• Aucun résultat trouvé

Decoding intracranial EEG data with multiple kernel learning method

N/A
N/A
Protected

Academic year: 2021

Partager "Decoding intracranial EEG data with multiple kernel learning method"

Copied!
10
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Journal

of

Neuroscience

Methods

j ou rn a l h om epa g e : w w w . e l s e v i e r . c o m / l o c a t e / j n e u m e t h

Decoding

intracranial

EEG

data

with

multiple

kernel

learning

method

Jessica

Schrouff

a,b

,

Janaina

Mourão-Miranda

b

,

Christophe

Phillips

c

,

Josef

Parvizi

a,∗

aLaboratoryofBehavioral&CognitiveNeuroscience,StanfordHumanIntracranialCognitiveElectrophysiologyProgram(SHICEP),

DepartmentofNeurology&NeurologicalSciences,StanfordUniversity,Stanford,CA,USA

bDepartmentofComputerScience,UniversityCollegeLondon,UnitedKingdom cCyclotronResearchCentre,UniversityofLiège,Belgium

h

i

g

h

l

i

g

h

t

s

•MultipleKernelLearning(MKL)canexploremultipledimensionssimultaneously.

•MKLmethodissparseandperformsfeatureselectionduringmodelingofthedata.

•WeproposetousetheMKLmethodtoanalyzeelectrophysiologydata(EEGorMEG).

•WeprovideaprototypeexampleofhowMKLmethodcanapplytoECoGdata.

•WeshowmultipledimensionsofECoGsignalcancontributetonumericalprocessing.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received15August2015

Receivedinrevisedform23October2015 Accepted30November2015

Availableonline12December2015 Keywords:

Multiplekernellearning IntracranialEEG Machinelearning Featureselection

a

b

s

t

r

a

c

t

Background:Machinelearningmodelshavebeensuccessfullyappliedtoneuroimagingdatatomake predictionsaboutbehavioralandcognitivestatesofinterest.Whilethesemultivariatemethodshave greatlyadvancedthefieldofneuroimaging,theirapplicationtoelectrophysiologicaldatahasbeenless commonespeciallyintheanalysisofhumanintracranialelectroencephalography(iEEG,alsoknownas electrocorticographyorECoG)data,whichcontainsarichspectrumofsignalsrecordedfromarelatively highnumberofrecordingsites.

Newmethod:Inthepresentwork,weintroduceanovelapproachtodeterminethecontributionof differ-entbandwidthsofEEGsignalindifferentrecordingsitesacrossdifferentexperimentalconditionsusing theMultipleKernelLearning(MKL)method.

Comparisonwithexistingmethod:Tovalidateandcomparetheusefulnessofourapproach,weapplied thismethodtoanECoGdatasetthatwaspreviouslyanalysedandpublishedwithunivariatemethods. Results:OurfindingsprovedtheusefulnessoftheMKLmethodindetectingchangesinthepowerof variousfrequencybandsduringagiventaskandselectingautomaticallythemostcontributorysignalin themostcontributorysite(s)ofrecording.

Conclusions:Withasinglecomputation,thecontributionofeachfrequencybandineachrecordingsite intheestimatedmultivariatemodelcanbehighlighted,whichthenallowsformulationofhypotheses thatcanbetestedaposterioriwithunivariatemethodsifneeded.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Intracranial EEG (a.k.a., electrocorticography, ECoG) is the

recording ofbrain’s electrical activitywithintracranial sensors.

Suchsignalscontaininformationdistributedovermultiple

dimen-sions, i.e., the spatial (recordingsites), thetemporal (sampling

ratein1000samples/s)andfrequencydomains(0.1–300Hz).In

thecurrent practice,ECoG signals areprimarily analyzedusing

∗ Correspondingauthor.

E-mailaddresses:jparvizi@stanford.edu,jschrouf@stanford.edu(J.Parvizi).

univariate methods,e.g., todetectchangesin thepowerof the

electrophysiological activity during a given task, in a specific

recordingsiteofinterestandbandwidth,whichisoftenthe

high-frequencybroadband(HFB,50–200Hz).Aprimarymotivationfor

theunivariateanalysisofHFBinaspecificbrainregionistheextent

evidence that HFB provides a precise measure of local cortical

engagementduringagiventask(Changetal.,2010;Flinkeretal.,

2011;Manningetal.,2009;Mukamel,2005;Niretal.,2007;Pasley etal.,2012;Rayetal.,2008;RayandMaunsell,2011).Although

theseunivariatestudieshaveacrucialroleintestinghypotheses

aboutthelocalengagementofaspecificcorticalregioninagiven

task,amoresensitive,data-drivenmultivariateapproachisneeded

http://dx.doi.org/10.1016/j.jneumeth.2015.11.028

(2)

univariateanalyses.Theyhavealreadyprovenusefulwhen

inves-tigating local field potentials and spikesin both monkeys and

humans(e.g.,Meyersetal.,2008,2012;QuianQuirogaandPanzeri,

2009;Zhangetal.,2011b).However,modelinterpretationmightbe

complexastheobtainedmodelparameterscannotbethresholded

basedontheiramplitude/varianceratio.

In ourcurrent work,we present a MultipleKernel Learning

(MKL)approachtofacilitatemachinelearningmodelingofECoG

data.TheMKLmethodsimultaneouslylearnsandcombines

dif-ferentmodels,representedby differentkernels (seeGönen and

Alpaydin,2011fora review).MKLapproaches havebeen

previ-ouslyappliedtoneuroimagingdata,especiallyforcombinationof

signalsfromdifferentmodalities(e.g.,Daietal.,2012;Filipovych

etal., 2011;Filippone et al.,2012;Hinrichs et al.,2011; Zhang etal.,2011a).Furthermore,thecontributionofeachkerneltothe

finalmodelcanbeconstrainedtobesparse(Rakotomamonjyetal.,

2008). In the present work,each kernel is built fromdifferent

featuresoftheECoGdata,i.e.,thepowerofactivityinspecific

band-widthsofECoGsignalateachrecordingsite.MKListhereforeused

hereasatoolforfeatureselection.

Asaproofofconceptstudy,weexaminedthefeasibilityofthe

MKLapproach byapplyingthismethodtopreviouslypublished

human electrophysiological data (Dastjerdi et al., 2013; Foster

etal.,2012).Hereweshowthatwithasinglecomputation,the

MKLmodelisabletohighlightthecontributionofeachfrequency

bandateachrecordingsite,whichthencanbeusedtoformulate

hypothesestobetestedaposteriori.

2. Materialsandmethods

ThecurrentworkaimsatdemonstratingthefeasibilityofMKL

techniquesfortheanalysisofECoGdata.Tothisend,weconsidered

datathathasbeenpreviouslyanalyzedwithunivariatemethods

(Dastjerdi etal., 2013; Fosteret al.,2012).Theresultsof these

worksshowed(1)increasedHFBpowerintheretrosplenialcortex

(RSC)duringepisodicmemoryprocessingandinactivation(i.e.,no

changesinHFBpower)ofthesamerecordingsitesduringnumerical

processing,and(2)increasedHFBpowerintheintra-parietalsulcus

(IPS)duringnumericalprocessinganddeactivation(i.e.,decreased

HFBpower)inthesamerecordingsiteduringepisodicmemory

processing.Thepresentstudyprobesthesamedatasetinamore

exploratorywaybyconsideringallrecordingsitesandfrequency

bandsduringnumericalandepisodic memoryprocessinginthe

samemodel.

2.1. Demographicsandbraincoverage

Threesubjectswereimplantedwithintracranialelectrodesfor

presurgicalepilepsymonitoring.Allthreepatientssufferedfrom

medicationresistantepilepsyforwhichtheywereimplantedwith

intracranialelectrodesforinvasivevideoEEGmonitoring.The

pro-cedurewasapprovedbytheStanfordInstitutionalReviewBoard

(IRB)andthesubjectsprovidedwritteninformedconsentto

par-ticipateinthestudy.Thelocationofthegridswasdeterminedby

clinicalneeds,andtheseizurefociwerefoundtobeintheright

team–werealsodiscardedfromfurtheranalyses.Thislaststepwas

performedtoensurethatnon-pathologicalneuronalactivitywas

usedtoinvestigateourcognitiveneurosciencequestion.

2.2. Anatomicallocalizationofelectrodes

Post-implantCTimageswerealignedtothepre-opMRI

anatom-icalbrainvolume(Hermesetal.,2010).Electrodeswerevisualized

onthesubject’sownbrainvolumeandreconstructed3Dcortical

surfaceallowingforaccurateanatomicallocalizationofelectrodes.

2.3. ECoGexperiment

Data was recorded when the patients performed simple

true/falsejudgmentsofmemorysentencesormathematical

equa-tions(Fig.1A).Thememorysentencescomprisedself-episodic(e.g.,

“I atepizzathis week”), self-semantic (e.g.,“I eatpizzaoften”)

andself-judgment(e.g.,“Iamacuriousperson”)statements.Basic

mathematicaladditionswerepresentedalongwitharesult(e.g.,

“4+49=53”,furtherreferredtoas‘Math’condition).Interleaved

acrosstrialswere5scued-restperiods,duringwhichacentered

crosssignwasdisplayedonthescreenandpatientswereinstructed

tofixateandrest.Theexperimentcomprised96randomizedtrials

ofeachcondition(exceptforrest,∼66trials)andwasdividedin

twosessionsadministeredthesameday(P1)oronsuccessivedays

(P2,P3).

2.4. Preprocessing

AllpreprocessingstepswereperformedusingMatlab(www.

mathworks.com)and SPM(www.fil.ion.ucl.ac.uk/spm).The

con-tinuoustime seriesof thetwoexperimentalsessionswerefirst

re-referencedtotheaverageofthesignalsoverallselected

elec-trodes(considering eachsession separately).Thedatawasthen

filteredforpower-linenoise(60Hzanditsharmonics),and

down-sampledto436Hz.

2.5. Definitionofevents

Duetotheself-pacednatureoftheexperiment,andthushigh

variability in thereaction times (RT) acrossevents and

condi-tions,wedecidedtoextractthesignalascontiguousepochsof1s,

consideringeacheventonsetasanintegernumberofseconds.As

illustratedinFig.1B,each1swindowwasassociatedtoabinary

label(‘Math’ or ‘Non-math’) if a stimulus was theonly

stimu-luspresentduringtheselected1swindow.Forthis,werounded

eacheventonsettotheclosestinteger(ins),andlabeledthe1s

epochs correspondingto the duration of the event (asdefined

bytheRT,roundedtowardnegativeinfinity)withthesame

cat-egory as the event. Each1sepoch wasthen consideredas an

individualtrial.Thefourconditionsofself-episodic,self-judgment,

self-semanticand restwere pooledtogether as“non-math” (as

inDastjerdietal.,2013)andequalnumberof“math”and

“non-math” events was chosen in order to obtain balanced training

(3)

Fig.1.Experimentaldesignandfeatureextraction.(A)Examplesofstimuliofeachcategory.Thepatienthastoprovide‘true’or‘false’judgmentsonthepresentedstimulus, exceptforthe‘Rest’condition(fixationcross,presentedfor5s).Thenumberoftrialsperconditionis48ineachrun(exceptfor‘Rest’,33trials).Inthepresentwork,‘Math’ istheconditionofinterest.Thefourotherconditions(namelyself-episodic,self-semantic,self-judgmentandrest)arepooledtogethertoformthe‘Non-math’category.(B) Definitionof“Events”:Theeventonset(displayedbyverticalarrows)representsthebeginningofvisualstimuluspresentation.Eachstimulusisdisplayedonthecomputer screenuntiltheparticipantpressesabutton(1for‘true’or2for‘false’),inaself-pacedmannerwithvaryinglengthsofreactiontime(RT).Thenextstimulusisthendisplayed, afteraninter-stimulusinterval(ISI)of200ms.‘Rest’conditionhadfixedintervalsandthenextstimulusappearedwithouttheparticipantpressinganybuttons.Inthiswork, thecontinuoustimeserieswasdividedinto1swindows.Eachwindowwasassociatedtoalabel(‘Math’or‘Non-math’)ifastimuluswastheonlystimuluspresentduring theselected1swindow(bottomline,labels).Toavoidincludingnon-taskrelatedsignal,theeventonsetwasroundedtowardthenearestintegerandtheeventduration (herecorrespondingtotheRT)wasroundedtowardnegativeinfinity(i.e.,Matlab‘floor’).

2.6. Featureextraction

Each event was extracted (i.e., epoched) in the −200ms –

1200ms time window around itsonset (in integer seconds, as

definedabove).Nobaselinecorrectionorartifactrejectionwas

per-formedsuchthatthetemporalcorrelationbetweenepochsfrom

thesameeventwasmaintained.Atime-frequencydecomposition

wasthencomputed(Morletwavelets,7wavelets).The

frequen-ciesofinterestwerelog-spacedbetween1and110Hz(29values

intotal).Theresultingdecompositionwasrescaled(point-wise)

by the logarithm of its value.The instantaneouspower of the

signalin the0 –1000mstime-window wasthencomputed in

eachofthefollowingfrequency bands:ı(1–4Hz),(4–8Hz),˛

(8–12Hz),ˇ(15–25Hz),low- (30–55Hz)andanarrowbandof

HFB,high-(70–110Hz,toavoidresiduallinenoise),byaveraging

thefrequencybinswithinthosebands.Fig.2(top)displayssuch

featuresaveragedacrosscategories(“math”indashedgreenand

“non-math”ingrey)inthehigh-bandforelectrodes1,18,27and

40inP1.

2.7. Kernels

Theconsideredalgorithmuseskernelsasinputs.Kernelsare

matrices of size n×n (n being the number of samples/trials,

hereepochs),representingthepair-wisesimilaritybetween

sam-ples/trials.In thepresent work,linearkernels(i.e.,dotproduct)

werebuiltforeachelectrodeand eachfrequencyband,as

illus-trated in Fig. 2. Thus m kernels were computed based onthe

averagedpowerofthesignalwithinaspecificfrequencybandon

eachchannel,withmbeingthenumberofelectrodes.Them×6

ker-nelswerethenconcatenated,toestimatewhatisfurtherreferredto

asthe‘full’model.Toensurethatthescaleofeachkerneldoesnot

playaroleinthemodelingstep,allkernelsweremean-centered

and normalizedbeforeentering theclassification algorithm (by

takingintoaccountthetrain/testseparation,seeSection2.9).

2.8. Machinelearningmodeling

Allmachinelearningmodelingstepswereperformedbasedon

oursoftwarePRoNTo(Schrouffetal.,2013,www.mlnl.cs.ucl.ac.uk/

pronto),whichhasbeenadaptedtoanalyzeelectrophysiological

dataintheSPMMEEGformat.Thebuiltkernelswereconsideredfor

MKLmodelingusingthe“simpleMKL”versionof(Rakotomamonjy

etal.,2008)(illustratedinFig.2).ThisalgorithmusesaSupport

Vec-torMachine(SVM,(CortesandVapnik,1995))todefineadecision

boundary(fm),discriminatingbetween“math”and“non-math”per

kernel.Todetermineeachdecisionboundary,modelparameters

(wm)areoptimized.Thosedifferentdecisionboundaries(oneper

kernel)arethenweighted(byaparameterdm)todefineaglobal

decisionboundaryf.Thesetwostepsareimplementedintoa

recur-siveoptimizationprocedure,andhenceboththeweightswmand

thekernelcontributionsdmdependonallthefeatures.The

regu-larizationconstraintsintheconsideredalgorithmleadtoasparse

selectionofnon-nullcontributions(dm)tothefinaldecision

func-tion,i.e.,onlysomekernelswillhaveanon-nullcontributiontothe

decisionfunction.Thepresentmodelcanbeseenasbeing

‘hierar-chical’,i.e.,foreachkernelitispossibletocomputetheweight,wtm,

ofeachfeaturetinfm(here436features,asfor‘classical’machine

learningtechniques),andeachkernelisweightedbyacontribution

dm.Informationonthecontributionofeachfeatureishence

avail-able.However,interpretingthecontributionofthekernelsmightbe

easieraseachkernelisbuiltonspecificdimensions,i.e.,MKL

‘sum-marizes’thecontributionsoverthechosendimensionby

automat-icallyselectingallthefeaturesfromthisdimensionwiththesame

contributiondm(butnotwiththesameweightwtm).Itisimportant

tonotethatifthosecontributionsdmwereequalforallkernels,the

MKLtechniquewouldcorrespondtoanSVMmodel(withmodel

parametersw)consideringallthefeaturesasconcatenated.

Inthepresentcase, eachkernel representsthepowerofthe

signalinoneelectrode,averagedwithinafrequencyband(ı,,˛,

ˇ,low-orhigh-).Foreachpatient,thefullmodelwasestimated

(m×6kernels).Inaddition,forcomparisonswithprevious

univari-ateresults(Dastjerdietal.,2013;Fosteretal.,2012),anMKLmodel

wasestimatedforeachfrequencyband(i.e.,withmkernels).

2.9. Cross-validationandaccuracy

Weassessedtheperformanceofthemodelonthe

experimen-talconditionbyusinga10-foldcross-validationscheme:themodel

(4)

Fig.2.Illustrationofthemultiplekernellearning(MKL)approachconsidered.Foreachelectrode,thetimecourseofthepowerinaspecificfrequencyband(herehigh-)is extractedforeachtrialinthe[01000]mswindowaroundonset.Thetoprowofthefiguredisplayssuchfeaturesaveragedacrossmath(dashedgreen)andnon-math(gray) trials(patientP1,session1),withnormalizedstandarderror(shadedareas).Fromthosefeatures,alinearkernelisbuiltforeachelectrode,asillustratedinthemiddlerowof thefigure(trialssortedbycategory,withMathtrialsinthetopleftcorner).Thismatrixissymmetricanddisplayswhethertrialsfromonecategoryaremoresimilartoone anotherthantotrialsfromanothercategory(asisthecaseforkernelsK18andK27butnotforkernelsK1andK40).Foreachkernel,themodelestimatesadecisionfunctionfm

(m=1...M,Mbeingthenumberofelectrodes)whichisthenweightedaccordingtoapositiveornullcontributiondm.Thefinaldecisionfunctionisthelinearcombination

ofthedifferentdecisionfunctionsestimatedoneachelectrode.Thecontributionsofallelectrodesmustsatisfytheconstraintsofsummingto1,andbeingpositiveornull, whichleadstoasparseselectionofelectrodescontributingtothefinalmodel.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothe webversionofthisarticle).

andusedtopredictthelabelsofthe10%eventsleftout.The

predic-tionswerethencomparedwiththelabelsofthoseleftoutevents

tocomputetheaccuracyforeachcategory(“math”accuracyand

“non-math”accuracy,a.k.a.thesensitivity),thebalancedaccuracy

(averageoftheclassaccuracies)andthepositivepredictivevalues

foreachcategory(representingthespecificity).Thisprocesswas

repeated10times,withadifferentsplitof10%ofthedataleftout

eachtime.Eachsplitofthedataisfurtherreferredtoasa‘fold’.In

thiswork,theaccuracypresentedwasobtainedbyaveragingthe

valuesoverallfolds.

The considered algorithm is based on SVM models, which

includesasoft-marginparameterC.Thishyperparameterpenalizes

more(largevaluesofC)orless(smallvaluesofC)mis-classifications

duringtrainingandaffectstheresultingdecisionboundaryf.This

isparticularlythecaseinthepresentworksinceeachkernel is

basedon436features(i.e.,1electrode×1stime-windowsampled

at436Hz×averagedfrequencyband),andthenumberofevents

availablefortrainingisinthesameorder(368forP1,507forP2

and369forP3).Wethereforecannotexpectthecategoriestobe

linearlyseparableastheywouldinahigh-dimensionalspace.

Val-uesofCrangingfrom0.01to1000(C=10i,i=−2,−1,...,3)were

henceconsidered.Anestedcross-validationwasperformedwhen

modelingtheexperimentalconditions:theinnercross-validation

selectedthevalueofCleadingtothehighestmodelperformance

andtheoutercross-validationestimatedtheperformanceonatest

setusingtheselectedvalueofC.

2.10. Statisticalsignificance

Theindependencebetweenthetrainandtestsetsis

compro-miseddue totemporal autocorrelation in theconsideredtrials.

Inaddition,differentfoldsofthecross-validationareestimated

basedonoverlappingtrainingdata(hereasmuchas80%ofthe

dataissharedbetweentwofolds).Thishenceprecludestheuse

ofanyparametrictestssuchasbinomialtests(Noirhommeetal.,

2014;Pereiraetal.,2009)toassessthestatisticalsignificanceof

ourresults.Thesignificanceoftheperformanceofeachmodelwas

assessedusing1000permutationsofthetraininglabels.Results

associatedtoap-valuesmallerthan0.05werereportedas

signifi-cant.Balancedaccuracyvalueswereconsideredassignificantwhen

both theclassificationaccuracy forthe“math”and “non-math”

conditionsweresignificant.

2.11. Localizationofthekernelcontributions

Fig.3illustratestheoutputsoftheMKLmodelinthehigh-

bandforpatientP1.Fig.3Adisplaysthekernel(herechannel)

con-tributionsdm,whileFig.3Bdisplaystheweightswmforonechannel

inthisfrequencyband.

2.11.1. Sparsenessoftheresults

Aspreviouslymentioned,theconsideredalgorithmconstrained

(5)

Fig.3.IllustrationoftheoutputsoftheMKLmodel.(A)ParietalviewofthesurfaceofthecortexofpatientP1.Electrodesaredisplayedascirclesonthecortex(notto scale)withafillcolorcorrespondingtotheircontributiontothefinalmodel(dm,in%).(B)WeightswmforthechannelcircledinblackinpanelA.Theseweightsdisplaythe

contributionofeachtimepointfromthatchanneltotheMKLmodel.Asthemodelisnotsparseintermsofthewm,allthetimepointsconsideredformodelingcontribute

tothefinaldecisionfunction.

eachfold,acertainnumberofkernels–herecorrespondingtoa

combinationoffrequencyandelectrode(i.e.,recordingsite)–hada

non-nullcontributiontothefinaldecisionboundary.Becauseofthe

cross-validation,thecontributionsofeachkernelwereaveraged

acrossallfolds(here 10).Wehenceinvestigatedthestabilityof

dmacrossfoldsbycountinghowmanykernelswereconsistently

selectedinallfoldsorin80%ofthefolds(i.e.,8foldsoutof10in

theconsideredcross-validationscheme).

2.11.2. Anatomicallocalization

Ineachfrequencyband,welookedatthecontributionofeach

electrode(dm)tothemodel.Thisallowedlocalizingthe

informa-tionleadingtothediscriminationof“math”versus“non-math”in

termsofrecordingsite,i.e.,anatomicalposition.Forillustration,the

contributionofelectrodes(averagedacrossfolds)wasprojectedon

thepatient’s3Dbrainsurfacebycolor-codingthecircle

represent-ingtheanatomicalpositionofeachelectrode.Fig.3Adisplaysthe

parietalviewofthecortexofPatientP1,withchannelswithawhite

fillhavingaperfectlynullcontributiontothemodelandchannels

withapinktopurplefillcontributingtotheMKLmodel.

2.11.3. Frequencylocalization

Thefullmodel allowedcombiningtheinformation from

dif-ferentelectrodesanddifferentfrequencybands,whichhelpedus

investigatewhetherthediscriminatingsignalislocalizedinterms

of frequency or, on the opposite, distributed across frequency

bands.Tothisend,thedmvaluescorrespondingtoeachfrequency

bandweresummedacrosselectrodes,leadingtoaweightvalue

perfrequencyband.Thesearerepresentedonbargraphsforeach

patient.

2.11.4. Temporallocalization

Asmentionedintheprevioussection,itwouldbepossibleto

alsoinvestigatetheweightswtm foreachtimepointofthetime

courseofthepowerineachchannelandfrequencybandpair.Those

weightsaredisplayedinFig.3Bforonechannel/frequencyband

combination(channelcircledinblackinFig.3A).Asinterpreting

suchweight values is complex and hasrecently raisedvarious

issues(seee.g.,(Haynes,2015)foradiscussiononthetopic),we

havechosentofocusourinterpretationoftheresultsonthekernel

contributionsdm.

3. Results

3.1. Featuresandkernels

Eachparticipatingpatientwasimplantedwithdifferent

num-berofelectrodes.Afterdiscardingelectrodescontainingnoisyor

pathologicalsignals,differentnumbersofchannelswereselected

forP1(n=40),P2(n=102)andP3(n=97).Hence,foreachofthe

sixfrequencybands,40,102and97kernelswerecomputedfor

P1,P2andP3,respectively.Therefore,thefullmodelcomprised

40×6=240kernelsforP1,612forP2and582forP3.

3.2. Extractionofevents

Regardingthetwosessionsofexperimentalcondition,184math

eventswereextractedforP1, 255for P2and 185for P3.

Num-bersdifferacrossparticipantsbecausedifferentnumbersofevents

wererejectedduetothepresenceofartifactsorepileptic

activ-ity inthesignal.They werebalancedwithan equalnumber of

epochs fromeach ofthe fourother non-math conditions

(self-episodic,self-judgment,self-semanticandrestconditions,random

selection).

3.3. Modelperformance

Balancedandclass accuraciesestimatedfromthefullmodel

aredisplayedforeachsubjectinTable1.Themodelperformance

foreachfrequencybandisalsodisplayedforcomparisonwiththe

univariateresults(Dastjerdietal.,2013).

Forallsubjects,the6frequencybandsledtosignificant

clas-sification of mathversusnon-math. Classificationaccuracy was

highestinthehigh-bandforpatientsP1(88.92%)andP2(88.37%)

while it was highest in the ˛ bandfor patientP3 (75.03%).In

addition, the full model showed similar accuracy tothe

accu-racy obtainedfromthebestbandfor eachpatient: P1=89.51%,

P2=87.18%andP3=76.80%.

3.4. Localizationofdiscriminatingsignal

3.4.1. Sparsenessoftheresults

Thenumberofkernelswithnon-nullcontributionsacrossall

foldsispresentedinTable2.Thenumberofkernelsconsistently

selectedin80orin100%ofthefoldsarealsodisplayed.Fig.4A

shows ahistogramof thekernel contributions(averagedacross

folds),sortedindescendingorder,foreachpatient.

Table2showsthattheresultsaresparse,buthighlydependent

onthetrainingdata,whichisassumedtoslightlyvaryfromone

foldofthecross-validationtoanother.

3.4.2. Anatomicallocalization

Figs. 5,6 and7 display thecontributionofeach kernel (i.e.,

eachelectrodeineachoftheconsideredfrequencybands)foreach

patient,respectively.Theelectrodesarerepresentedbycircles(not

toscale)onthepatient’scortex,color-codedbasedontheir

con-tributiontothefullmodel(averageacrossfolds).Table3displays

the10electrode–frequencybandcombinationswiththehighest

contributiontothefullmodelforeachpatient.

ForpatientP1(Fig.5),electrode27hadthelargestcontribution

(6)

Table2

Numberofkernelswithanon-nullcontributiontothefullmodel,foreachpatient.Thepercentageofchannelsselectedinthemodelcomparedtothetotalnumberofchannels foreachpatientisdisplayedinbrackets.

Numberofkernelsselectedin PatientP1 PatientP2 PatientP3

Atleastonefold(averageacrossfolds) 180(75%) 309(50%) 344(59%)

Atleast80%ofthefolds 59(25%) 69(11%) 25(04%)

Allfolds 11(05%) 36(06%) 12(02%)

Table3

Top10rankingelectrode-frequencybandcombinationsforeachpatient,accordingtodmaveragedacrossfolds.

PatientP1 PatientP2 PatientP3

Band Elec dm(%) Band Elec dm(%) Band Elec dm(%)

high- 27 17.14 high- 97 03.40 high- 63 06.43

low- 27 03.81 ˇ 74 03.07 ˛ 23 05.88 high- 18 03.47 high- 83 02.89  23 05.71 high- 32 02.54 high- 67 02.78 ı 44 04.00 ˇ 14 02.38 high- 60 02.56  65 03.29 ˛ 17 02.04 high- 62 02.13 ˇ 44 03.17 low- 13 01.98 ˛ 63 02.09  16 02.91

high- 04 01.92 high- 84 01.93 low- 63 02.27

low- 15 01.68 ˇ 63 01.85 high- 69 01.71

 20 01.47 high- 11 01.80 ı 66 01.67

Thischannelis locatedin theIPS.The electrode withthe third

highestcontributionischannel18(3.47%),whichislocatedinthe

RSC.TheIPS electrode site isprecisely theone reportedinour

previouspublicationtobehighlyactivatedduringthemath

con-dition(Dastjerdietal.,2013)andtheRSCisthesamesiteasthe

onereportedinourpreviousworktobehighlydeactivated

dur-ingthemathcondition(Fosteretal.,2012).ForpatientP2(Fig.6),

thedistributionofweightsislesssparsethanforpatientP1.The

electrodewiththelargestcontributionwaselectrode 97 inthe

high- band(3.40%),locatedintheRSC(i.e.,thesamesiteasthe

onereportedinourpreviousworktobehighlydeactivated

dur-ingthemathcondition,Fosteretal.,2012).Amongtheothertop

10 ranking sites (usingaveraged dm for ranking) the temporal

cortex (electrodes83, 67, 84) as wellas occipital cortex

(elec-trodes60,62and63)andIPS(electrode11)sitesweremarkedas

contributory.ForP3(Fig.7),severalelectrodes(accordingto

aver-aged dm) showed non-null contribution: 4 electrodes were in

thelateralparietalcortex(highest:electrode23,5.88%,selected

in the  and ˛ bands), as well as one electrode in the RSC

(electrode 69, high- band). Non-null contributions were also

foundin the pre-supplementary motor region(electrode 63 in

high-,6.43%)andinthelateralparietalcortex(electrode44in

ıandˇ).

3.4.3. Frequencylocalization

Whencomputingthetotalcontributionofeachfrequencyband

tothefullmodel,weobservedthatallfrequencybandscontributed

tothemodel(Fig.4C).ForpatientsP1andP2,thehigh-bandhad

thelargestcontribution(39.7%forP1and35.0%forP2).Forpatient

3,thehigh-bandaccountedfor22%oftheweights,thebandfor

21%andthe˛bandfor17%.

4. Discussion

Inthis work,we presentamultiplekernel learningmachine

basedmodeltoautomaticallyselectfrequencyandanatomical

fea-turesdiscriminating betweendifferentexperimentalconditions.

Theproposedapproach wasdata-drivenand usedthesignalin

threedimensions(i.e.,evolutionofthepowerintimeandineach

frequencybandandineachelectrode)toautomaticallydetermine

whichelectrodesand/orfrequencybandcontaineddiscriminating

informationaboutnumericalprocessing.TheMKLtechniquecan

hencebeseenasanexploratorytechniquetoinvestigate

electro-physiologicalsignalonmultipledimensionssimultaneously.

4.1. Comparisonofunivariateandmultivariateresults

Theperformedmultivariateanalysesledtosignificant

classi-ficationofMathversusNon-mathtrials,usingallelectrodesand

frequency bands asinputs. The highest accuracyvalues ranged

between77%and89%.Thesevaluescanhardlybedirectly

com-paredtothesensitivityandspecificityobtainedusingunivariate

techniques(Dastjerdietal.,2013)sinceweobtainedonevalueper

subjectandnotonevalueperelectrode.Thiscanbeseenasan

advantage(i.e.,‘summarizing’theresultsforeachsubject)orasa

disadvantage(i.e.,lackoflocalizedinformation).Moregenerally,

univariatemethodsarethoughttobemorespecific(i.e.,localized

detectionof(de)activations)butless sensitive(moredifficultto

detect significant changes) than multivariate techniques. This

lastobservationissupportedinthepresent studyassignificant

discriminationbetweenMathandNon-mathtrialswasobserved

in allfrequency bands,which wasnot detectedin theworkof

(7)

Fig.4.Sparsenessandfrequencylocalizationofthekernelcontributions,foreachpatient.(A)Sortedhistogramofkernelcontributions(averagedacrossfolds).Thedisplayed valuessumto100%,asconstrainedbytheconsideredmachinelearningalgorithm.(B)Summedcontributionofeachfrequencybandtothefullmodel(averagedacrossfolds), inpercent.

analysesinvestigatedifferentaspectsofthequestionofinterest

andshouldbeusedinconjunctionratherthancompared.

4.2. Informationisdistributedoverfrequencybands

Whenlookingatthecontributionofeachfrequencybandtothe

fullmodel,theresultssuggestthatdiscriminatinginformationis

distributedacrossfrequencybands.Thisisfurthersupportedby

thefactthatthefullmodelmaydisplayevenhigheraccuracythan

asinglefrequencybandeventhoughthesizeoftheinput-space

wasmultipliedby6.Inparticular,thehigh-gamma,thetaandalpha

bandsseemedtocontaininformationaboutourvariableof

inter-est.ThisresultisinlinewithpreviousmodelingofECoGdata(van

Gervenetal.,2013),whichshowedthatECoGsignalhad

predic-tivepowerinarangeoffrequencies,especiallyinthe4–16Hzand

65–128Hzfrequencybands.

Inmostoftoday’sECoGliterature,thereisaparticularfocus

ontheHFB.Thepresentworkshowsthatotherfrequencybands

couldalsocontaininformationaboutthevariableofinterest,either

ontheirownorcombinedwithotherfrequency bands(i.e.,full

Fig.5. ChannelcontributionineachfrequencybandforpatientP1.Projectionofkernelcontributionontotheelectrodeanatomicalpositiononthepatient’scortex(3D mesh),foreachfrequencyband(l-standsforlow-andh-forhigh-).Eachcircleonthecortexrepresentsthepositionofanelectrode(nottoscale).Thecontributionof thecorrespondingkerneltothefullmodelisthencolor-coded(seecolorbars):awhitefillrepresentsanelectrodewitha0%contributionandthehighestcontributionsare displayedinpurple.Electrodesdisplayedwithagreyfillwerenotconsideredformodeling(noisy/pathologicalelectrodes).Theelectrodenumberofsomeelectrodes–with acontributionrankedinthetop10–isdisplayedforcross-referencewiththetext.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle).

(8)

Fig.6.ChannelcontributionineachfrequencybandforpatientP2.

model).Thismightbringfurtherinsightsonhowtheinformation

iscodedinthehumanbrainandmighthaveimportantimplications

onupcomingstudiesbasedonECoGrecordings.

4.3. Automaticselectionoffeatures

Duringitsestimation,themodelautomaticallyselectedwhich

electrodesand/orfrequencybands shouldhave anon-null

con-tributiontowardbetterdiscriminationbetweenconditions.This

data-drivenanalysisallowedus toidentifythesiteswithinthe

coveredcorticalregionsthathadbeenidentifiedpreviouslywith

univariateresults.Forinstance,oursiteswiththelargest

contrib-utionshadbeenshownpreviouslyassignificantlydeactivatedor

activatedduringthemath ornon-math conditions (i.e.,theIPS

activationduring mathtrials andRSC activationsand

deactiva-tionsduringnon-mathandmathtrials,respectively(Dastjerdietal.,

2013;Fosteretal.,2012).InlinewiththecurrentECoGliterature,

thehigh-bandledtothehighestmodelingaccuracyandhadthe

(9)

largestweightinthefullmodelforpatientsP1andP2,whichisalso

inagreementwithourownpreviousunivariateresults(Dastjerdi

etal.,2013).Univariateanalyseshoweverneglectedtoidentifythe

significantcontributionof˛and bandsascontainingrelevant

informationforpatientP3,oncemoreconfirmingthesuperior

sen-sitivityofMKLmachinelearningmodeltoidentifydistributedbrain

activityduringagivencognitivecondition.

4.4. Prospectiveuses

Inthepresentwork,thekernelswerecomputedfromthe

tem-poralevolutionoftheaveragedpowerinaspecificfrequencyband

ineachelectrode.However,anyfeaturecouldbeconsideredfor

modeling(e.g.,therawsignaloneachchannel,coherencevalues

orphase values), dependingontheclinical orcognitive

neuro-sciencequestiontoinvestigate.Moreover,theMKLapproachas

definedinthisworkcanbetransposedandappliedtoany

combi-nationofdimension,whichallowsinvestigatingmultipleaspects

ofsuchaquestion.Forexample,thesignalinanepochcouldbe

dividedintosub-timewindowsof 10ms,for each channel.The

MKLmodel would hence provideinformation onthe timingof

bestdiscriminationbetweentwo classes for each channel.This

wouldallowinvestigatingthetemporalpropagationofthesignal

ofinterestoverthechannels.Inthesameway,weusedpre-defined

frequencybandstoillustrateourMKLapproach.However,itmight

beofinteresttoconsidersubject-specificfrequencybands (e.g.,

for activity).Tothis end,a kernelcouldbebuiltfor each

fre-quencybin in a frequency bandof interest. The resultingMKL

modelwouldthenautomaticallyselectwhichfrequencybins

con-taininformationaboutthevariableofinterestforthisspecificdata

set/subject.Finally,differenttypesoffeaturescouldbecombined

(e.g.,power,phaseandrawsignal).TheresultingMKLmodelwould

providethecontributionsofeachfeaturetypetothefinalmodel.

Thiswouldallowinvestigating whetherdifferentfeatures bring

complementary information regarding the variable of interest

ornot.

Furthermore, we chose to illustrateour method with ECoG

data since the interpretation of the selection of electrodes in

termsofanatomicallocationisstraightforward.Practically

how-ever,the same technique can beapplied toscalp EEG or MEG

data.

Anotherprospectiveapplicationof theMKLapproach isthat

itallowsinvestigatingpotentiallinearcombinationsbetweenthe

signalsondifferentelectrodes,inthesameordifferentfrequency

bands.Thisfieldofstudyrecentlyreceivedsignificantattention,

especiallywhenstudyingresting-statenetworksandhow

differ-entconditionscanaffecttherelationshipbetweendifferentareas

withinorbetweennetworks.Inparticular,phase-amplitude

cou-plingscouldeasilybeinvestigatedbycomputingonekernelper

electrodeusingthepowerinaspecificfrequencyband(e.g.,HFB)

andonekernelperelectrodeusingthephaseinthesameoranother

frequencyband(e.g.,).

4.5. Limitations

Itshouldbenotedthatthealgorithmusedinourpresentwork

(Rakotomamonjy etal.,2008)issparseinterms ofthe

contrib-utionsofthekernelstothefinaldecisionboundary.Itispossible

thattheinformationofinterestismorewidelydistributedacross

electrodes/frequencybands,andtheconsideredalgorithmmaynot

selectkernelscontainingcorrelatedsignals.Asaresult,

neighbor-ingelectrodesarenotoftenselectedsimultaneouslyinthesame

modelestimation (onlya subsetisselected). Unfortunately,the

consideredformulationdoesnotallowtocontrolforthelevelof

sparsity.Ifanon-sparseanalysisisdesired,onecanuseanother

typeofregularization,suchastheelastic-net(combinationofL-1

andL-2regularization,(ZouandHastie,2005)),asdiscussedin(van

Gervenetal.,2013).InvestigatingMKLapproacheswithothertypes

ofregularizationsisatopicforfuturework.

4.6. Availabilityofthemethod

ThePRoNTotoolbox(Schrouffetal.,2013)hasbeenadapted

toperformthemachinelearningmodelingofelectrophysiological

data(intheSPMMEEGformat).Allthefunctionalitiespresentedin

thiswork,aswellasintheprospectiveuseshavebeenimplemented

intheversion3.0ofouropen-sourcesoftware.PRoNTov3.0willbe

releasedassoonaspossible(www.mlnl.cs.ucl.ac.uk/pronto).

4.7. Conclusion

In this work, we propose a sparse MKL approach to

auto-matically select relevant sites of recording and/or frequency

bands during cognitive processing in the human brain. We

show that the MKL method is more sensitive than univariate

methodstodecodea variableofinterestbasedon

electrophysi-ological recordings.We alsodemonstratethat theMKLmethod

provides an easy way to locate the information of interest

intermsofanatomy,timewindoworfrequencydomain.

Conflictofinterest

None.

Acknowledgments

We thank Müge Ozker, Brett Foster, Mohammad Dastjerdi,

VinithaRangarajan,and StanfordEpilepsyMonitoringUnitstaff

forhelp withelectrophysiologicalrecordings.Thisresearchwas

supported by US National Institute of Neurological Disorders

and Stroke (R01NS078396), and US National Science

Founda-tion(BCS1358907)toJ.P.andtheBelgianAmericanEducational

Foundation(BAEF),LéonFrédéricqFunds-RotaryMedical

Founda-tionofLiègeandMarieSkłodowskaCurieActions(DecoMPECoG,

grant 654038) to J.S. C.P. was funded by the Belgium National

Research Funds (F.N.R.S.) and J.M.M. by the Wellcome Trust

(WT086565/Z/08/ZandWT102845/Z/13/Z).

References

ChangEF,RiegerJW,JohnsonK,BergerMS,BarbaroNM,KnightRT. Categori-calspeechrepresentationinhumansuperiortemporalgyrus.NatNeurosci 2010;13:1428–32.

CortesC,VapnikV.SupportVectorNetworksMachineLearning,1995.

DaiD,WangJ,HuaJ,HeH.ClassificationofADHDchildrenthroughmultimodal magneticresonanceimaging.FrontSystNeurosci2012;6:63.

DastjerdiM,OzkerM,FosterBL,RangarajanV,ParviziJ.Numericalprocessingin thehumanparietalcortexduringexperimentalandnaturalconditions.Nat Commun2013;4:2528.

FilipovychR,ResnickSM,DavatzikosC.Multi-kernelclassificationforintegrationof clinicalandimagingdata:applicationtopredictionofcognitivedeclineinolder adults.MedImageComputComputAssistInterv2011;7009:26–34.

FilipponeM,MarquandAF,BlainCRV,WilliamsSCR,Mourao-MirandaJ,GirolamiM. Probabilisticpredictionofneurologicaldisorderswithastatisticalassessment ofneuroimagingdatamodalities.AnnApplStat2012;6:1883–905.

FlinkerA,ChangEF,BarbaroNM,BergerMS,KnightRT.Sub-centimeterlanguage organizationinthehumantemporallobe.BrainLang2011;117:103–9. FosterBL,DastjerdiM,ParviziJ.Neuralpopulationsinhumanposteromedialcortex

displayopposingresponsesduringmemoryandnumericalprocessing.ProcNatl AcadSciUSA2012;109:15514–9.

GönenM,Alpaydin E.Multiple kernellearningalgorithms. JMach Learn Res 2011;12:2211–68.

HaynesJD.Aprimeronpattern-basedapproachestofMRI:principles,pitfalls,and perspectives.Neuron2015;87:257–70.

HermesD,MillerKJ,NoordmansHJ,VansteenselMJ,RamseyNF.Automated electro-corticographicelectrodelocalizationonindividuallyrenderedbrainsurfaces.J NeurosciMethods2010;185:293–8.

(10)

auditorycortex.Science2005;309:951–4.

NirY,FischL,MukamelR,Gelbard-SagivH,ArieliA,FriedI,etal.Couplingbetween neuronalfiringrate,gammaLFP,andBOLDfMRIisrelatedtointerneuronal correlations.CurrBiol2007;17:1275–85.

NoirhommeQ,LesenfantsD,GomezF,SodduA,SchrouffJ,GarrauxG,etal.Biased binomialassessmentofcross-validatedestimationofclassificationaccuracies illustratedindiagnosispredictions.Neuroimage:Clin2014;4:687–94. Pasley BN,David SV, Mesgarani N,Flinker A, Shamma SA, Crone NE, etal.

Reconstructing speech from human auditory cortex. PLoS Biol 2012;10., http://dx.doi.org/10.1371/journal.pbio.1001251.

Neuroinformatics2013;11:319–37.

vanGervenM,MarisE,SperlingM.Decodingthememorizationofindividualstimuli withdirecthumanbrainrecordings.Neuroimage2013;70:223–32.

ZhangD,WangY,ZhouL,YuanH,ShenD.MultimodalclassificationofAlzheimer’s diseaseandmildcognitiveimpairment.Neuroimage2011a;55:856–67. ZhangY,MeyersEM,BichotNP,SerreT,PoggioTA,DesimoneR.Objectdecoding

withattentionininferiortemporalcortex.ProcNatlAcadSciUSA2011b;108: 8850–5.

ZouH,HastieT.Regularizationandvariableselectionviatheelasticnet.JRStatSoc 2005;67:301–20.

Figure

Fig. 1. Experimental design and feature extraction. (A) Examples of stimuli of each category
Fig. 2. Illustration of the multiple kernel learning (MKL) approach considered. For each electrode, the time course of the power in a specific frequency band (here high-) is extracted for each trial in the [0 1 0 0 0] ms window around onset
Fig. 3. Illustration of the outputs of the MKL model. (A) Parietal view of the surface of the cortex of patient P1
Fig. 4. Sparseness and frequency localization of the kernel contributions, for each patient
+2

Références

Documents relatifs

La troisième ligne présente le facteur d’impact du Journal Citation Report (JCR) calculé par l’ISI, et la dernière ligne, un facteur d’impact recalculé, qui ne prend en

By periodically modulating the coefficient of friction at a constant frequency of 11 Hz, we expected that scanning of the fingertip against the display would induce an SS-EP

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Our study indicates that the ideal time-points for therapeutic drug monitoring of once daily administered aminoglycosides are 1 h after start of a 30-min infusion for the first and

Pour cette forme, on trouve : des coupes sans revêtement ; des biscuits ; des biscuits avec des motifs géométriques incisés à travers une couche d’engobe blanc, notamment

Theorem 1.3. We remark that the hypothesis of Theorem 1.3 are satisfied for a principal ideal I. In particular Theorems 1.1 and 1.3 provide a criterion for a principal ideal to

word initial Cs in Georgian considered as complex onsets: results confirm that indeed 2-3C clusters reflect a global, prototypical c-center coordination. however, when speech system

The majority of the sources are located in the cortex, i.e., the real position of the dipole is often close to the interface, the accuracy of results in this situation is