• Aucun résultat trouvé

Improvement of corrosion protection of steel by incorporation of a new phosphonated fatty acid in a phosphorus-containing polymer coating obtained by UV curing

N/A
N/A
Protected

Academic year: 2021

Partager "Improvement of corrosion protection of steel by incorporation of a new phosphonated fatty acid in a phosphorus-containing polymer coating obtained by UV curing"

Copied!
8
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 14082

To link to this article : doi:

10.1016/j.porgcoat.2013.10.002

URL :

http://dx.doi.org/10.1016/j.porgcoat.2013.10.002

To cite this version : Millet, France and Auvergne, Rémi and Caillol,

Sylvain and David, Ghislain and Manseri, Abdelatif and Pébère,

Nadine Improvement of corrosion protection of steel by incorporation

of a new phosphonated fatty acid in a phosphorus-containing polymer

coating obtained by UV curing. (2014) Progress in Organic Coatings,

vol. 77 (n° 2). pp. 285-291. ISSN 0300-9440

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Improvement

of

corrosion

protection

of

steel

by

incorporation

of

a

new

phosphonated

fatty

acid

in

a

phosphorus-containing

polymer

coating

obtained

by

UV

curing

France

Millet

a

,

Rémi

Auvergne

b

,

Sylvain

Caillol

b

,

Ghislain

David

b

,

Abdelatif

Manseri

b

,

Nadine

Pébère

a,∗

aUniversitédeToulouse,CIRIMAT,UPS/INPT/CNRS,ENSIACET,4alléeEmileMonsoBP44362,31030ToulouseCedex4,France

bInstitutCharlesGerhardtUMRCNRS5253,LaboratoireIngénierieetArchitectureMacromoléculaire,EcoleNationaleSupérieuredeChimiedeMontpellier,

8ruedel’EcoleNormale,34296MontpellierCedex05,France

Keywords:

Phosphonatedmethacrylate Coating

Phosphonatedfattyacid Inhibitor

Electrochemicalimpedancespectroscopy

a

b

s

t

r

a

c

t

Sixformulationscontainingdiacrylatemonomers(from89to92.5%(w/w))aswellasaphosphonated

methacrylatemonomer(from1to10%(w/w))wereprepared.AllformulationswereUV-curedandthe

corrosionperformanceoftheresultingcoatingsappliedontoasteelsubstratewasassessedby

elec-trochemicalimpedancespectroscopy(EIS).Itwasfirstshownthatthecoatingscontainingphosphonic

acidmethacrylate(MAPC1(OH)2)insteadofmethacrylatephosphonicdimethylester(MAPC1)presented

highercorrosionprotectionrelatedtothestrongadhesivepropertiesofphosphonicacidonthemetal

substrate.AminimumMAPC1(OH)2contentof2.5%wasdeterminedtoprovidethehighestimpedance

values(bestefficiency).Then,anewbio-basedcompound,i.e.phosphonicacid-bearingoleicacid

(phos-phonatedfattyacid),wassynthesizedandaddedasaninhibitortotheformulations.Inthepresenceof

thiscompound,thecorrosionprotectionwasnotablyimproved.Thebeneficialeffectofphosphonated

fattyacidwasexplainedbyitsinhibitiveactionatthesteel/coatinginterfaceandbytheimprovementof

thebarrierproperties.

1. Introduction

Inrecentyears,phosphorus-containingproductshavegained significantdevelopmentduetotheirinterestingpropertiesin var-ious applications. For example, dental adhesives, ion-exchange resinsand adhesion promotors are three ofthe more common applications[1–7].Furthermore,flameretardantscontaining phos-phorus atoms progressively came to replace halogenatedones [8–12].Phosphorus-containingcompoundsareexcellent promo-tors withrespecttoadhesion,and thus improve anti-corrosion effects.Commercialanti-corrosionpolymersaregenerallyformed from Sipomer® or Phosmer® monomers, which are

phosphate-type(meth)acrylates,andcanbereadilypolymerizedviaemulsion or solution [13,14]. Sheffer et al. [15] reported the enhanced corrosionprotectionof sol–gelfilmsonaluminum substrateby entrappingphosphonategroupinorganosilanes.However, phos-phonategroupswhichremainasadditivesinaphysicalmixture can lead to dynamic phenomena such as aggregation, phase separation or leaching by solvent or water with time. Such

∗ Correspondingauthor.Tel.:+33534323423. E-mailaddress:nadine.pebere@ensiacet.fr(N.Pébère).

disadvantages can be overcomeif the phosphonates form part ofpolymer network.Kannanetal.[16,17]reportedthe synthe-sisofahighlycross-linkedmethacrylate-phospho-silicatehybrid bycopolymerizing2-(methacryloyloxy)ethyl phosphate(EGMP), containing a polymerizable methacrylate group and functional phosphategroupwith3-[(methacryloyloxy)propyl] trimethoxysi-lane(MEMO)whichpossessesapolymerizablemethacryloxygroup atoneendandalkoxysilanegroupscapableofforminginorganic networksvia sol–gelrouteat theotherend.Protection ofsteel substrateswiththesehybridcoatingswasexplainedbythestrong interfacialacid–baseinteractionsofP–O−groupsfromphosphate

withtheMn+fromthemetalsubstrate[17].Polymerswithsome

phosphonatefunctionalityhavelongbeenestablishedasexcellent adhesivesandanti-corrosioncompounds[18–25].However,there hasbeenverylittleinvestigationintotheuseofphosphonate-type methacrylatesforthesamepurpose[13,14,26].Inaneffortto syn-thetizenewtypesofphosphonatedmethacrylatemonomers,we haveproposedaseriesofmonomerswiththefollowinggeneral formula: CH2 C(CH3)C(O)O(CH2)nP(O)(OR1)(OR2).The synthesis

wasachievedbyusingseveralorganicpathwayssuchasthe well-knownArbusovreaction[27,28]orbyusinghydroxyl-phosphonate compoundsunderSchotten–Baumanconditions[29]endingwith methacrylates bearing spacer n values from 1 to 11. More

(3)

recently, new N,N-amino-bisphosphonic-containing methacry-lates (MACnNP2) [30] and new gem-bisphophonic-containing

methacrylates(MACnP2)[31]havealsobeensynthesizedand

poly-merizedunderUV-light.Theresultingcoatings,evaluatedbysalt spraytest,showedefficientcorrosionprotectionofsteelafterover 900h of exposure. Posner et al. [32] already reported UV cur-ablecoatingsbasedonacrylate/styrenecopolymerstobeefficient againstcorrosion, but no phosphonate-containingmethacrylate compoundhasbeenusedsofar.

Theaimof the presentstudy wastoevaluate thecorrosion protectionof coatingsobtained from UV polymerization based on (meth)acrylate compounds and more specifically diacrylate monomersaswellasphosphonatedmethacrylatemonomers.The coatingswereappliedon a steelsubstrate and thebehavior of thesteel/coatinginterfacewascharacterizedduringimmersionin 0.1MNaClbyelectrochemicalimpedancespectroscopy[33–37]. Inthefirstpartofthestudy,theinfluenceofthephosphonicacid methacrylatecontentonthecorrosionprotectionwasinvestigated. Then,inasecondstep,anewphosphonatedfattyacidwas synthe-sizedandaddedtotheformulationpriortotheUVpolymerization. NotethatthismoleculedoesnotparticipateintheUVcross-linking withacrylatemonomersbutwasincorporatedintheformulation asaninhibitivecompoundtoenhancethecorrosionprotectionof thesteel.

2. Experimental 2.1. Materials

AllchemicalswerepurchasedfromAldrichandusedwithout furtherpurification.

Two phosphonated methacrylate monomers MAPC1 and MAPC1(OH)2weresynthesizedaccordingtoapreviouslydescribed

procedure[26].TheirchemicalstructureisshowninFig.1. Low-carbon steel Q-Panel plates (SAE1008/1010, R type) 150mm×75mm×0.8mmwereusedassubstrate.

2.2. Synthesisofanewphosphonatedfattyacid(phosphonic acid-bearingoleicacid)

Inafirststep,thephosphonationofmethyloleatewascarried outinaglassreactorcontaining0.249g(0.00170mol)of di-tert-butylperoxide,10g(0.034mol)ofmethyloleateandtwomolar equivalents of dimethyl phosphite. The mixture washeated to 125◦Cfor12h.Aftercoolingtoroomtemperature,excessdimethyl

phosphite wasremovedunder highvacuum.Phosphonic ester-bearing oleic methyl ester was obtained with 78% yield. This synthesiswasperformedbySpecificPolymersandsoldunderthe SP-3S-10-001trademark.

1HNMR(CDCl

3,ı,ppm):3.70(d,6H,PO(OCH3)2),3.63(s,3H,

COOCH3), 2.26(t,2H, CH2-COOCH3), 0.84 (t, 3H, CH3-CH2).31P

(CDCl3,ı,ppm):37.7.

Inasecondstep,10g(0.025mol)ofphosphonicester-bearing oleic methylester and 50g of dioxanewere introduced into a single-necked round bottom flask equipped with a condenser

Fig.1.Structuresofthemonomers:(a)methacrylatephosphonicdimethylester (MAPC1)and(b)phosphonicacidmethacrylate(MAPC1(OH)2).

Table1

Compositionofthedifferentformulationspreparedfortheelectrochemical charac-terization.Eachformulacontains6%Darocur.

Formulation Acrylates (wt.%) MAPC1(wt. %) MAPC1(OH)2 (wt.%) Newphosphonated fattyacid(wt.%) 1 92.7 1.3 – – 2 92.7 – 1.3 – 3 91.5 – 2.5 – 4 89 – 5 – 5 84 – 10 – 6 89 – 2.5 2.5

and a magneticstirrer.Subsequently, two molarequivalents of hydrochloricacidwereaddeddropwise.Then,thesolutionwas vig-orouslystirredunderdioxanerefluxingfor6h.Afterpurification, phosphonicacid-bearingoleicacidwasobtainedwith55%yield. Thissynthesiswasperformedbyspecificpolymersandsoldunder theSP-3S-10-009trademark.

1HNMR(CD

3OD,ı,ppm):5.03 (s,4H,PO(OH)2),2.30 (t,2H,

CH2-COOH),0.92(t,3H,CH3-CH2).31P(CD3OD,ı,ppm):33.2.

The chemical structure of the products was determined by

1H and 31P NMR(Bruker AC400MHz)atroom temperaturein

CDCl3 solutions.Abbreviationss,d,t,q,mstandforsinglet,

dou-blet,triplet,quadrupletandmultiplet,respectively.TheINVGATE procedurewithdelayD1of 10swasusedtoquantify thefinal yield.

2.3. UVphotopolymerizationofmethacrylatemonomersand coatingpreparation

TheUVpolymerizationof mixturesof(meth)acrylates (com-posedoftripropyleneglycoldiacrylate,hexanedioldiacrylateand phosphonatedmethacrylateMAPC1orMAPC1(OH)2),andDarocur

1173(6%,w/w)asaphotoinitiatorwasstudiedbyrealtimeFT-IR spectroscopywithaNicoletNexusapparatuswith2cm−1

accu-racyusingOMNICsoftware.TheUVintensitywasmeasuredusing aSolatellUVspectroradiometerapparatus(4DControlsLimited, Cornwall,UK).Thekineticsof(meth)acrylate monomer conver-sionhavealreadybeenpublished[38].Thereagentswereblended without solvent.Six different formulations wereprepared. The compositionsareindicatedinTable1.Thefirstcomposition(F1) wascomposedofacrylates,MAPC1andphotoinitiator,whilethe foursubsequentcompositions(F2–F5)containedacrylatesand var-ious amounts of theMAPC1(OH)2 with photoinitiator. The last

formulation(F6)contained2.5%MAPC1(OH)2aswellas2.5%new

phosphonatedfattyacid.

Thesteelsubstratesweredegreasedwithmethylethylketone (MEK) and dried in warmair for 30min. Then, theliquid for-mulationwasuniformlyappliedonthesteelsampletoobtaina uniformlayeraftercuring.ThefilmswereappliedwithaSHEEN barcoater.Coatedsampleswerethenphotopolymerized.TheUV sourcewasplacedperpendiculartothesamplesurfaceandinduced thecrosslinkingreaction,monitoredinreal-timeviaFT-IR. Com-pleteconversionofmonomertopolymerwasobtainedafterca.60s, confirmedbyfollowingtheintensityofIRabsorptionat812cm−1

(characteristicoftheC C methacrylatemonomerdoublebond). Thedryfilmthicknesswas20±2mm(measuredbyaBykotest7500 digitalmeter).

2.4. Electrochemicalmeasurements

A three-electrode electrochemical cell was used in electro-chemicalimpedancemeasurements.Acoatedspecimenwasused asworkingelectrode.AcylindricalPlexiglastubewasassembled ontopofthecoatedsample(exposedsurfacearea:29cm2)and

(4)

filledwiththeaggressivesolutionpreparedfromdistilledwater byadding0.1MNaCl(reagentgrade).Alargeplatinumsheetand asaturatedcalomelelectrodewereusedascounterandreference electrodes,respectively.Theelectrochemicalcellwaskeptatroom temperatureandopentoair.Electrochemicalimpedance measure-mentswerecarried outusing a Solartron1287electrochemical interfaceconnectedtoaSolartron1250frequencyresponse anal-yser.Impedancediagramswereobtainedoverafrequencyrangeof 65kHztoafewmHzwithsixpointsperdecadeusinga20mV peak-to-peaksinusoidalvoltage.Thelinearityofthesystemwaschecked byvaryingtheamplitudeoftheacsignalappliedtothesample.The electrochemicalbehaviorofthesteel/coatingsinterfacewas char-acterizedfordifferentexposuretimestotheaggressivesolution rangingfrom2hto72h(3days).

2.5. Scanningelectronmicroscopy(SEM)observations

SEM,coupledwithX-raydiffraction(SEM-EDX),wasusedto visualize the morphology of the coatings and define localized concentrationsofphosphorus.Analyseswereperformedon cross-sectionsofthecoatingmaterial.SEM-EDXanalyseswereperformed usingaLEO435VPelectronmicroscopeoperatingat8kV.The phos-phorusprofileswereobtainedfrom64measurementsthroughthe wholecoatingthickness.

3. Resultsanddiscussion

Impedance measurements were performed to evaluate the effectsofthephosphonatedmethacrylatemonomersonthe cor-rosionprotectionofthesteelcoatedbythedifferentformulations. First, the influence of the methacrylate monomers (MAPC1 or MAPC1(OH)2)wasinvestigated.Then,theinfluenceoftheaddition

ofthenewphosphonatedfattyacidwasstudied.Itcanbe men-tionedthatcorrosionappearedrelativelyrapidlyindicatingthat thecoatingsofferedalowcorrosionprotection.Albeit unsatisfac-toryitishelpfultorapidlydiscriminatetheeffectoftheadditives. Forthisreason,theimpedanceresultswerecomparedforonly24h ofimmersionintheNaClsolution.

3.1. Theeffectofboththenatureandthecontentofthe phosphonatedmethacrylatemonomer(esteroracidgroups)on corrosionprotection

Fig.2reports theimpedancediagramsobtainedafter24hof immersioninthe0.1MNaClsolutionforthetwoformulations(F1 andF2).Thediagramsarecharacterizedbytwo timeconstants: thehigh-frequency(HF)partofthediagrams(from105to1Hz)is

relatedtothecoatingandattributedtothebarrierpropertiesof

102 103 104 105 106 107 108 0 20 40 60 80 10-3 10-2 10-1 100 101 102 103 104 105 F2 F1 Impedance modulus / c m 2 Phase angle / degree Frequency / Hz

Fig.2.Electrochemicalimpedancediagrams(Boderepresentation)obtainedforthe F1andF2samplesafter24hofimmersionin0.1MNaClsolution.

0 2 106 4 106 6 106 8 106 1 107 2 3 4 5 Z3 m H z / Ω c m 2 Formulation

Fig.3.|Z|3mHzafter24hofimmersionin0.1MNaClsolutionfortheformulations

withdifferentMAPC2(OH)2concentrations.

thefilm,whilethelow-frequency(LF)part(from1to10−3Hz)

cor-respondstothereactionsoccurringatthemetal/coatinginterface throughdefectsandporesinthecoating[39,40].FortheF1 coat-ing,thebarriereffect(HFrange)issignificantlylowerthanforthe F2coating:theimpedancevalueisonly2×104cm2(plateauin

theHFrange).Inaddition,theimpedancemodulusat3mHzislow whichindicatesthattheF1coatingispoorlyefficientatprotecting thesteelsurfacewhichisalsoaconsequenceofthepoorbarrier effect.ThediagramfortheF2coatingrevealsahigherimpedance modulusintheHFrange(2×106cm2)comparedtoF1indicating

thatthebarriereffectwasimproved.Thebarriereffectleadstoa decreaseofthesurfaceareaincontactwiththeelectrolyte(high impedancemodulusintheLFrange)andasaconsequencecoating F2wasmoreprotective.

Fromthisfirstsetofexperiments,itcanbeconcludedthatthe coatingcontainingacidmethacrylateinsteadofestermethacrylate conferredamoreefficientcorrosionprotectiontothemetal sub-strate.Thus,inthereminderofthestudyonlyMAPC1(OH)2 was

used.

Theinfluence oftheMAPC1(OH)2 contentin thecoatingfor

thecorrosionprotectionofthesteelwasinvestigated.Similar for-mulationswerepreparedandonlytheMAPC1(OH)2contentwas

changed(1%,2.5%,5%and10%).Theimpedancediagramspresented thesameshapeandarenotreportedhere.Itcanbementionedthat theHFpartoftheimpedancediagramswaspoorlymodifiedinthe presenceofdifferentMAPC1(OH)2concentrationsandonlytheLF

partchanged.ThisresultindicatesthatMAPC1(OH)2actsmainlyat

themetal/coatinginterface.ItwasproposedbyKitteletal.[41]and thegroupofBierwagen[42–44]thattheimpedancemodulusatlow frequencies(|Z|3mHzinthepresentstudy)couldserveasan

esti-mationofthecorrosionprotectionofapaintedmetal.Fig.3reports |Z|3mHzafter24hofimmersionintheNaClsolutionforthefour

for-mulationswithdifferentMAPC1(OH)2contents.Itcanbeseenthat

theimpedancemodulusisthehighestfortheF3formulation(2.5%) anddecreaseswhentheMAPC1(OH)2concentrationincreases(F4

andF5).However,thedecreaseisnotsignificantandthedatain Fig.2allowaminimumefficientMAPC1(OH)2concentrationtobe

determined.Thisconcentrationisaround2.5%.

3.2. Influenceoftheadditionofnewphosphonatedfattyacidon thecorrosionprotectionofcoatedsteel

3.2.1. Newphosphonatedfattyacid

In the present study, the phosphonation of methyl oleate wasinvestigated.Thechemicalincorporationofphosphonicacid moitiesontomethyloleatewasdoneviaatwo-steppathway,as depictedbelow:

(5)

Fig.4.1HNMR(CDCl

3)ofphosphonate-bearingmethyloleate. (a)

Fig.5.1HNMRand31PNMR(CDCl

(6)

102 103 104 105 106 107 108 0 20 40 60 80 10-3 10-2 10-1 100 101 102 103 104 105 F6 F3 F4 Impedance modulus / Ω c m 2 Phase angle / degree Frequency / Hz

Fig.6.Electrochemicalimpedancediagrams(Boderepresentation)obtainedfor samplesF3,F4andF6after24hofimmersionin0.1MNaClsolution.

Thefirststepcorrespondstotheradicaladditionofdimethyl phosphite ontotheunsaturated C C of theacid.Aswith thiol-eneradicalcoupling[45],radicaladditionofmethyloleate(MO) withdimethylphosphite,usedaschaintransferagent(CTA),was carriedoutathightemperaturewithanexcessofCTAcompared todoublebond.Inthesereactionconditions,phosphonationwas accomplishedafter12handtheresultingMO-phosphonatewas obtainedat about80%yield. In Fig.4, 1H NMR shows thatthe

CH3protonsofthemethylphosphonateesterappearat3.70ppm.

Moreover,thevinylprotonsofMO,centeredat5.34ppm,areno longerpresent,indicatingsuccessfulphosphonation.Furthermore,

31PNMRshowedasinglepeakcenteredat37.7ppm(notreported

here).

Phosphonated fatty acid was obtained in a second step by hydrolysisofmethylestergroupsofphosphonatemoietieswith hydrochloricacidinadioxanesolution.Inthesereaction condi-tions,themethylesterofmethyloleatewasalsohydrolyzedto leadtothecorrespondingcarboxylicacid.Fig.5showsthe1HNMR

and31PNMRspectraofthephosphonatedfattyacid.TheCH

3

pro-tonsofthemethylphosphonateester,centeredat3.70ppm,areno longerpresent,indicatingsuccessfulhydrolysis.Insupportofthis, thepeakofP O CH3at37.7ppmisshiftedto33.2ppmforP OH.

3.2.2. Thecorrosionprotectionofcoatedsteelwiththeadditionof oleicacidphosphonicacid

ItwasseenthatinthepresenceofmethacrylateMAPC1(OH)2,

thehighestimpedancevaluewasobtainedwhenitwas incorpo-ratedintotheformulationataconcentrationof2.5%(F3coating). The performance of the coating containing the phosphonated fattyacid(F6formulation)wascomparedtotheF3coating.The impedancediagramsobtainedafter24hofimmersionintheNaCl solutionarereportedinFig.6.TheimpedanceoftheF4coating(5% MAPC1(OH)2)isalsoshowninordertoseparatetheroleplayed

Fig.8.SEMmicrograph(cross-section)forcoatingF6.

bytheadditionofthephosphonatedfattyacidandtheroleofthe acidinthemethacrylateMAPC1(OH)2.ItcanbeseeninFig.6,that

theadditionofphosphonatedfattyacidimprovedthebarrier prop-ertiesofthecoating.FortheF3andF4coatings,theimpedance valuesintheHFrangewerebetween2×106 and3×106cm2.

Withtheadditionofthephosphonatedfattyacid,theimpedance valueintheHFrangewasabouttentimeshigher(2×107cm2).

Theimpedancemodulusat3mHzwas4×107cm2showingthat

thecorrosionprotectionwasimproved.

Photographsoftheelectrodesurfaceweretakenattheendof theelectrochemicaltest(72hofimmersionintheNaClsolution) andareshowninFig.7.ThesurfaceofcoatingF6appearspoorly corroded,andincontrast,thesurfacesofthecoatingsF3andF4 aredamagedandcorrosionproductsareclearlyvisible.The pho-tographscorroboratetheelectrochemicalresultsandunderlinethe beneficialeffectoftheadditionofphosphonatedfattyacidonthe corrosionprotectionofthesteelsurface.

Toanalyzetheroleofphosphonatedfattyacid,SEM/EDX analy-seswereperformed.Theaimwastodetectthephosphorusthrough thewholecoatingthicknessandparticularlyatthemetal/coating interfaceandtoshow(ifpossible)aphosphorusgradient concen-tration.Foreachsampletwodifferentzoneswerestudied.Fig.8 showsacross-sectionoftheF6coating.Thecoatinghasauniform thickness.PhosphorusprofileswereobtainedforF4andF6coatings (Fig.9).InFig.9a,itcanbeseenthatthroughthewholecoating thickness,thequantityofphosphorusisconstant.Aprogressive decreasecanbeobservedattheouterpartofthecoatingwhichcan beexplainedbytheSEMproberesolution.Incontrast,inFig.9b,the phosphorusprofilesaresignificantlymodifiedatthemetal/coating interfaceandrevealahigherphosphoruscontent.Itcanbeseen thatabout3mmoftheinternalzoneofthecoatingwasenriched inphosphorus.However,EDXisnotasuitabletechniqueto deter-minethethicknessofthisinterfacialzoneaccurately.Thedifference betweenthetwosamples(Fig.9aandb)wasonlythepresenceof thephosphonatedfattyacid.Thus,itcanbeconcludedthatinthe F6coatingthephosphonatedfattyacidcanmigratethroughthe

(7)

0 200 400 600 800 1000 20 15 10 5 0 F4 coating Counts number Coating thickness / µm Metal/coating interface 0 200 400 600 800 1000 20 15 10 5 0 F6 coating Counts number Coating Thickness / µm Metal coating interface

Fig.9.PhosphorusprofilesalongthecoatingthicknessforcoatingsF4andF6(,♦: resultsoftwoindependentmeasurementsonthesamesample).

filmandreachthesubstratetoinhibitthecorrosionofthesteel [46,47].Asaconsequence,corrosionresistancewasimproved.It canbenotedthatthephosphoruscontentwashigherfortheF4 coatinginagreementwiththehigherMAPC1(OH)2content.

4. Conclusions

Differentformulationscontainingdiacrylatemonomers, phos-phonicmethacrylateandanewlysynthesizedphosphonatedfatty acidweredepositedonacarbonsteelsubstrateandpolymerized byUVcuring.Thecorrosionprotectionaffordedbythedifferent coatingswasinvestigatedbyEIS.Fromtheimpedancedata,itwas foundthat:

(i)Phosphonicacidmethacrylateprovidedhighercorrosion resis-tanceincomparisonwithestermethacrylate.

(ii)Thebestcorrosionprotectionwasobtainedwith2.5% phos-phonicacidmethacrylate.Anincreaseoftheconcentrationdid notimprovethecorrosionresistanceofthesteel.

(iii)Theadditionofthesynthesizedphosphonatedfattyacidinthe formulationsignificantlyenhancedtheprotectiveproperties ofthecoating.Thisperformancewasexplainedbyboththe bar-rierpropertiesandthecorrosioninhibitionatthesteelsurface duetothepresenceofthephosphonicgrouponthemolecule. Finally,integratingphosphonatedfattyacidinabio-based coat-ingusingvegetableoils[48]seemstobepromising.Thisstudyis stillunderinvestigationandshouldbethesubjectofaforthcoming publication.

Acknowledgments

TheauthorsgratefullyacknowledgeYannickThebaultforhis mostvaluableassistanceintheareaofSEM-EDX.Theauthorsalso

gratefullyacknowledgeSpecificPolymersforprovidingthe phos-phonatedfattyacidmolecule.

References

[1]U.Quittmann,L.Lecamp,W.ElKhatib,B.Youssef,C.Bunel,Macromol.Chem. Phys.202(2001)628–635.

[2]K.-Y.Hwang,H.-H.Chen,A.-P.Tu,Phosphorus-ContainingResinsand Fire-ResistantEpoxyResinCompositionsContainingtheSame,USPat.Appl.Publ. U.S.A.:(ChangChunPlasticsCo.,Ltd.,Taiwan),2003,10pp.

[3]I.Y.Wan,L.A.Keifer,J.E.McGrath,T.Kashiwagi,PolymerPreprints,Am.Chem. Soc.,Div.Polym.Chem.36(1995)491–492.

[4]Y.Zhang,J.C.Tebby,J.W.Wheeler,Eur.Polym.J.35(1998)209–214.

[5]A.R.Horrocks,S.Zhang,Polymer42(2001)8025–8033.

[6]G.Fesman,R.Y.Lin,R.A.Rehder,Flame-RetardantMixtureforPolyurethane Materials,Eur.Pat.Appl.Ep:(StaufferChemicalCo.,USA),1985,14pp.

[7]J.R.Ebdon,D.Price,B.J.Hunt,P.Joseph,F.Gao,G.J.Milnes,etal.,Polym.Degrad. Stab.69(2000)267–277.

[8]D.Hoang,J.Kim,B.N.Jang,Polym.Degrad.Stab.93(2008)2042–2047.

[9]D.Hoang,J.Kim,Polym.Degrad.Stab.93(2008)36–42.

[10]S.V.Levchik,E.D.Weil,J.FireSci.24(2006)345–364.

[11]Y.-L.Liu,G.-H.Hsiue,Y.-S.Chiu,R.-J.Jeng,L.-H.Perng,J.Appl.Polym.Sci.61 (1996)613–621.

[12]S.V.Levchik,E.D.Weil,AdvancesinFireRetardantMaterials,2008,pp.41–66,

https://woodhead.metapress.com/content/v13w15j183wr6j2t/resource-secured/?ta

[13]M.Zakikhani,J.Davis,PolyacrylatePhosphateAdhesiveandFlame-Retardant Compositions,Eur.Pat.Appl.Ep:(Albright&WilsonUkLimited,UK),1997,10 pp.

[14]T.Okamoto,H.Mori,H.Matsuda,AdhesiveCompositions,Us:(OkuraIndustrial Co.,Japan),US,1984,8pp.

[15]M.Sheffer,A.Groysman,D.Starosvetsky,N.Savchenko,D.Mandler,Corrosion Sci.46(2004)2975–2985.

[16]A.G.Kannan,N.R.Choudhury,N.K.Dutta,Polymer48(2007)7078–7086.

[17]A.G.Kannan,N.R.Choudhury,N.K.Dutta,J.Electroanal.Chem.641(2010) 28–34.

[18]W.Herbst,H.Ludwig,F.Roehlitz,H.Vilcsek,MethodandMaterialforthe Appli-cationofAdheringCoatingsonIronandSteelSurfaces,De:(Metallgesellschaft A.-G.),1965,3pp.

[19]N.Moszner,F.Zeuner,U.K.Fischer,V.Rheinberger,Macromol.Chem.Phys.200 (1999)1062–1067.

[20]N.Moszner,U.Salz,J.Zimmermann,Dent.Mater.21(2005)895–910.

[21]U.Salz,J.Zimmermann,F.Zeuner,N.Moszner,Polym.Preprints45(2004) 325–326.

[22]U. Salz,J. Zimmermann,F. Zeuner, N.Moszner,J. Adhes.Dent. 7(2005) 107–116.

[23]F.Zeuner,N.Moszner,T.Volkel,K.Vogel,V.Rheinberger,Phosphorus,Sulfur SiliconRelat.Elem.144–146(1999)133–136.

[24]F.Zeuner,N.Moszner,M.Drache,V.Rheinberger,Phosphorus,SulfurSilicon Relat.Elem.177(2002)2263.

[25]O.Senhaji,J.J.Robin,M.Achchoubi,B.Boutevin,Macromol.Chem.Phys.205 (2004)1039–1050.

[26]Z.ElAsri,K.Chougrani,C.Negrell-Guirao,G.David,B.Boutevin,C.Loubat,J. Polym.Sci.PartA:Polym.Chem.46(2008)4794–4803.

[27]G.F.D’Alelio,Halogenatedestersofphosphorus-containingacids,USPat,Us: (USA),1975,p.12pp,Continuation-in-partofU.S.3,780,144.

[28]G.F.D’Alelio,Halogenatedestersofphosphorus-containingacids,USPat,Us: (USA),1977,p.11pp,DivisionofU.S,3,950,457.

[29]C.N.Smit,W.E.Hennink,B.DeRuiter,A.H.Luiken,M.P.W.Marsman,J.Bouwma, RadTech’90NorthAm,ConfProc,vol.2,1990,pp.148–153.

[30]K.Chougrani,B.Boutevin,G.David,Eur.Polym.J.44(2008)1771.

[31]K.Chougrani,B.Boutevin,G.David,S.Seabrook,C.Loubat,J.Polym.Sci.:Polym. Chem.46(2008)7972.

[32]R.Posner,P.E.Sundell,T.Bergman,P.Roose,M.Heylen,G.Grundmeier,J. Elec-trochem.Soc.158(2011)C185–C193.

[33]J.E.O.Mayne,J.Soc.Chem.Ind.,Lond.66(1947)93–95.

[34]L.Beaunier,I.Epelboin,J.C.Lestrade,H.Takenouti,Surf.Technol.4(1976) 237–254.

[35]F.Mansfeld,M.W.Kendig,S.Tsai,Corrosion38(1982)478–485.

[36]F.Mansfeld,Electrochim.Acta35(1990)1533–1544.

[37]P.L. Bonora, F. Deflorian, L. Fedrizzi, Electrochim. Acta 41 (1996) 1073–1082.

[38]K.Chougrani,B.Boutevin,G.David,S.Seabrook,C.Loubat,J.Polym.Sci.PartA: Polym.Chem.46(2008)7972–7984.

[39]N. Pebere, T. Picaud, M. Duprat, F. Dabosi, Corrosion Sci. 29 (1989) 1073–1086.

[40]C.LePen,C.Lacabanne,N.Pebere,Prog.Org.Coat.39(2000)167–175.

[41]J. Kittel, N.Celati, M.Keddam, H.Takenouti, Prog. Org.Coat. 46(2003) 135–147.

[42]G.Bierwagen,D.Tallman,J.Li,L.He,C.Jeffcoate,Prog.Org.Coat.46(2003) 148–157.

[43]R.L.DeRosa,D.A.Earl,G.P.Bierwagen,CorrosionSci.44(2002)1607–1620.

[44]B.R.Hinderliter,S.G.Croll,D.E.Tallman,Q.Su,G.P.Bierwagen,Electrochim.Acta 51(2006)4505–4515.

(8)

[45]M.Desroches,S.Caillol,V.Lapinte,R.Auvergne,B.Boutevin,Macromolecules 44(2011)2489–2500.

[46]Y.Gonzalez,M.C.Lafont,N.Pebere,G.Chatainier,J.Roy,T.Bouissou,Corrosion Sci.37(1995)1823–1837.

[47]Y.Gonzalez,M.C.Lafont,N.Pebere,F.Moran,J.Appl.Electrochem.26(1996) 1259–1265.

[48]M.Desroches,S.Caillol,R.Auvergne,B.Boutevin,G.David,Polym.Chem.3 (2012)450–457.

Figure

Fig. 1. Structures of the monomers: (a) methacrylate phosphonic dimethyl ester (MAPC1) and (b) phosphonic acid methacrylate (MAPC1(OH) 2 ).
Fig. 2 reports the impedance diagrams obtained after 24 h of immersion in the 0.1 M NaCl solution for the two formulations (F1 and F2)
Fig. 5. 1 H NMR and 31 P NMR (CDCl 3 ) of phosphonic acid-bearing oleic acid.
Fig. 7. Photographs of the electrode surface after 72 h of immersion in 0.1 M NaCl solution for samples: (a) F3, (b) F4 and (c) F6 (Surface area: 29 cm 2 ).
+2

Références

Documents relatifs

This scheme might explain why the FedPer algorithm does not succeed in generalizing (Generalization accuracy = 53.01%), as it can be seen in Figure 7. The personalization layer

The result revealed also signi ficant increases (p b 0.05) in the activities of catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) and significant decreases in

He pieced together something on ''Teaching the Unteachable."4 ln this he happened to notice a newspaper report in which "three women professors threw up their jobs

Les sondes qui ont survolé Mars ont détecté la présence d’écoulements d’eau pendant de courtes durées sur les flancs de colline et les pentes, lorsque la couche de

Dissimilarity in spectral shape (θ metric) of the mammal pelts versus the average spectrum of the adult polar bear for the full range ASD spectroradiometer data (A) and based

The scattering effects due to the generated plasma compensate for self-focusing to some extent but they also distort the beam profile with consequent distortion of the

One can harness the power of old existing software components with newer components which may be built with newer tools to provide the customer a composite application

Using a coupling agent in PP/clay PNCs proved to improve clay intercalation, dispersion and interfacial interaction, and led to improvements in the fracture toughness with respect