zG

G-L interfacial surface area







 Wetting efficiency

⇒ fraction of irrigated and

non-irrigated channels

Liquid holdup

=> total amount of liquid

Liquid flow morphology

⇒ Flooded channels fraction ⇒ Contact point flow fraction

( mixing length : ZL)

zG= gas mixing length (packing geometry) fraction flow point contact points contact between dist. = L z LIEGE - 11 May 2017 28

(15)

0 0,002 0,004 0,006 0,008 0,01 0,012 5 10 15 20 25 30 kL a [ 1 /s ] Flüssigkeitsbelastung [m³/m²h]

F-Faktor=0,63

Experiment Simulation

Model validation :

mass transfer

Liquid load (m3/m2.h) F-factor = uGρρρG0.5= 0.63 Pa0.5 CO2desorption from water         − − = * * ln bot bot top top pack L L x x x x H u a k Satisfying agreement LIEGE - 11 May 2017 29

Conclusions

Tomographic measurements

Quantitative assesment of the influence

of liquid load and liquid viscosity on



G-L interfacial surface area



Liquid holdup



Flow morphology

(films, rivulets, flooded)

Mass-transfer model

-

Based on an Hydrodynamic Analogy

-

Validated by mass transfer experiments

Global values

Spatial distributions

(16)

31

LIEGE - 11 May 2017

Acknowlegments

Saïd Aferka, Michel Crine, Pierre Marchot, Aurora Viva, Elisabetta Brunazzi, Julia Steube, Anna Janzen, Evgeny Kenig

Références

Documents relatifs

Corresponding Author and reprint request: Nadège Cordel, M.D UF Dermatologie-Médecine Interne CHU Pointe-à-Pitre BP 465 97159 Pointe-à-Pitre cedex Tel : +33 590 89 15

dérée a été méthodiquement étudiée afin de caractériser les performances de l’algorithme dans ce cas donné. Une fois des images tomographiques reconstruites, il s’est

When the whole system is just-identified, the feasible G3SLS estimator of the coefficients of any structural equation is exactly equal to the corresponding feasible G2SLS estimator

Doran S J, Abdul Rahman A T, Br äuer-Krisch E, Brochard T, Adamovics J, Nisbet A and Bradley D A 2013 Establishing the suitability of quantitative optical CT microscopy of

For example, the synonymy of words has to be relativized as soon as the words are presented in sentences: we do not discuss semantic relations (e.g. synonymy between two nouns)

:ديهتم جراخ نيطولا داصتقلابا شاعنلا يساسأو يويح ردصمو ةيداصتقلاا ةيمنتلا باطقأ مهأ دحأ ةطسوتلماو ةيرغصلا تاسسؤلما طاشن برتعي لاا

In particular, we prove that for any belief mechanism, there exists a critical value H such that the result can always be expressed by an assertion of the form: if initially, the

First, our approach is implemented in the application layer, and the onion nodes are implemented using agile onion agents in order to provide rapid deployment for an anonymous