• Aucun résultat trouvé

PegOpera, a software suite dedicated to Surface Water Assessment in the framework of the European WFD

N/A
N/A
Protected

Academic year: 2021

Partager "PegOpera, a software suite dedicated to Surface Water Assessment in the framework of the European WFD"

Copied!
29
0
0

Texte intégral

(1)

Contact Jf Deliège, Université de Liège

JfDeliege@uliege.be

+32 4 366 23 56

Campus du Sart Tilman B53 11 allée de la découverte 4000 Liège

PegOpera, a Software Suite dedicated to

Surface Water Quality Assessment in the

framework of the European WFD

Winter School

Liège, 29 January – 01 February

J.-F. Deliège, É. Éverbecq, P. Magermans, A. Grard

Intr

od

uction

2

The Pegase Model (focus on

Surface Water Quality

)

Working Scheme & specificities (loads)

Results and Applications (from stakeholders)

How to improve Diffuse loads

GW coupling

Conclusions

(2)

Intr

od

uction

3

WFD 2000/60/CE imposes (amongst other)

• Good Ecological Status for all WB in all member states

o Rivers, lakes, Costal areas, Wtelands, GW, soils, pools, …

o Ecology  Physicochemical / Morphology / Biological

• For each District, an analyse of major characteristics (« State of the art »)

• Impact study of human activities on water resources • Monitoring Network

• Management plans + related Measures to achieve good status objectives

• A list of the areas requiring special attention (protection) • Economical analysis (related to water uses)

Integrated Modelling Basin / River

ts

Macro Masses d’Eau Bassin Versant District Individual Popula° Micro P •Watershed representation •Ecosystem description •Sources identification

Model • Modelling : Hydro / Loads / Quality / … Qua • Qualité physico-chimique

Macro Water Bodies

Watersheds

District Establish Pressure/impact relationships of the

Watershed

Representation at Different scales

Modelling

Diagnostic

Integrated approach Surface Water Quality Impacts on ecosystems Holistic vision District (e.g. Meuse) (Surface) Water Bodies

Major parameters + Micropolluants… ? Bioaccumulation

Nee

d

(3)

Intr

od

uction

Integrated Modelling Basin / River

P

• Watershed representation • Ecosystem description • Sources identification

Model

• Modelling : Hydro / Loads / Quality / …

Qua • Qualité physico-chimique

Establish Pressure/impact relationships of the Watershed

5

Intr

od

uction

PlanificationEt Gestion de l’ASsainissement des Eaux Planning and Management of Water Purification

6

OBJECTIVES

o Better understand the mechanisms of the hydro-system

o Quantify “pressure-impact” relationships

o Ease decision making (DSS)

o Structure knowledge (including “Input Data”)

1) Simulation of surface water quality

 Relation Watershed / Rivers ( extending “river” models)  Taking into account all Pertinent Pollutants loads and Discharges

data structuration

 Representation of the Aquatic Ecosystem and the Water Quality (O2, C, N, P, …)  “Refined” description of river tree (>> Thousands of rivers)

 Deterministic model and physically based

2) Operational Decision Making Tool for

 Purification and Depollution

 Management of aquatic environment quality / WFD / Management plans …

Continuous interaction with users

PEGASE Model

(4)

Intr

od

uction

• Integrated model for rivers & watershed

• Complete Description of ecosystems (phytoplankton, bacteria...) • Coherent and complete modelling of loads and discharges

Accurate Simulations for a few km²  several 100 000 km² “Refined” Description of river tree (>> Thousands rivers)

Results

• Stationary and/or nonstationary Simulations (several CPU hours) • Globalisation of results per river, water bodies, basin, …

• Calculation of statistics for comparison • (p90, mean, median, …)  User-friendly interface  Linked to GIS  Complementary Modules  WFD (cost/efficiency, balance, ...)  Numerous IO Format  Coupled to hydrogeological/ hydrological/meteorological/… Modules if necessary  Open MI Compliant

Used by the Administrations

PegOpera : a Water Quality Model

uction

(5)

Intr

od

uction

9 Processes • primary production

• mortality, biomasses respiration • degradation organic matter • nitrification, denitrification • reaeration

• sedimentation

Variables

• flows, velocities, transfer time in the hydrographical network • temperature

• concentrations : OM, DOC, POC, COD, BOD, NH4, NO2, NO3, NKj, Ptot, PO4,

dissolved O2(daily average, min, max)

biomasses

micropollutants(Heavy metals, …)

Results

• Flows, temperatures, concentrations, …

o At each “Pegase node” of the modelled river network (hundreds of

rivers)

o For each day of simulation (daily average)

PegOpera : a Water Quality Model

Intr

od

uction

10

RuisselApportsBiomasses 39 0 Lessivage DirectsImportations Ass. autonome00 des solsBovinsAmont

31 8 0 0 non raccordé3Non collectéNon connectéRaccordé00RaccordéNon collectéNon connectéNon raccordé0 Agri165 85Bypass0 0Bypass00 Tx fuite0 0 Tx fuite

26 0 0 0 Apports dispersésSortie stations Sortie stationsApports dispersés

1 0

Dégr. Pts Rus Dégr. Pts Rus 253 10 2 Total apports au réseau hydrographique décrit : 295 Flux amont Flux aval Azote 0 293 Azote Phytoplancton 00 Azote dans les rivières décrites 295 1 Phytoplancton Bactéries 0 Stockage en rivière :0 1 Bactéries

295 Total disparitions du réseau hydrographique décrit : 0 0 Dénitrification planctonique Prélèvements 0 Dénitrification benthique

Immobilisation Distance source (km) 0 Total dénitrifié macrophytes 14.79 Distance source (km) Débit (m³/s) 0 0.8 Débit (m³/s) Bassin versant total (km²)0 33Bassin versant total (km²)

PEGASE : Bilan de l'azote (kg N/jour) Rejets urbains Rejets industriels

Export/Import0 0 0 0 Stations d'épuration0 30 0 Pollution Fluxes/Balances Water Bodies Results Scenarios

Validating Simulation

(6)

Intr

od

uction

12

PegOperaWorking Scheme

ons

Simulation de validation : concentrations en nitrates, azote et

ammonium (sur la Meuse en 1996)

Simulation de validation : concentrations en oxygène, profil

longitudinal (sur la Meuse, juillet 1996)

Simulation de validation : Phosphore, Longitudinal P90 valeurs calculées

(7)

Applicati

ons

 Flows, stages, velocities, … in the river network (Δ x ~ 200 m)

 Ecosystem and water quality variables (daily average) :

o Biomasses (bacteria, phytoplankton, …)

o Concentrations (BOD, COD, DOC, N, P, O2, µpollutants… )

o Loads to water surfaces, fluxes

 Statistical values (p90, average, max, …), globalization per waterbody

Quality indexes (Seq-Eau like) : scale 1 - 100

 Presentation of results :

o 2D maps (coloured codes for a visualization « per class »)

o Longitudinal profiles (for each river), time series (for specific points)

o Comparison with measurements ( validation)

o Comparison of scenarios o Balances of fluxes o Export (xls, dbase, shp, kml, …) 14 High Good Moderate Poor Bad

NB. Water quality measurements are only used for validation

Results [Variables]

Applicati

ons

Pegase Model Results (Watershed/River)

15

Qualité maps

(8)

Applicati

ons

16

Knowledge of the river quality even where there are no measurements

Kjeldahl Nitrogen p90 concentrations, Meuse basin

Validation : comparison of results with measurements

Type of Results

WFD  State of the art

ons

Red curve : simulation with all discharges (P90 BDO5, La Haine)

Green curve : simulation without urban releases Blue curve : simulation without industrial releases

Cyan curve: simulation without agricultural releases

Upper part of the river : urban releases gives the most impact

Lower part of the river : industrial releases gives the most impact

(9)

Applicati

ons

19

Results [Comparison of scenarios]

Applicati

ons

20

Results [Balance Sheet]

(10)

Theo

ry

21 Pre-Processing of Geographical data

Length profile of the Loire river and its main tributaries

Geographical Data

 Hydrographic network

 Digital Elevation Terrain

 Soil Occupation (Corine)

Hydrometeo Data

 River flows

 Daily water temperatures

 Insolation

Detailed description of the river Network Ex : The Loire river (France)

• 118 000 km²

• 5560 rivers, 51720 km of rivers • 138 800 « result nodes »

Data

ry

Loads and Discharges

Urban releases

Industrial releases

Live-stock

(11)

Theo

ry

23

Diffuse Loads

Connectivity

Diffuse loads include Soils, Hydrogeological exchanges, riparian areas, …

Theo

ry

24

They are associated to major land uses

Cultures Meadow

Forest Urban

Diffuse Loads

(12)

Theo

ry

25

mg/l Culture Meadow Forest

C org. Dissous assimilable 0,80 0,80 0,80 non assimilable 1,60 1,60 2,60 C org. Particulaire assimilable 0,50 0,50 0,50 non assimilable 1,00 1,00 2,00 N org. Dissous assimilable 0,40 0,40 0,20 non assimilable 0,40 0,40 0,20 N org. Particulaire 0,20 0,50 0,12 Ammonium 0,05 0,05 0,02 Nitrates 7,50 3,00 1,50 P org. Dissous 0,02 0,02 0,005 P org. Particulaire 0,07 0,03 0,03 Orthophosphates 0,10 0,04 0,01

Diffuse Loads  Land uses

They are associated to major land uses

With relative constant concentration during the year

ry

Diffuse Loads  Regional Soil Functions

Soil function are regionalized

(13)

Theo

ry

27

How to improve Diffuse Loads

They can be estimated

• Usually from upstream river concentration in small watershed characterised by homogeneous (and/or predominant) land uses

• From other compartment models (soils, hydrogeology, …)

Theo

ry

Compartmented Hydrological System

28

How can we integrate ?

≡ How can they (the models) communicate ?

Sous-modèle "Sol"

Sous-modèle "Rivière"

(14)

Theo

ry

Integration

With or without interface

29 External Coupling A Results  B Data Sequential Runs Exchange of Files

ons

External Coupling

Sevex Project (DSS)

◦ Integrated Model (SEVESO Accidental release)

◦ 3 compartments

(15)

Theo

ry

External Coupling A Results  B Data Sequential Runs Exchange of Files Internal Coupling

Direct or through interface

Direct Communication Parallel runs

Bidirectional communication

31

∆t

All integration modes are compatibles (external, direct internal, interfaces, ..)

Integration

With or without interface

Theo

ry

Hardware evolution

 Monoprocesseurs  multiprocesseurs

 Constant evolution of the Available Calculation performances (Power)

between1990 et 2010 ~ 10,000

 Now from ~10 Gflops/proc to ~100 Gflops tot (HP Proliant Moirab)

(16)

Theo

ry

Classification

33

SPMD

Each Process (or part of a program) is executed on its own DB

The variables of the programmes are Private (reside in each local proc. memory)

Exchange of data (between 2 procs.) through IPC dialog MPMD

ry

Integration Constrains

Model Characteristics :

◦ Different numerical schemes

◦ Different spatial representations (scales & morphologies)

◦ Different temporal scales (Internal & to communicate)

◦ “Own” DB to harmonise (e.g. River Height / nudes HG)

Coupling Interface

• Link/interpolation between nodes To each t

For each node

(17)

Theo

ry

Architecture

 Structure and reduce the complexity (of implementation)  Cilitate synchronisation (of the communications)

 Optimise and reduce execution time (of the integrated model

35

 Junctions  Interfaces

 Supervisor handles the communications and gather the interfaces

Communication between Models

Applicati

ons

Integrated modelling Experiences

ULiege

◦ Environmental Centre  CEME  R&D Unit of Aquapôle

◦ 11 Projects (21 major declinations and 30 secondary's)

36 1988-1998 Sevex 1988 Pégase Socrates 1991-1997 Mistral 1994 SALMON 1998 2003 2008 1993 2013 1988 1996 MOHICAN 1998 MOHISE 2001 Pirene 2006 OMI 2008 PegOpera Peg/SOL

(18)

Applicati

ons

SSTC (CG/DD/08) Project

37 Modélisation intégrée du cycle hydrologique dans un

contexte de changements climatiques

(Water Cycle Integrated modelling in a Climate Change Context)

Model IRMB (IRM/KMI) Model MIKE-SHE (ILWM/KUL) Model MOHISE (Ulg, HA-FUSAG, KUL)

BV/Modèles IRMB MIKE-She MOHISE

Gette à Budingen (576 km²) 24 Rivières, 231 km X X X Geer à Kanne (466 km²) 11 rivières, 148 km - X X Ourthe orientale à Mabompré (315 km²), 41 rivières, 213 km X - X

3 Belgian Basins

(different dynamics)

3 different models

and comparison of

their respective

“answers”

Selection of IPCC

scenarios

(1998-2002)

(Intergovernmental

Panel on Climate

Change)

downscaling

ons

MOHISE integrated model : processes

MOdèle Hydrologique Intégré de Simulation du cycle de l’Eau

 Compartmented models

(assignation/processor) ◦ Soils : EPIC-Grid (HA FUSAG)

◦ HG : MODFLOW / SUFT3D (LGIH)

◦ Rivers : RIVER (CEME)

 Transfers

◦ BV  River (runoff, HR, HL)

◦ BV  Hydrogeology : Infiltration

◦ Hydrogeology Rivers (depending on

(19)

Applicati

ons

39 Ma i l l e 1 Km² I n f i l t r a t i o n e f f i c a c e Ré s e a u de s Ri v i è r e s e x pl i c i t e me nt dé c r i t e s Rui s s e l l e me nt Hy po de r mi que Ra pi de D i r e c t e m e n t C o n n e c t é I m p E c o u l e m e n t M A I L L E -R I V I E R E T e m p s d e t r a n s f e r t H y p o d e r m i q u e L e n t U r b a i n E g o u t t é GROUND Ur b BV BV Na ppe

Spatial and temporal discretisation Differences between models ∆x : « Sols » Grid 2D de 1 km² « ESO » variable 3D « ESU» linear 1D ∆x ≈ 200 m ∆ t : « Sols » 24h « ESO » 1j or 10j « ESU » 1h

Transfers and discretisation

MOHISE integrated Model

Applicati

ons

MOHISE Architecture

40  3 compartments 1 Supervisor 1 interface  Ghosting (External coupling)  Bidirectional exchanges  Internal Coupling with interface  MPMD Type  Real //  MOM MPM (MPI-MOIRA)

(20)

Applicati

ons

Pre-processing MOHISE

43

Bidirectional coupling ESO - ESU

Verifications and

Corrections

◦ Improvement of the number of modelled rivers

◦ Altimetry corrections

Coupling

◦ MODFLOW

◦ SUFT3D

Check fluxes conservation

◦ Exchange from 1 to 10 days

ry

Ma i l l e : Su r f a c e Sm ( 1 Km² ) I n f Exut oi r e Mai l l e T T _ E X T T _ E G Ré s e a u de Ri v i è r e s e x pl i c i t e me nt dé c r i t e s Rui s s Rui s s : Ru i s s e l l e me n t HR : Hy p o d e r mi q u e Ra p i d e HL : Hy p o d e r mi q u e Le n t I nf : I n f i l t r a t i o n Ef f i c a c e HR Q out Ec o u l e me n t

I NTRA_ MAI LLE

Ru g o s i t é Mo y e n n e p o u r l ' o c c u p a t i o n d u s o l , Pe n t e Mo y e n n e , La me d ' Ea u T T _ B V Ec o u l e me n t MAI LLE- RI VI ERE

Amo r t i s s e me n t S a n s é c o u l e m e n t M a i l l e -R i v i è r e HL T T _ I N F Ex u t o i r e ( X, Y) T T _ B V _ I N F Ec o u l e me n t Ex ut o i r e Gr o und- RI VI ERE Pe nt e / Di s t a nc e / Pr of i l BV/ La r ge ur / Rugos i t é du Rui s s e a u / Dé bi t Amo r t i s s e me n t Fr a c t i o n Di r e c t e me nt Co nne c t é e Fr a c t i o n Ur ba i ne Eg o ut t é e E x u t o i r e E g o u t E x u t o i r e I m p e r m é a b l e Mo d u l e GROUND Fr a c t i o n Ur b a i ne TT_ I M Q i n = Q_ Ru i s s +Q_ HR Ru i s s e a u Co nne c t i v i t é Pe nt e / Di s t a nc e / Pr of i l BV / La r ge ur / Rugos i t é du r ui s s e a u / Dé bi t Fo n c t i o n d e Tr a n s f e r t GROUND Ru i s s e a u Co nne c t i v i t é  Based on relation established during pre-processing  Adapted to the models  Facilitate the communications between the models

o Link and interpolation between nodes

o Temporal scales

(21)

Sim

ulat

ions

The Supervisor and the Synchronisation

RIVER GROUND SOLS

RIVER QUALITY

Wall Clock i+2

Wall Clock i+3

Wall Clock i+4

Wait the end of GROUND

Wait the end of River Wait the end of SUPERVISOR

Wall Clock i+1

Wall Clock i

Wait {[slowest SUPERVISOR or GROUND]

AND [RIVER]}

SUPERVISEUR

Message Passing Interface

Message Passing Interface

Soil Processing Epic_maill e Ma s t e r Co de Sh e l l MPI Wa i t Wa i t Ri v e r I n i t i a l i s a t i o n : Da t a Re a d i n g Wa i t MOHI SE River Processing Wa i t RIVER Wa i t Ground Ground Processing Ge s t i o n d e s f l u x d e p e r c o l a t i o n Wa i t Gr o u n d I n i t i a l i s a t i o n Da t a Re a d i n g Wa i t Ep i c MPI I n i t i a l i s a t i o n Ma s t e r I n i t i a l i s a t i o nMPI I n i t i a l i s a t i o n Da t a Re a d i n g Se n d Do ma i n n a me Ti ma St a c k I n i t i a l i s a t i o n MPI I n i t i a l i s a t i o n Ep i c _ Ma i l l e I n i t i a l i s a t i o n : Da t a Re a d i n g Ep i c _ Ma i l l e Re g u l a t e d Ru n Sp a t i a l Lo o p Re s u l t s Tr a n s mi s s i o n o f 3 Fl u x e s En d o f a Ti me St e p 1 . I mmi s s i o n Po i n t Co mp u t a t i o n 2 . Tr a n s f e r t Ti me f o r e a c h Fl u x 3 . Ti me St a c k Fe e d i n g Tr a n s f e r t o f c u r r e n t t i me i mmi s s i o n v a l u e s DT BV Ri v e r Ti me St a c k Wa i t Ou t p u t Va l u e s Wa i t Wa i t Po s t - Pr o c e s s o r & Ou t p u t t r e a t me n t G r a p h i c T r e a t m e n t T e m p o r a l L o o p Fl o o d Ro u t i n g Re g u l a t e d Ru n MPI I n i t i a l i s a t i o n GROUND Gr o u n d Re g u l a t e d Ru n Wa i t END o f Te mp o r a l Lo o p s MPI Sh u t d o wn . . . 45

 Handle the different execution times

between the models

 (identify and) orchestrate the

communication sent/reception  Impose synchronisation (barriers)

Use of MPM Library : MPI-MOIRA

Sim

ulat

ions

Integrated Results

Historical Simulation

1971 – 1995

105.0 107.0 109.0 111.0 113.0 115.0 117.0 119.0 121.0 123.0 125.0 0 1 /0 1 /7 5 0 1 /0 1 /7 6 3 1 /1 2 /7 6 3 1 /1 2 /7 7 0 1 /0 1 /7 9 0 1 /0 1 /8 0 3 1 /1 2 /8 0 3 1 /1 2 /8 1 0 1 /0 1 /8 3 0 1 /0 1 /8 4 3 1 /1 2 /8 4 3 1 /1 2 /8 5 0 1 /0 1 /8 7 0 1 /0 1 /8 8 3 1 /1 2 /8 8 3 1 /1 2 /8 9 0 1 /0 1 /9 1 0 1 /0 1 /9 2 3 1 /1 2 /9 2 3 1 /1 2 /9 3 0 1 /0 1 /9 5 0 1 /0 1 /9 6 Chronology P ie zo m e tr ic l e v e l (m ) Measured values Calibration period Validation period 46 Piezo Height GEER weel F06 1975-1996

Cumulative water discharge at the Outlet of the Grote Gete (Budingen)

1984 to 1986 0 50 100 150 200 250 300 350 400 450 1/01/84 1/05/84 1/09/84 1/01/85 1/05/85 1/09/85 1/01/86 1/05/86 1/09/86 1/01/87 date 10 6 m 3

cumulative w ater discharge (measured) cumulative w ater discharge (calculated)

Cumulated outflow GETTE at Budingen 1984-1986

Ourthe Débits Observés - Débits Simulés

Période 1989 - 1993 Année 1993 0 15 30 45 60 75 01/01/93 20/02/93 11/04/93 31/05/93 20/07/93 08/09/93 28/10/93 17/12/93 D é b it s ( m ³/ s e c ) Débits Observés

Débits de Base Simulés Débits Simulés

Débit Obs/Sim Ourthe à Mabompré 1993

(22)

Sim

ulat

ions

Track of the transfered fluxes at the interfaces

47 Outflows

GETTE at Budingen 1987

Integrated MOHISE Results

ions

Integrated Results : Comparison

MOHISE, MIKE-SHE et IRMB

Performances indicators « outflows » (Calculated over the 365 annual values, 1986-1995)

MOHISE is the only Model which runs on the 3 basins

BV/Modèles IRMB MIKE-She MOHISE

Gette X X X

Geer - X X

Ourthe

orientale X - X

1,00

Model performance - Gete/Gette watershed at Budingen - Indicator EF

Mean annual discharge Mean monthly discharge Statistical criteria (5) Extreme value (min/max)

Fréchet (min.) and Gumbel (max.) regression Percentiles 5 and 95 (annual)

Daily hydrographs for the years 1989 and 1995 Piezometric level time series

(23)

Sim

ulat

ions

Integrated Results: Climate Change impacts

Gette watershed

Evolution of piezometric levels at piezometer b2-335501(whole simulation period)

55,00 56,00 57,00 58,00 59,00 60,00 61,00 62,00 63,00 64,00 65,00 2 8 /1 2 /1 9 6 8 2 8 /1 2 /1 9 6 9 2 8 /1 2 /1 9 7 0 2 8 /1 2 /1 9 7 1 2 8 /1 2 /1 9 7 2 2 8 /1 2 /1 9 7 3 2 8 /1 2 /1 9 7 4 2 8 /1 2 /1 9 7 5 2 8 /1 2 /1 9 7 6 2 8 /1 2 /1 9 7 7 2 8 /1 2 /1 9 7 8 2 8 /1 2 /1 9 7 9 2 8 /1 2 /1 9 8 0 2 8 /1 2 /1 9 8 1 2 8 /1 2 /1 9 8 2 2 8 /1 2 /1 9 8 3 2 8 /1 2 /1 9 8 4 2 8 /1 2 /1 9 8 5 2 8 /1 2 /1 9 8 6 2 8 /1 2 /1 9 8 7 2 8 /1 2 /1 9 8 8 2 8 /1 2 /1 9 8 9 2 8 /1 2 /1 9 9 0 2 8 /1 2 /1 9 9 1 2 8 /1 2 /1 9 9 2 2 8 /1 2 /1 9 9 3 2 8 /1 2 /1 9 9 4 2 8 /1 2 /1 9 9 5 Chronology Pie z om e tric l e v e l (m ) reference cgcm1_1039 cgcm1_4069 cgcm1_7099 echam4_1039 echam4_4069 echam4_7099 hadcm2_1039 hadcm2_4069 hadcm2_70_99 49 H Piezo GETTE weel B2-335501 1968-1995 • Reference • 3 Scenarios • 3 periods Outflow GETTE 1989 at Budingen • Reference • ECHAM4 • 3 periods

Applicati

ons

50

Observation

• The previous integrated Mohise model concern Quantity • Due to the large amount of needed data, involved parameters,

heterogeneous domains, uncertainties, differences between major prevailing processes, … Integrated Quality models difficult to developed • Cal/Val as well

Pragmatic method (external coupling)

Pegase already coupled with

• SENTWA, Arcnemo (Flanders, Scheldt, Meuse, Yearly and Monthly values)

• Stics/Modcou (Seine-Normandie, yearly values)

• Swat (Oued Joumine, Tunisia, yearly, monthly and daily values) • Epic …

• Pirene Project …

(24)

Applicati

ons

51

Quality integrated modelling :

Sentwa/Arcnemo

Yearly and monthly values Annual NO3 Concentrations Different diffuse load calculations

ons

Quality integrated modelling : Stics/Modcou

Yearly values

P90 For NO3 Concentrations Different diffuse load calculations

(25)

Applicati

ons

PIRENE Project (MOIRA Model)

53

Ulg (HE-GEOMAC, FUSAG, CEME, HACH, HG-FPMS)  Région wallonne

“Modèle hydrologique intégré pour les

ressources aquatiques” (Integrated Hydrological Model for aquatic resources)

MOIRA

Meuse + Escaut Basins + Quality

River Quality Model Interface  HG Model

Applicati

ons

54

Improvements

• Using regional soil functions

• Calibrated from upstream homogeneous watersheds • Calibrated by output of other models

• Directly calculated by [internal/External] coupling

And then a few additional results …

(26)

Applicati

ons

PEGASE/WFD : simulation of scenario 1990

ons

(27)

Applicati

ons

PEGASE/WFD : simulation of scenario 2010

Applicati

ons

(28)

Applicati

ons

PEGASE/WFD : simulation of scenario 2040

It allows assessing the impact of the releases [on the WB Quality status]

It allows setting up the programs of WFD measures

PEGASEallows assessing the physico-chemical quality of surface water bodies [thanks to the validation process]

• Reinforcement of the Monitoring system by providing additional information

(spatially and temporally)

• Structuration of the knowledge (numerical database building)

• Tool in establishing the priorities of the intervention programs of the

Administrations (selectivity of operations)

• Support to the development of the state of the art [Also at District Level,

national or international (Meuse, Scheldt, Mosel, …)]

It allows building scenario to estimate the expected status of the WB

(29)

Co

nclusions

61 So ur ce : E rik Jo ha ns so n, 201 7

Thanks for your attention

Co

nclusions

Acknowledgements

 La Direction Générale Opérationnelle de l’Agriculture, des Ressources naturelles et de l’Environnement

(DGARNE, DGO3) du Service Public de Wallonie (http://spw.wallonie.be/?q=dgo3)

 La Politique Scientifique Fédérale (http://www.belspo.be/)

 Le Service d’Études Hydrologiques (SETHY), Direction Générale Opérationnelle de la Mobilité et des Voies

Hydrauliques (DGO2) du Service Public de Wallonie

 (http://voies-hydrauliques.wallonie.be/opencms/opencms/fr/index.html)

 Electrabel SA et son Centre de Recherches Laborelec

 (https://www.electrabel.be/fr/particulier/energique/article?article=laborelec)

 L’Agence de l’Eau Rhin-Meuse (http://www.eau-rhin-meuse.fr/)

 Fondation IBM International (http://www.research.ibm.com/)

 L’Agence de l’Eau Artois-Picardie (http://www.eau-artois-picardie.fr/)

 Le programme LIFE Européen(http://ec.europa.eu/environment/life/)

 Le programme FEDER de l’Union Européenne ((http://europe.wallonie.be/)

 La Vlaamse MilieuMaatschappij (http://www.vmm.be/)

 L’Administration de la Gestion de l’Eau du Grand-Duché du Luxembourg (http://www.eau.public.lu/)

 La Province du Luxembourg (http://www.province.luxembourg.be/fr)

 Waterboard Roer & Overmaas (http://www.overmaas.nl/algemene_onderdelen/english)

 Belgische Provincie van Limburg (http://www.limburg.be/)

 Nederlandse Provincie van Limburg (http://www.limburg.nl/)

 L’Union Européenne, UE (http://europa.eu/)

 L’Association Intercommunale pour la Protection et la Valorisation de l’Environnement en province de

Luxembourg (http://www.aive.be/)

 L’Agence de l’Eau Loire-Bretagne (http://www.eau-loire-bretagne.fr/)

 L’Agence de l’Eau Adour-Garonne (http://www.eau-adour-garonne.fr/fr/index.html)

L’INERIS, Institut National de l’EnviRonnement Industriel et des RisqueS (www.ineris.fr)

 WBI, Wallonie-Bruxelles International (www.wbi.be/)

 Le plan Marshall du Gouvernement Wallon (http://planmarshall2vert.wallonie.be/)

Références

Documents relatifs

Development of an integrated technical and management risk control and monitoring methodology for managing and quantifying on-site and off-site risks, n°ENV4960243... Beside, there

The ARAMIS project aims at developing a new risk assessment methodology which allows to evaluate the risk level of an industrial plant by taking into account prevention measures

The ideas presented in this publication are developed in the frame of EU project ARAMIS "Accidental Risk Assessment Methodology for Industries", con- tract

By promoting the barrier approach, ARAMIS helps the users define the safety requirements, which apply to its plant, and therefore helps the competent authorities verify the

Following the method for typical wave resource assessments proposed by Saulnier & Pontes in 2009 [1] and other presentations in the Inventory of Canada’s marine re- newable

Ainsi, lorsque le locataire demande l’annulation d’un congé en matière de bail à loyer d’habitation ou de locaux commerciaux, la valeur litigieuse correspond à la

In this work we demonstrate an external optical control over the dissipative optomechanical coupling strength mediated by the modulation of the absorption of a quantum dot layer in

Ainsi, au travers d’un bilan matière sur les solutions d’électro-déposition utilisées pour préparer les électrodes de chambre à fission, la quantité d’uranium 235 déposée