• Aucun résultat trouvé

Desiccation cracks formation in clay-barrier for nuclear waste disposal

N/A
N/A
Protected

Academic year: 2021

Partager "Desiccation cracks formation in clay-barrier for nuclear waste disposal"

Copied!
34
0
0

Texte intégral

(1)

Desiccation cracks formation in

clay-barrier for nuclear waste disposal

𝑇𝑢𝑒𝑠𝑑𝑎𝑦 16𝑡ℎ 𝑜𝑓 𝐹𝑒𝑏𝑟𝑢𝑎𝑟𝑦 Thesis director : Frédéric Collin

J. Hubert

1

– N. Prime

3

– E. Plougonven

2

– A. Leonard

2

– F. Collin

1

1Université de Liège – Dep.t ArGEnCo 2 Université de Liège – Dept. Chimie appliquée

(2)

S

UMMARY OF THE PRESENTATION

Nuclear waste disposal

Material and method

Drying kinetics

Shrinkage

Conclusions

Julien Hubert SUMMARY 16/02/2016

(3)

High activity long life radioactive wastes need to be isolated for a long

period of time ⇒ Deep geological disposal

 Stable and low permeability rock formation required ⇒ in Belgium the studied formation is Boom Clay

Julien Hubert NUCLEAR WASTE DISPOSAL 16/02/2016

2

N

UCLEAR WASTE DISPOSAL

(4)

High activity long life radioactive wastes need to be isolated for a long

period of time ⇒ Deep geological disposal

 Stable and low permeability rock formation required ⇒ in Belgium the studied formation is Boom Clay

Julien Hubert NUCLEAR WASTE DISPOSAL 16/02/2016

2

N

UCLEAR WASTE DISPOSAL

(5)

High activity long life radioactive wastes need to be isolated for a long

period of time ⇒ Deep geological disposal

 Stable and low permeability rock formation required ⇒ in Belgium the studied formation is Boom Clay

Julien Hubert NUCLEAR WASTE DISPOSAL 16/02/2016

2

N

UCLEAR WASTE DISPOSAL

(6)

Deep geological storage

 Burial shaft and multi barrier principle:

Julien Hubert NUCLEAR WASTE DISPOSAL 16/02/2016

3

N

UCLEAR WASTE DISPOSAL

Andra 2005

Boom Clay

Gallery retaining wall Stainless steel liner Buffer Overpack Mechanical support To be filled with a granular material Craye et al., 2009

(7)

S

UMMARY OF THE PRESENTATION

Julien Hubert SUMMARY 16/02/2016

4

Nuclear waste disposal

Material and method

Drying kinetics

Shrinkage

(8)

Samples preparation

Julien Huberta MATERIEL AND METHOD 16/02/2016

5

M

ATERIAL AND METHOD

39 mm

34 mm 13 mm

(9)

Convective drying test

 Sample weighed every 30 seconds in the convective dryer

Julien Hubert MATERIEL AND METHOD 16/02/2016

6

M

ATERIAL AND METHOD

Drying conditions

Temperature

25°C

Humidity

3,5 %

(10)

Data acquisition and image processing

 Shrinkage and cracking measurement

Julien Hubert MATERIEL AND METHOD 16/02/2016

7

M

ATERIAL AND METHOD

Skyscan 1172

Hole filling and binarization

(11)

S

UMMARY OF THE PRESENTATION

Nuclear waste disposal

Material and method

Drying kinetics

Shrinkage

Conclusion

Julien Hubert SUMMARY 16/02/2016

(12)

Theory of porous media drying kinetics

Julien Hubert DRYING KINETICS 16/02/2016

9

D

RYING KINETICS

(13)

Theory of porous media drying kinetics

Julien Hubert DRYING KINETICS 16/02/2016

9

D

RYING KINETICS

(14)

Theory of porous media drying kinetics

Julien Hubert DRYING KINETICS 16/02/2016

9

D

RYING KINETICS

(15)

Theory of porous media drying kinetics

Julien Hubert DRYING KINETICS 16/02/2016

9

D

RYING KINETICS

(16)

Julien Hubert DRYING KINETICS 16/02/2016

10

0 5 10 15 20 1.3 1.4 1.5 1.6 1.7 1.8 Time [h] Ma ss [g ] Sample 1 Sample 2 Sample 3 0 0.05 0.1 0.15 0.2 0.25 -2 -1 0 1 2 3 4 5 x 10-4 Moisture content [-] D ryi n g ra te [ kg /(m²s)] Sample 1 Sample 2 Sample 3

Experimental results

D

RYING KINETICS

0 5 10 15 20 -2 -1 0 1 2 3 4 5 x 10-4 Time [h] D ryi n g ra te [ kg /(m²s)] Sample 1 Sample 2 Sample 3

(17)

Porous medium

Julien Hubert DRYING KINETICS 16/02/2016

11

D

RYING KINETICS

Porous medium surface

Liquid Water Air + vapor Solid matrix Liquid water Air + vapor Solid matrix

(18)

Internal water transfer

Julien Hubert DRYING KINETICS 16/02/2016

11

D

RYING KINETICS

Porous medium surface

Liquid Water Air + vapor Solid matrix Liquid water Air + vapor Solid matrix Darcean flow Vapor diffusion Evaporation

(19)

Limit layer model

Julien Hubert DRYING KINETICS 16/02/2016

11

Heat flux : 𝑞 = 𝐿𝑞𝑤 − 𝛽(𝑇𝑎𝑖𝑟 − 𝑇𝑠𝑢𝑟𝑓) Water flux : 𝑞𝑤 = 𝜶(𝜌𝑣,𝑠𝑢𝑟𝑓 − 𝜌𝑣,𝑎𝑖𝑟)

D

RYING KINETICS

Porous medium surface

Liquid Water Air + vapor Solid matrix Liquid water Air + vapor Solid matrix Darcean flow Vapor diffusion Evaporation 𝑇𝑎𝑖𝑟 𝜌𝑣,𝑎𝑖𝑟 𝜌𝑣,𝑠𝑢𝑟𝑓 𝑇𝑠𝑢𝑟𝑓 Limit Layer

(20)

Integration of limit layer model into a FEM framework

:

 Use of a special kind of finite element :

Boundary conditions

Water pressure at the environment node : 𝒑𝒄= −𝝆𝑹𝑻

𝑴 𝒍𝒏(𝑯𝑹)

Temperature at the environment node : 𝑻 = 𝟐𝟓°𝑪

 Transfer coefficients :

Julien Hubert DRYING KINETICS 16/02/2016

12

N

UMERICAL STUDY OF THE DRYING KINETICS

𝜶 [𝒎/𝒔] 𝜷 [𝑾/𝒎²/𝑲]

0.048 53

(21)

Numerical results:

Julien Hubert DRYING KINETICS 16/02/2016

13

N

UMERICAL STUDY OF THE DRYING KINETICS

0 5 10 15 20 -2 0 2 4 6 8x 10 -4 Time [h] D ryi n g ra te [ kg /(m²s)] Sample 1 Numerical Results 0 0.05 0.1 0.15 0.2 0.25 -2 -1 0 1 2 3 4 5 x 10-4 Moisture content [-] D ryi n g ra te [ kg /(m²s)] Sample 1 Numerical results 0 5 10 15 20 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 Time [h] Ma ss [g ] Sample 1 Numerical results

(22)

S

UMMARY OF THE PRESENTATION

Nuclear waste disposal

Material and method

Drying kinetics

Shrinkage

Conclusion

Julien Hubert SUMMARY 16/02/2016

(23)

Experimental results

Julien Hubert DRYING SHRINKAGE 16/02/2016

15

D

RYING SHRINKAGE

0 1 2 3 4 5 100 110 120 130 140 150 Time [h] Su rf a ce [ mm²] Sample 1 Sample 2 Sample 3 1 2 3 4 5 6 7 8 9 10 0 5 10 15 Sample name [-] R e la ti ve sh ri n ka g e [ % ]

Experimental parallel shrinkage Experimental perpendicular shrinkage Mean parallel shrinkage

(24)

Numerical mechanical model

 3D Orthotropic hydro-mechanical model

Julien Hubert DRYING SHRINKAGE 16/02/2016

16

N

UMERICAL STUDY OF THE DRYING SHRINKAGE

MECHANICALPARAMETERS(DIZIER, 2011)

𝐸 700 [𝑀𝑃𝑎] 𝐸 350 [𝑀𝑃𝑎] 𝜈∥∥ 0.25 [−] 𝜈∥⊥ 0.125 [−] 𝐺∥⊥ 1.4 [𝑀𝑃𝑎] 𝜌𝑠 2670 [𝑘𝑔/𝑚³] 6.72 mm 6.1 mm Bedding planes

(25)

Numerical results

Julien Hubert DRYING SHRINKAGE 16/02/2016

17

N

UMERICAL STUDY OF THE DRYING SHRINKAGE

0 5 10 15 20 100 110 120 130 140 150 Time [h] Su rf a ce [ mm²] Sample 1 Numerical result 1 2 3 4 5 6 7 8 9 10 0 5 10 15 Sample name [-] R e la ti ve sh ri n ka g e [ % ]

Experimental parallel shrinkage Experimental perpendicular shrinkage Mean parallel shrinkage

Mean perpendicular shrinkage Numerical parallel shrinkage Numerical perpendicular shrinkage

(26)

Dessication cracking

Julien Hubert CONCLUSION 16/02/2016

18

C

ONCLUSION

Time 0 1 2 3 4 5 1 2 3 4 5

Fratured percentage of the surface [%]

D e p th o f th e sa mp le (mm) Sat 1h 2h 3h Dry

(27)

Andra (2005a). Dossier 2005 Argile. Synthesis: Evaluation of the feasibility of a geological repository in an argillaceous formation, Meuse/Haute Marne site. Technical report, Paris, France.

Bastiens W., Demarche M., 2003. The extension of the URF HADES: realization and observation. Proceedings of the WN'03 Conference, Tucson, USA.

Craeye B., De Schutter G., Van Humbeeck H., Van Cotthem, 2009. Early age behaviour of concrete

supercontainers for radioactive waste disposal. Nuclear Engineering and Design, 239, 23-35.

Gerard P., Charlier, R, Chambon, R, & Collin, F. 2008. Influence of evaporation and seepage on the convergence of a ventilated cavity. Water resources research, 44(5), W00C02.

Léonard A., Étude du séchage convectif de boues de station d’épuration. Suivi de la texture par microtomographie à rayons X. Thèse de doctorat, Université de Liège, Faculté des Sciences appliquées, 2003.

SCK-CEN. R and D for the geological disposal of medium and high level waste in the Boom clay, 2009. URLence.sckcen.be/en/Projects/Project/RD_waste_disposal/Geological_disposal.

Julien Hubert CONCLUSION 16/02/2016

19

(28)

Thank you !

Julien Hubert CONCLUSION 16/02/2016

(29)

Skempton coefficient

Julien Huberta QUESTIONS 16/02/2016

1

S

ATURATION

C

ONTROL

7 7.005 7.01 7.015 7.02 7.025 7.03 x 106 20 25 30 35 40 45 50 55 60 Time (s) S tr e ss va lu e ( M P a ) Skempton P u in

(30)

X-Ray tomography characteristics

 Cross section acquisition using a X-Ray microtomography

Julien Hubert QUESTIONS 16/02/2016

2

M

ATERIALS AND METHODS

Skyscan 1172

Source Voltage = 100 kV Filter = Al 0.5 mm 4x4 binning = 900x666 pixel radiograms Pixel size = 27.27 µm Exposure time = 510 ms Rotation Step (deg)= 0.65 180° rotation 2 vertically-connected scans Scan duration = 8 minutes

(31)

Numerical filter

Julien Hubert QUESTIONS 16/02/2016

13

Experimental results

0 2 4 6 8 10 12 14 16 18 20 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 Time [h] M a ss [ g ] 0 2 4 6 8 10 12 14 16 18 20 -2 -1 0 1 2 3 4 5 x 10-4 Time [h] D ryi n g r a te [ kg /( m ²s) ] Sans Filtre LAG=6 0 0.05 0.1 0.15 0.2 0.25 -2 -1 0 1 2 3 4 5 x 10-4 Moisture content [ ] D ryi n g r a te [ kg /( m ²s) ] Sans Filtre LAG=6

(32)

Samples put into chamber with controlled suction (saline solution)

Water content measured ⇒ saturation degree deduced

Julien Hubert QUESTIONS 16/02/2016

3

W

ATER RETENTION CURVE

VANGENUCHTEN FORMULATION 𝑆𝑟𝑒𝑠 0 [-] 𝑆𝑠𝑎𝑡 1 [-] 𝛼𝑣𝑔 15 [𝑀𝑃𝑎] 𝑚𝑣𝑔 0.449 [-] 𝑛𝑣𝑔 1.70 [-]

Van Genuchten formulation :

𝑆𝑟,𝑤 = 𝑆𝑟𝑒𝑠+ 𝑆𝑠𝑎𝑡 − 𝑆𝑟𝑒𝑠 1 +𝑝𝑐 𝛼 𝑛𝑣𝐺 −𝑚𝑣𝐺 0 10 20 30 40 50 60 70 80 90 100 1 10 100 Sa tu ra ti ion d egr ee [% ]

Capillary pressure [MPa]

Experimental results Delage et al., 2011 Fitted using Van Genuchten's model

(33)

Quickly homogeneous on the whole sample

Julien Hubert QUESTIONS 16/02/2016

4

D

RYING

S

HRINKAGE

85 90 95 100 0 1 2 3 4 5 6

Proportion of the initial surface [%]

D e p th [ mm] Sat 1h 2h 3h 4h Sec

(34)

Parameters used :

Julien Hubert QUESTIONS 16/02/2016

5

N

UMERICAL STUDY

PARAMETERS VALUES UNITS

HYDRAULICPARAMETERS 𝑘𝑠𝑎𝑡,⊥ 8.10−12 [m/s] 𝑘𝑠𝑎𝑡,∥ 2.10−12 [m/s] n 0.39 [-] MECHANICALPARAMETERS 𝐸 700 [𝑀𝑃𝑎] 𝐸 350 [𝑀𝑃𝑎] 𝜈∥∥ 0.25 [−] 𝜈∥⊥ 0.125 [−] 𝐺∥⊥ 1.4 [𝑀𝑃𝑎] 𝜌𝑠 2670 [𝑘𝑔/𝑚³] THERMALPARAMETERS 𝑐𝑠 2080 [ 𝐽 𝑘𝑔 ∗ 𝐾] 𝜌𝑠 2670 [𝑘𝑔/𝑚3] 𝑐𝑤 4185 [ 𝐽 𝑘𝑔 ∗ 𝐾] 𝜌𝑤 1000 [𝑘𝑔/𝑚3] 𝑐𝑎 1004 [ 𝐽 𝑘𝑔 ∗ 𝐾] 𝜌𝑎 1.2 [𝑘𝑔/𝑚3]

Références

Documents relatifs

Minimizing the sum of the mean square errors, one finds that the an are the arithmetic means of the Fourier coefficients, for approximation over an infinite

(Konopliv et al. The two estimations are consistent at 2 sigmas with a ten times smaller uncertainty for the INPOP10a estimation. This can be explained by the fact that the

Les familles reconnaissent leur difficulté à jouer un rôle central dans la prise en charge de l’éducation sexuelle de leur enfant. Cependant, elles épousent la perception

La barrière d'étanchéité composite pour les décharges de type 1 est recommandée dans la plupart des pays. Cependant, pour les décharges de type 2, des pays comme

For steady state biomass production in the order of 10 32 g (dry) year 31 per waste package, the poten- tial of this source of organic carbon is clearly large when compared

The aim of that final test case is to use the results of the near–field computa- tion (C OUPLEX 2) to describe the behavior of the radionuclide source term, f i , in the

Modeling the long-term stability of multi-barrier systems for radioactive waste disposal in geological clay formations.. Francis Claret, Nicolas Marty, Mathieu Debure,

Motivated by these special characteristics of the French project of radioactive waste disposal, the aim of our paper is to assess the value of the reversible radioactive