• Aucun résultat trouvé

Revisiting the spectral analysis for high-order spectral discontinuous methods

N/A
N/A
Protected

Academic year: 2021

Partager "Revisiting the spectral analysis for high-order spectral discontinuous methods"

Copied!
25
0
0

Texte intégral

(1)

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 17688

To cite this version: Vanharen, Julien and Puigt, Guillaume and Vasseur, Xavier and

Boussuge, Jean-François and Sagaut, Pierre Revisiting the spectral analysis for

high-order spectral discontinuous methods. (2017) Journal of Computational Physics, vol.

337. pp. 379-402. ISSN 0021-9991

(2)

Revisiting

the

spectral

analysis

for

high-order

spectral

discontinuous

methods

Julien Vanharen

a

,

,

Guillaume Puigt

a

,

Xavier Vasseur

b

,

Jean-François Boussuge

a

,

Pierre Sagaut

c

aCentre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), 42 avenue Gaspard Coriolis, 31057 Toulouse

Cedex 01, France

bISAE-SUPAERO, 10 avenue Edouard Belin, BP 54032, 31055 Toulouse Cedex 4, France cAix Marseille Univ, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451 Marseille, France

a

b

s

t

r

a

c

t

Keywords:

Space–timespectralanalysis Spectraldiscontinuous FiniteDifference Aeroacoustics Aliasing

MatrixPowerMethod

The spectral analysis is a basic tool to characterise the behaviour of any convection scheme.By nature,thesolutionprojectedontotheFourierbasisenablestoestimatethe dissipationandthedispersionassociatedwiththespatialdiscretisationofthehyperbolic linearproblem. Inthispaper,wewishtorevisitsuchanalysis,focusingattentionontwo keypoints.Thefirstpointconcernstheeffectsoftimeintegrationonthespectralanalysis. Itisshownwithstandardhigh-orderFiniteDifferenceschemesdedicatedtoaeroacoustics thatthetimeintegrationhasaneffectontherequirednumberofpointsperwavelength. The situationdepends onthe choiceofthe coupledschemes (one for timeintegration, one for spacederivativeand one for the filter)and here,the compact schemewith its eighth-orderfilterseemstohaveabetterspectralaccuracythantheconsidered dispersion-relation preservingscheme with its associated filter, especiallyin terms of dissipation. Secondly, suchacoupledspace–timeapproachisappliedtothe newclassofhigh-order spectraldiscontinuousapproaches,focusingespeciallyontheSpectralDifferencemethod. Anewwaytoaddressthespecificspectralbehaviouroftheschemeisintroducedfirstfor wavenumbersin[0,

π

],followingtheMatrix Powermethod.Forwavenumbersabove

π

, an aliasing phenomenon alwaysoccurs but it is possible to understand and to control the aliasing of the signal. It is shown that aliasing dependson the polynomial degree and onthe number of time steps. A new way to define dissipation and dispersionis introducedandappliedtowavenumberslargerthan

π

.Sincethenewcriteriarecoverthe previousresultsforwavenumbersbelow

π

,thenewproposed approachisanextension ofallthepreviousones dealingwithdissipationand dispersionerrors.Atlast,sincethe standard FiniteDifference schemescanserveas referencesolutionfortheircapabilityin aeroacoustics,it isshownthattheSpectralDifferencemethodisas accurateas (oreven moreaccurate)thantheconsideredFiniteDifferenceschemes.

*

Correspondingauthor.

E-mail addresses:julien.vanharen@cerfacs.fr(J. Vanharen),guillaume.puigt@cerfacs.fr(G. Puigt),xavier.vasseur@isae.fr(X. Vasseur),

(3)

1. Introduction

Because ofthecontinuous growthofavailable computationalresources during thelast decade,there wasan increased interest in performing LargeEddy Simulation– LES– to solveindustrial problems.Among theseproblems, aeroacoustics requirestocomputeandtotransportaccuratelypressurewavesaroundcomplexgeometriesandoveralongdistance.Many classes of schemes were proposed to perform LES during the last 30 years, depending on the underlying mathematical frameworkconsideredtodiscretisetheNavier–Stokesequations.

First, inthecontext ofFiniteDifference–FD– formalism,high-order centredschemes forstructuredgrids were built following the Taylor’s expansion technique and their accuracy was compared withthe one of spectral methods [1]. Any (high) orderofaccuracycanbeattainedbutthenumberofdegreesoffreedomtoupdatethesolutionatonepointcanbe large. TwooptimisationsofFDschemeswereintroduced:thecompactformulationofLele [2]that leadstoaspectral-like resolution andthe Dispersion–Relation–Preserving – DRP – technique of Tam and Webb [3] dedicated to aeroacoustics. The compact approach linksseveralderivativeswithunknowns locatedclosely. Bythisway, alinear (implicit)systemof equations links all derivatives with unknowns. For a given accuracy, the stencil of DRP schemes is larger than for the standard FDapproachandtheextraunknownsenable tocontrolthenumericalpropertiesofthescheme: dissipationand dispersion. Bothapproachesbeingcentred,theyare nondissipativeandafilterstabilizesthecomputationsby dissipating wavenumbers.Inthispaper,weconsidercompactandDRPschemesasstandardingredientsforLESanditisassumedthat theywillprovidereferenceresults.

Morerecently,anewgenerationofhigh-ordertechniquesdenotedasspectraldiscontinuous emerged.Followingthe pio-neeringworkofReedandHill[4],theDiscontinuousGalerkin–DG–formulationwasfirstappliedtohyperbolicequations byCockburn,Shuandco-authors[5–7]andopenedmanyyearsofresearchandpapers(see[8]asanexampleofreference book onDGmethod).The ideaistosolveproblemsdefinedintheweakforminsideanymeshcell,withoutrequiringthe solutiontobecontinuousatthemeshinterfaces.Attheinterface,thefluxesarecomputedusingstandardRiemannsolvers, asin FiniteVolume– FV–formalism. Therefore,the FVflux computation enablesthecouplingof theweak problemsin surrounding cells andtheFV fluxesmake informationgoing acrossmesh interfaces.Severalalternative high-order meth-odshavebeenrecentlyintroduced.Followingthestaggered-gridmultidomainspectralmethod[9]forstructuredgrids,Liu, Vinokur andWang[10,11]introducedtheSpectral Difference–SD–methodaimingata simplertoimplementandmore efficientmethodthanthecurrentstateoftheartfortheDGmethod.Theapproachwasthenextendedtomixedelements

[12]. The SDmethod takes benefitof the resolution ofthe strong differential formof the equations,asin FD, but does not assume thatthe solutioniscontinuous onthewholemesh,asinFV.Anotherwaytodefine ahigh-order polynomial reconstruction followsthedefinitionofaveragedquantities,asinFV.WiththeSpectral Volume–SV–approach[13–17], a polynomial reconstructionisdefinedinside anycellusingthe averagedquantitiesover sub-cellsbuiltby subdivisionof the initial mesh elements. As before,several Riemannproblems are solved on meshboundariessince the solution poly-nomialsarenot requiredtobecontinuous atmeshinterfaces.Finally,theFlux Reconstructionmethodintroducedin2007 by Huynh [18] solves thestrongformof theequation. Itcan be seenasa collocatedSpectral Differenceschemebutthe maindifferenceoccursinthedefinitionofthefluxpolynomial:now,aliftingoperator[19–22]isintroducedtoincreasethe polynomial degreeoftheinitialfluxpolynomialbyone.Thisismandatorytorecovertherequiredpolynomialdegreeafter thecomputationofthedivergence(hyperbolic)term.ThemainadvantageofFRmethodisitsabilitytorecoverSD,SVand DGapproachesforthelinearadvectionequation,dependingontheliftingoperator[23].Comparedtothestandardschemes forstructuredgrids,themajoradvantageofDG,SV,SDandFRmethodsliesintheirnaturalabilitytohandleunstructured meshes,whichisaprerequisitetotreatcomplexgeometries.Moreover,suchschemesuseaverycompactstencil,defined lo-callyinsideanymeshcell.Thisisalsoanadvantageintermsofhighperformancecomputingrequiredbymassively-parallel LES.

Whendealingwithaeroacoustics,thefirstquestiontoanswerconcernsthespectralaccuracyofthechosenscheme:the key pointconcernstherequirednumberofgridpointsper wavelength.The spectralanalysis[24]consistsofdealingwith thespacederivativeandincomparingthenumericalspatialderivativewiththetheoreticalderivative,afterprojectiononto theFourierbasis.Thisanalysisisperformedonthelinearadvectionequationinaperiodicdomainwithaharmonicinitial solution:

u

t

+

c

u

x

=

u

t

+

c

D(

u

)

=

0 u0

(

x

)

=

u

(

0

,

x

)

=

exp

(

jkx

)

with j2

= −

1

,

(1) wherethefunctionu

(

x

,

t

)

istheunknown,c theconstantadvectivevelocity,k theconstantwavenumberand

D

represents thespatialderivativeoperator.Asaconsequence,Eq.(1)willplayanimportantroleandforsakeofclarity,thenotationfor theunknownswillbekeptunchangedalongthewholedocument.

TheformulationoftheFourierspectralanalysismakestheanalysissimpleforstandard schemesbasedonFinite Differ-enceparadigm. This isduetothe fact thatthe degreesoffreedom arecoupled by thenumerics andnotby the method itself. As introduced by Hu etal.in 1999[25] fortheDG method,the situation ismore complexfor spectral discontin-uous methods.ForDG method,the authorsshow that thedegrees offreedom are coupledby thedefinition ofthe local polynomial–insideanymeshcell.Finally,theFourieranalysiscanbeperformedasforFDapproachbutthefinalequation changes.Insteadofoneequationgivingthecomplex-valuednumericalwavenumber,oneobtains,evenforascalarequation,

(4)

asetoflinearequations.Dependingonthepolynomialdegree p, p

+

1 wavesare solutionsofthelinearsetofequations. In[25],itisthenexplainedthatamongthep

+

1 wavestravellingatdifferentphasespeeds,onemodeisthephysicalmode

asitsfrequencyapproximatestheexact dispersionrelationforarangeofwavenumbers,while theothersaretheparasite modes dueto thescheme.In other words,the solutionisthe superpositionofone physicalmode and p parasitemodes. Suchresultswere alsoobtainedby Zhangetal.forthree differentformulationsoftheDGmethod[26].The samekindof analysiswithp

+

1 waves,onephysicalmodeand p parasitemodes,was alsoproposedfortheSVapproach[27],forthe SDapproach[28]andfortheFRtechnique[20,29,30].Finally,eveniftheoccurrenceofparasitemodesisdemonstrated,the proposedanalysisdoesnotexplaintheroleoftheseparasitemodes.Moreover,evenifitcanbeprovedthattheeigenvalues of the systemare periodic (with a periodof 2

π

), the spectral analysis presented in[20,25–30] shows that the spectral behaviour,playingwiththewavenumberandtheorderp ofthepolynomials,isnolonger2

π

-periodic.Thispointisclearly notinagreementwithmathematicalrequirements.

Inthispaper,we introducea newwayto performtheFourierspectral analysisforpolynomialdiscontinuous methods and we compare the accuracy of the SD technique with two standard centred and stabilized FD schemes, the compact schemeofLele[2]andaDRPschemedevelopedbyBogeyandBailly[31].Theremainderofthispaperunfoldsasfollows.In Sec.2,thespace–timeFourierspectralanalysisisappliedtotheconsideredspatialFDschemescoupledwithalow-storage second-order Runge Kuttascheme. In Sec. 3, a new analysis ofthe spectral Fourierapproach forspectral discontinuous methodsisintroducedandappliedtotheSDmethod.InSec.4,weexplicitlyaddressthecaseofawavenumberlargerthan

π

andwe givetheanalysisintermsofnumberofpointsper wavelengthfortheSDmethod.Before concluding,standard FDschemesandSDschemearefinallycomparedinSec.5.

2. Space–timespectralanalysisforhigh-orderFiniteDifferencemethods

Asanintroduction,webrieflyexplainhowthespace–timespectralanalysisisperformed.Thisadvancedmethodisthen appliedtotwoFiniteDifferenceschemes.Theresultsobtainedinthissectionwillnotablyplay animportantrolelaterfor purposeofcomparisonwiththenewresultsshowninSec.3.

2.1. Spaceandtimediscretisations

Letus introduce a one-dimensional domaindecomposed ofelements withuniformlength



x. In 1D, anyconvection equationwithaconstantadvectionvelocityislinearandthekeypointconcernsthedefinitionofthenumericalderivative. Letui bethediscrete unknownatthepointi and ui its derivativeatthesamelocation.The lengthofthecomputational

domainisnot takenintoconsideration:thegoalisto deriveschemeexpressions fora givenpointfarfromtheboundary (inordertohaveaccesstothewholeschemestencil).Fornumericalsimulations,thesystemofequationswillbeclosedby applyingperiodicboundaryconditionsbutthisassumptionisnotmandatory toderiveanalytical expressionsfarfromthe boundary.Inthefollowing,twoschemesfrequentlyappliedtoaeroacousticssimulationsareconsidered.

The first scheme is the sixth-order compact scheme ofLele [2]denoted CS6. This scheme is purely centred and for stabilization, dampinghigh frequency waves ismandatory. Here, the compact filter denoted CF8 is the eighth-order fil-terdesignedbyVisbalandGaitonde[32].The Lele’ssixth-ordercompact schemeCS6approximates thefirst-orderspatial derivativewith: 1 3u  i−1

+

ui

+

1 3u  i+1

=

14 9 ui+1

ui−1 2



x

+

1 9 ui+2

ui−2 4



x

,

(2)

whiletheeighth-ordercompactfilterCF8designedbyVisbalandGaitondeisdefinedby:

α

fuif−1

+

u f i

+

α

fuif+1

=

4



l=0 bl ui+l

+

uil 2

,

(3)

wherethesuperscript f meansfiltered.Thebl coefficientsinEq.(3)aregiveninTable 14.Thefiltercoefficient

α

f isequal

to0

.

47.Thisnumericalsetupisusedby,e.g.,Aikensetal.[33]orLeBrasetal.[34].

The second schemeofinterest is theoptimised fourth-order DRPscheme designedby BogeyandBailly [31],denoted FDo11p.Itusesasymmetricstencilwith11pointsanditsexpressionis:

ui

=

1



x 5



l=−5 alui+l

.

(4)

Theschemeisstabilizedbyanoptimised sixth-orderfilterdenotedSFo11p[35]whichisdefinedonthesamestencil:

uif

=

ui

σ

d 5



l=−5

(5)

Table 1

CFLstabilityfortheRKo6s–SFo11p–FDo11pandRKo6s–CF8–CS6combinations. Runge–Kutta Filter Scheme ν

RKo6s SFo11p FDo11p 2.053740

RKo6s CF8 CS6 1.997980

The optimised coefficientsfortheFDo11p scheme(al)andfortheSFo11pfilter(dl)aregiveninTable 15.

σd

inEq.(5)is

generallychosensuchthat

σd

=

1

.

0[35].

The advection equation (1) is now time-marched using a standard explicit time integration procedure based on the Runge–KuttaMethod.Inthewholepaper,thelow-storageDRPsecond-ordersix-stageRunge–Kutta(RKo6s)schemeofBogey andBailly [31]ischosen.Forcompleteness,theRunge–KuttacoefficientsaregiveninTable 16.

The full space andtime integration isasfollows. First,the spatial derivative ui iscomputed thanks tothe numerical scheme(eitherFDo11porCS6).Then,thestandardRunge–Kuttatimeintegrationisperformedandfinally,thefilter(either SFo11porCF8)isappliedtotheupdatedsolution.

2.2. Space–timeanalysis

The analysis beingperformed in both space and time, u

(

x

,

t

)

is discretised by uni

=

u

(

i



x

,

n



t

)

, where the index i

(resp. n)referstospace(resp.time)positionand



t tothetimestep.Thefullydiscretespace–timeschemethenreads:

uni+1

=

uni

+

6



l=1

γ

l



c



t

D(

uni

)



l

,

(6)

where

D

isthederivativeoperatorintroducedinEq.(1).

IntroducingtheCourant–Friedrichs–Lewy–CFL–numberdefinedby

ν

=

c



t

/

x andthediscretisednormalmode

uni

=

exp

(

jn

ω



t

+

ji k



x

)

into Eq.(6)and applyingthe filtertransferfunction, theexpression ofthe dispersion relationof thespace–time scheme withfilteringis:

exp

(

j

ω



t

)

=

F

(

k



x

)



1

+

6



l=1

γ

l

(

j

ν

km



x

)

l

.

(7)

Eq. (7) contains two new quantities. km represents the modification of the spatial mode k when the spatial scheme is

applied.Moreover,

F (

k



x

)

representsthetransferfunctionassociatedtoeitherCF8orSFo11pfilters.Theanalytical expres-sionsfor

F

andtheanalyticalrelationsbetweenkm andk aregiveninAppendix Aforconsistency.

Such a dispersion relationmustbe compared withtheexactone

ω

=

kc. Thecorresponding dimensionlessdispersion relationis

ω



t

=

νk



x.Letusnowintroduce:

G

(

k



x

)

=

F

(

k



x

)



1

+

6



l=1

γ

l

(

j

ν

km



x

)

l

,

(8)

ϕ

= −

arg

(

G

) /

ν

∈] −

π

,

π

],

(9)

ρ

= |

G

|.

(10)

For a non dispersivescheme,

ϕ

is equal to

ω



t

/

ν

=

k



x. For a non dissipative scheme,

ρ

is equal to 1.

ρ

>

1 gives amplification, whereas

ρ

<

1 gives dissipation. Such a coupled space–time approach has been previously introduced in

[36–38].

Remark.Thequantities

ρ

and

ϕ

aredefinedforoneiterationofthetimeintegrationprocess.

2.3. StabilityanalysisbasedonCFLcriterion

Thespace–timediscretisationisstableunderaCFLcondition.BeforeperformingtheFourieranalysis,themaximumCFL number for stablecomputation is computed. Starting fromEq. (6), the iterativeprocess to find un

i isconvergent if

ρ

is

strictly lower than 1.Looking forthelargest timestep tomaintain

ρ

strictlylower than1 forallk



x is an optimisation problemandthestabilitylimits(thatweobtained)aresummarizedinTable 1.

(6)

Fig. 1. Effect of time integration on dispersion for the proposed FD schemes.

Fig. 2. Effect of time integration on dissipation for the proposed FD schemes.

2.4. Spectralanalysis

ThreeCFLnumbers(0

.

1,1

.

0 and1

.

9,respectively)arechoseninagreementwiththestabilityconstraintsinTable 1and bothdispersionanddissipationareestimatedfromEq.(8).NumericalresultsareshowninFig. 1andFig. 2fordispersion anddissipation,respectively.ThesecurvesshowthatthespectralbehaviourchangeswiththeCFLnumberandashighlighted inthenextsection,thischangeinspectralbehaviourhasastrongimpactonthenumberofgridpointsperwavelength.

2.5. Numberofpointsperwavelength(PPW)

The numberofpoints per wavelengthisrepresentative oftheresolution powerofanynumericalscheme.The criteria proposed byBogey andBailly [31] arechosen to measurethemaximumwavenumber properly(resp.accurately), defined withsubscript p (resp.withsubscripta) andcalculatedforboth dispersionanddissipation (superscript

φ

and E

respec-tively).Thefourcriteriaareexpressedasanoptimisationproblem.Forthedispersion,theoptimisationproblemsare: Look for kφp



x solution of: max

kx

|

k



x

ϕ

| 

5

π

×

10 −4

,

Look for kφa



x solution of: max

kx

|

k



x

ϕ

| 

5

π

×

10 −5

.

Similarly,theoptimisationproblemsfordissipationare: Look for kEp



x solution of: max

kx

|

1

ρ

| 

2

.

5

×

10 −3

,

Look for kEa



x solution of: max

kx

|

1

ρ

| 

2

.

5

×

10 −4

.

(7)

Table 2

Numberofpointsperwavelengthforthespace–timecoupledapproachusingtheRKo6s–SFo11p–FDo11pcombination.

ν λφp/x λφa/x λEp/x λaE/x 0.01 3.93 4.65 4.85 5.76 0.1 3.93 4.68 4.85 5.76 0.5 3.89 5.26 4.85 5.76 0.7 3.90 9.64 4.85 5.76 0.9 4.01 10.75 4.85 5.77 1.0 4.15 11.23 4.85 5.77 1.5 5.95 13.28 4.94 5.80 1.9 7.27 14.50 5.63 6.57 Table 3

Numberofpointsperwavelengthforthespace–timecoupledapproachusingtheRKo6s–CF8–CS6combination.

ν λφp/x λφa/x λEp/x λaE/x 0.01 5.42 7.45 4.21 5.66 0.1 5.42 7.42 4.21 5.66 0.5 5.31 6.86 4.22 5.67 0.7 5.27 6.54 4.22 5.68 0.9 5.28 6.38 4.22 5.69 1.0 5.33 6.39 4.22 5.70 1.5 6.20 11.84 4.61 5.77 1.9 7.38 12.96 5.61 6.66

For thecoupledspace–time analysis, theresultsmaynow depend ontheCFL number

ν

.Theresults obtainedforthe considered schemesaresummarizedinTable 2andTable 3.Itcanbefoundthat,whentheCFLnumber

ν

tendsto 0,the relative errorondispersion anddissipation duetothetime integrationprocedure decreasesandthe(standard)resultsfor the (standard)spatialspectral analysisareobviouslyrecovered.In termsofdispersion,therequirednumberofpointsper wavelengthdoesnotnecessaryincreasewhentheCFLnumber

ν

increasessincethedispersioncurvesarenon-monotonic.In contrast,intermsofdissipation,therequirednumberofpointsperwavelengthincreaseswhentheCFLnumber

ν

increases.

2.6. Summary

Ithasbeenshownthatthetimeintegrationprocedurehasaneffectonthespectralbehaviourofthescheme.Ofcourse, standard resultsare recovered when theCFL numbertends to 0. For theCS6 compact scheme,accounting forthe time integration procedure doesnot really change the required number of points per wavelengthup to

ν

=

1. However, the situationdiffersfortheDRPschemeFDo11psincethenumberofpointsperwavelengthmustbeincreased.BothfiltersCF8 andSFo11parenotspecificallysensitivetotheCFLnumber

ν

up to

ν

=

1.Asaconsequence,thisanalysisshowsthat the coupledspace–timeapproachisaprerequisitetodeducethenumberofgridpointsperwavelength.

Moreover, a generalmethodto studythespectral behaviour ofspace–time discretisation hasbeenrecalled. As shown nextinSec.3,suchacoupledapproachismandatorytodescribethespectralbehaviourofspectraldiscontinuoustechniques.

3. Spectralanalysisofthespectraldifferencemethod

Thissection isdevotedtotheFourieranalysisoftheSDmethod.Asbefore,theanalysisisperformedontheadvection equation(1).

3.1. Descriptionofthespectraldifferencemethod

The spectraldifferencemethodsolves inanycellthestrongformoftheequationperdirection, asintheFDapproach. TheconceptoftheSDapproachissimple:ifthesolutionu evolvesasapolynomialofdegree p,thedivergenceoftheflux must alsobe apolynomial ofdegree p and thereforetheflux polynomialmust bea polynomialofdegree p

+

1.Instead ofdefininganypolynomialbyitsmonomialcoefficients,polynomialsaredefinedby theirvaluesonasetofpointsandby Lagrange interpolation.Weintroduce thesetof p

+

1 pointscalledsolutionpoints denotedas

(

S Pl

)

1≤lp+1 andthe p

+

2

points calledfluxpoints denotedas

(

F Pl

)

1≤lp+2.Let

L

l (respectively

T

l) be theLagrange polynomialsofdegree p (resp.

p

+

1) basedonthesolution(resp.flux)pointindexl. Detailsregardingtheproceduretocomputethefluxdivergenceare giveninAppendix B.

(8)

3.2. MatrixformoftheSDprocedure

Since the polynomialsare defined on a Lagrange basis, any polynomial is definedby its valuesat the control points (either solution points orflux points). We introduce Ui

(

t

)

,the columnvector of size p

+

1 (whose componentsare the

solutionsatsolutionpoints)as:

Ui

(

t

)

=

[ui

(

S Pl

,

t

)

]1lp+1

,

(11)

wheremeansthetransposeoperation.

Thefirststepistheextrapolationofthesolutionatthefluxpointsusingtheformofpolynomials,leadingtothecolumn vectorVi

(

t

)

ofsize p

+

2 definedby:

Vi

(

t

)

=

[ui

(

F Pl

,

t

)

]1lp+2

=

p



+1 r=1 ui

(

S Pr

,

t

)

L

r

(

F Pl

)

 1lp+2

.

(12)

SinceaRiemannproblemmustbesolved onthecellboundaries, informationsfromneighbouringcellsi

1 andi

+

1 are required.Solutionsatsolutionpoints



Ui

(

t

)

andsolutionsatfluxpoints



Vi

(

t

)

includingsolutions ontheborderfluxpoints

fromadjacentcellsarenowdefinedascolumnvectorsofsize3

× (

p

+

1

)

andp

+

4,respectively:



Ui

(

t

)

=

UUii1

(

t

(

)

t

)

Ui+1

(

t

)

⎦ ,

(13)



Vi

(

t

)

=

ui−1



F Pp+2

,

t



Vi

(

t

)

ui+1

(

F P1

,

t

)

⎦ .

(14)

DefiningOm,nasthezeromatrixofdimensionm

×

n andIn theidentitymatrixofsizen,theextrapolationmatrixE ofsize

(

p

+

4

)

× (

3

× (

p

+

1

))

suchthat



Vi

(

t

)

=

E



Ui

(

t

)

readsas:

E

=



L

l



F Pp+2



1lp+1 O1,p+1 O1,p+1 O1,p+1 [

L

l

(

F P1

)

]1lp+1 O1,p+1 O1,p+1 [

L

l

(

F P2

)

]1lp+1 O1,p+1

..

.

..

.

..

.

O1,p+1



L

l



F Pp+2



1lp+1 O1,p+1 O1,p+1 O1,p+1 [

L

l

(

F P1

)

]1lp+1

.

(15)

The second step consists of computing the flux. Here, the Riemann problem is solved using the (upwind) Godunov scheme:

F

Riemann

(

uL

,

uR

)

=

c



1

+

sign

(

c

)

2 uL

+

1

sign

(

c

)

2 uR



,

(16)

where sign

(

c

)

=

c

/

|

c

|

. The computation of the flux atthe flux points can be definedby the matrix F of size

(

p

+

2

)

×

(

p

+

4

)

: F

=

c

1

+

sign

(

c

)

2 1

sign

(

c

)

2 O1,p 0 0 Op,1 Op,1 Ip Op,1 Op,1 0 0 O1,p 1

+

sign

(

c

)

2 1

sign

(

c

)

2

.

(17)

Forthelaststep,thefluxpolynomialisdifferentiatedanditsdivergenceiscomputedatthesolutionpoints.The deriva-tivematrixD ofsize

(

p

+

1

)

× (

p

+

2

)

isthen

D

=



T

l

(

S Pr

)



1rp+1,

1lp+2.

The overall processfor computingthedivergence termfromthe solutionpoints can now bewritten in thefollowing compactmatrixformas:

M1

=

D F E

,

(18)

(9)

Table 4

CFLstabilityboundsfortheSDmethodwithRunge–Kuttatimeintegration (RKo6s). p ν νˆ 2 0.542304 1.626913 3 0.337879 1.351515 4 0.233186 1.165928 5 0.172017 1.032102

3.3. Matrixformforthespectralanalysis

The generatingpatternfora one-dimensionalproblemisgivenby one cell,so letusintroducethe discretisednormal mode within this periodUi

(

t

)

= 

Ui

(

t

)

exp

(

ji k



x

)

such that



Ui

(

t

)

=

L



Ui

(

t

)

.Introducing the complex-valued matrix L of

size3

(

p

+

1

)

× (

p

+

1

)

: L

=

exp

(

Ij kp+



1x

)

Ip+1 exp

(

j k



x

)

Ip+1

⎦ ,

(19) itcomeseasily:

∂

Ui

(

t

)

t

=

M



Ui

(

t

) ,

(20) where M

= −

D F E L

= −

M1L. 3.4. Timediscretisation

Eq.(20)isasystemoflineardifferentialequationswhoseintegrationiscarriedoutusingthelow-storagesecond-order six-stageRunge–KuttaschemeofBogeyandBailly[31],asinSec.2.



Ui

(

t

)

isdiscretisedby



Uni

= 

Ui

(

n



t

)

andthediscrete

solutionisadvancedintimeusing



Uni+1

=



Ip+1

+

6



l=1

γ

l



tlMl





Uni

=

G



Uni

.

(21)

G isasquarecomplex-valuedmatrixofsize p

+

1 whichaccountsforbothspaceandtimeintegration.G depends onthe polynomialdegree p,onthewavenumberk andofcourseontheCFLnumber

ν

=

c



t

/

x.Itisimportanttonotethatwe keepherethestandarddefinitionoftheCFLnumberforanadvectionequation.

3.5. StabilityanalysisbasedonCFLcriterion

The SD method withthe Runge–Kutta time integration is stableunder a CFL condition, similarly as the FD method. Starting fromEq.(21),the matrix geometric progression between



Uin+1 and



Uni isconvergent if thespectral radius

ρ

of matrix G isstrictlylowerthan1.ThestabilitylimitsfoundaresummarizedinTable 4.TobeabletocomparewiththeFD method,letusdefineanewCFLnumberas



ν

= (

c



t

/

x

) (

p

+

1

)

=

ν

(

p

+

1

)

withalengthscalewhichcorrespondstothe meandistancebetweentwoadjacentdegreesoffreedom.

3.6. ApplicationoftheNyquist–Shannonsamplingtheorem

TheNyquist–Shannonsamplingtheoremstatesthatatleasttwopointsaremandatorytocaptureagivenfrequency.Such an approachisroutinelyappliedinstandardschemessuchasFD.Here,letusconsideravector



Uni sampledoveracellof size



x.Thesamplingfrequency fsistherefore fs

=

1

/

x.ItisassumedthatthevectorUi representsthenormalmodeas

inSec.3.3:

Ui

(

t

,

k

)

= 

Ui

(

t

)

exp

(

ji k



x

) .

(22)

Computing now thesamekind ofrelationfora newnormalmode withk

=

k

+

m

(

2

π

/

x

)

=

k

+

m

(

2

π

fs

)

(m

∈ Z

), one

finds: Ui



t

,

k



= 

Ui

(

t

)

exp



ji k



x



,

= 

Ui

(

t

)

exp

(

ji

(

k

+

2m

π

/

x

) 

x

) ,

= 

Ui

(

t

)

exp

(

ji k



x

+

i j 2m

π

) ,

=

Ui

(

t

,

k

) ,

(10)

because im

∈ Z

. As a consequence, any normal mode Ui

(

t

,

k

+

2m

π

/

x

)

with m

∈ Z

has the samerepresentation after

samplingatthesolutionpointsandwenotethat,inordertoavoidaliasing,k



x shouldbelongto[0

,

π

].Thisisakeypoint andinall previous studieson spectral accuracy(forDG, SD,SVandFR),such aproperty was always lost[20,25–30].An illustrationofthealiasingphenomenonfork



x

>

π

willbeshowninSec.4.

3.7. Matrixpowermethodforthespectralanalysis

Eq.(21)introducesthetransfermatrixG betweentimestepsn andn

+

1:



Uni+1

=

G



Uni

.

(23)

andusingpropertiesofgeometricprogressionsandEq.(23),oneobtains,raisingG tothepowern:



Uni

=

Gn



U0i

.

(24)

Carrying out an unsteadycomputation (for theadvection equation)with the Spectral Differencemethod simply consists of computingthen-th power ofthe matrix G inorder toobtain the solution atthen-th time iteration fromthe initial solution.Thecomputation ofthen-thpowerofanymatrixisatthe coreofthe MatrixPowerMethod (MPM)alsocalled PowerIterationorPowerMethod[39,40].ThemainpropertiesoftheMPMaresummarizedbelowforcompleteness.

TheMPMgivesawell-knownalgorithmforthecomputationofthespectralradiusofamatrix,i.e. theeigenvaluewith the largest modulus. The proof of the theorem can be found in [39] and it is introduced hereafter since it enables to establisha generalresultforthespectral analysisoftheSD Method.R3:SinceEq.(23)istheexpressionofamatrixgeometric progression,itsbehaviourisgivenbytheeigenvaluewiththelargestmoduluswhenntendstoinfinitybecauseamongallthemodes, theconsideredonehastheleastdissipation.Thisisthereasonwhy,evenifalltheeigenvalueswerecomputed,onlytheonewiththe largestmoduluswasretainedaccordingtotheMPM.

3.7.1. ThematrixpowermethodforSD

G is a

(

p

+

1

)

× (

p

+

1

)

matrix withcomplexcoefficients. Considerthe eigenvalueproblemG



Ui

= λ

Ui,where



Ui

=

0,



Ui

∈ C

(p+1)×1and

λ

∈ C

.



Uiisindeedacolumnvector.

Assumptions.We assume that the eigenvalue problemGvl

= λ

lvl with

λ

l

∈ C

andvl

∈ C

(p+1)×1 admits a complete

nor-malizedeigenvectorspace



v1

,

v2

, ...,

vp+1



spanning

C

(p+1) withcorrespondingeigenvaluessatisfying

1

| < |λ

l

|

,l

=

1 and

l

| <



λ

p+1



,l

=

p

+

1.

Fromnowon,lettheinitialcondition



U0

i beagivenvector,forwhich



U0i

=

p+1



l=1

α

l(0)vl

,

with

α

(p0+1)

=

0

,

(25) andlet

n

∈ {

1

,

2

, ...

} , 

Uin

=

G



Uni−1

,

(26)

bethebasicrecursivesequence.FromEq.(25)andEq.(26),itcomesimmediately:



Uni

=

p+1



l=1

α

l(0)Gnvl

.

Furthermore,Gnv

l

= λ

nlvl,foralll

∈ {

1

,

2

, ...,

p

+

1

}

,andasaconsequence:



Uni

=

p+1



l=1

α

l(0)

λ

nlvl orequivalently:



Uni

=

α

(p0+)1

λ

np+1



vp+1

+

p



l=1

α

l(0)

α

(p0+)1



λ

l

λ

p+1

n

vl

.

Hence,using





λl λp+1



 =

1

λp+1−|λl| λp+1 ,itcomes:

(11)

Fig. 3. Spectral analysis for the RKo6s–SD schemes with CFL conditionν=0.1: effect of the order of the solution reconstruction.













vp+1

1

α

(p0+)1

λ

np+1



Uni















p



l=1







α

l(0)

α

(p0+)1









1

ap+1

n

,

(27) where ap+1

=

min l∈{1,...,p} l=p+1









λ

p+1

 −|

λ

l|

λ

p+1







.

Noticingthat lim n→+∞



1

ap+1

n

=

0

,

onecaneasilydeducefromEq.(27)that



Uni

n→+∞

α

(0) p+1

λ

n p+1vp+1

.

(28)

So,



Uni behavesas

α

p(0+)1

λ

np+1vp+1 whenthenumberofiterationsofthetimeintegrationn islarge.Moreover,thedifference

betweenthetruebehaviouranditsasymptoticapproximationdependsonhowtheratios



λ

l

p+1



forl

∈ {

1

,

...,

p

}

decay

to 0.Foralarge numberofiterations andforanyguess



U0 i with

α

(0)

p+1

=

0,



Uni behaves inthedirectionofthedominant

eigenvectorvp+1.

3.7.2. ResultsoftheMPMforSD

TheMatrixPowerMethodgivesawaytoperformthespectralanalysisoftheSpectralDifferencemethod.Thedispersion andtheamplificationare simplygivenbythespectral radius

p+1

|

ofthematrixG.Betweentheiterations n andn

+

1,

thedispersionisgivenbytheargument

ϕ

= −

arg



λ

p+1



/

ν

andtheamplificationisgivenby

ρ

=



λ

p+1



.

Remark. In all the cases presented in this paper, we found numericallythat the eigenvalue problem Gvl

= λ

lvl always

satisfiedtheassumptionsgivenabove.Wedidnotsucceedindemonstratingmathematicallysucharesultforanyvalue of thepolynomialdegreep.Thisisleftasafuturelineofresearch.

Remark.ItshouldbenotedthattheMatrixPowerMethodcanbeappliedtoanykindofhigh-orderspectraldiscontinuous method,sincethediscretespace–timeintegrationcanbewrittenintheformofEq.(26)foranadvectionequation.

3.8. Comparisonwithnumericalresults

Numericalsolutionsin1DarenowcomputedtosupportthetheoreticalresultsondispersionanddissipationinFigs. 3a and 3b.TheadvectionequationEq.(1)withc

=

1

.

0 [m/s] issolvedusingtheSpectralDifferencemethodpreviously men-tionedwith

ν

=

0

.

1.Theinitialsolutionisu0

(

x

)

=

sin

(

kx

)

.Theone-dimensionalmeshiscomposedof40 regularcellswith

a cell length



x

=

2

.

0. Thesystemisclosed withperiodic boundaryconditions.Indeed,numericalcomputationsare per-formed withk



x

=

0

.

1

πn with

n

∈ N

,1



n



9 forp

=

2 and2



n



9 for p

=

3 andp

=

4.Oneobtains 2n periodson thisspecificmesh.

(12)

Fig. 4. SpectralanalysisfortheRKo6s-SDschemeswithCFLconditionν=0.1:comparisonoftheoreticalspectralbehaviourswithnumericalsolutionsand effectofdifferentpolynomialorders.

Fig. 5. Initial solution for kx=π/2.

Theinitialsolutionistransportedoverasufficientnumberofdiscretetime instantstomeasurethedissipationandthe dispersion.The amplificationandthephase shiftare identifiedbya minimizationprocess usingthe leastsquaresmethod tosolve:

min A∈R+∗

φ∈[0,2π[

||

f

(

x

,

t

)

A sin

(

kx

+ φ)||

2

,

(29) where

·

2 is the standard L2 norm for functions. It is shown in Fig. 4a and Fig. 4b that theoretical and numerical

behavioursfordispersionanddissipationareinaverygoodagreement,forp

=

2, p

=

3 andp

=

4 respectively.

4. Extensiontohighwavenumbersforthespectraldifferencemethod

It was shownin Sec. 3.6that the standard spectral analysis, withFourier modes, cannot be applied to wavenumbers greaterthan

π

.ThisisaconsequenceoftheNyquist–Shannonsamplingtheorem.However,thespectralanalysispublished intheliteratureallowstocapturewavenumbersgreaterthan

π

[25–29,20,30].Thissectionisdevotedtotheanalysisofthis phenomenonwhenthewavenumberislargerthan

π

.

4.1. Aliasingandinitialsolutionprojection

Inthissection,wewanttoanalysethealiasingthatoccurswithhigh-orderspectralmethods.Weconsiderasbeforean advectionequationproblemwithperiodicconditions.Foragiven



x,twosimulationsareperformed.Forthefirstone,the wavenumberk ischosen suchthatk



x

=

π

/

2,whileforthesecondcase,thewavenumberk issuchthatk



x

=

3

π

/

2.For bothcases,weselectp

=

3.

Forthefirstcomputation,theinitial,final solutions,andtheircorrespondingFouriertransform, areshowninFig. 5and

Fig. 6.Thesolutionisalmostconservedandtheenergyrepartitionpermodedoesnotchangesignificantly.

Regardingthesecondcasewithk



x

=

3

π

/

2,theinitialsolutionandtheassociatedFourierspectrumareshowninFig. 7. Aftermanyiterations(wedonotdefinethenumberofiterationsheresinceitisthetopicofSec.4.3andSec.4.4),thefinal

(13)

Fig. 6. Final solution for kx=π/2.

Fig. 7. Initial solution for kx=3π/2.

Fig. 8. Final solution for kx=3π/2.

solutionandtheassociatedspectrumareshowninFig. 8.Weremarkthatthemodek



x

=

π

/

2 nowcontains thelargest partoftheenergy,whilethemodek



x

=

3

π

/

2 initiallyhadthelargestenergy.Allmodeslargerthan

π

aredampedandit remainsessentiallythemodeassociatedwithk



x

=

π

/

2.

This numericalexperimentpoints out the aliasingphenomenon revealedby our analysis. Suchaliasing occursforany valueof p,butthetimetoseeaneffectvarieswithp,thenumberofiterations,theCFLnumberandthewavenumberone looks for.Moreover, thestandardFourierspectral analysiscanonlybe appliedoncetheinitialwavenumberisunchanged: dissipation anddispersion aredefinedforagivenfrequency.Here,sincethefrequency(withthemainpartoftheenergy) changes, it is mandatory to introduce a new wayto estimate dissipation anddispersion. In the following, dissipation is expressedusingrelationsdefinedwithenergypreservingrelations,whiledispersionisobtainedfromascalarproduct.

(14)

4.2. Mathematicalconsideration

Letusdefine the space L2

(

[

1

,

+

1]

)

ofcomplex-valued functionson the closedinterval

[−

1

,

+

1

]

andtheassociated complexscalarproductby:

∀ (

f

,

g

)



L2

(

[

1

,

+

1]

)



2

,

f

,

g

 =

+1



−1 f

(

x

)

×

conj

(

g

) (

x

)

dx

,

(30) whereconj

(

g

)

isthecomplexconjugateofg.Obviously,thenormassociatedwiththisscalarproductisdefinedby:

f

L2

(

[

1

,

+

1]

) ,

f

=











+1



−1

|

f

(

x

)

|

2dx

.

(31)

Moreover,



α

ef

 =

α

f

and

α

ef

,

g



=

α

e

f

,

g



forall

(

α

, β)

∈ R

+

×

[0

,

2

π

[ by sesquilinearity of thecomplex

scalarproduct.

LetususethiscomplexscalarproducttocomputethedispersionandthedissipationoftheSpectralDifferencemethod. Forwavenumbersin

[

0

,

π

]

,thespectral analysisfollowstheMPM.However,forwavenumberslargerthan

π

,comingback to the physical meaning ofdissipation anddispersion, dissipationcanbeexpressedastherateoflossinenergyofthesignal, whiledispersionisthephaseshiftofthesignal.Inthecaseofspectralanalysis,thefunctions f are simplyrepresentedbythe complexexponentialbasis fn

(

x

)

=

exp

(

jωn



t

+

jkx

)

=

α

ef0

(

x

)

.Thedissipationandthedispersion aftern iterations

canbeexpressedastheproductoftheinitialsolutionby

α

e.Mathematically,thedissipationisdefinedasthelossofthe

L2-normofthesignal f betweentime 0 andn by:



fn





f0

 =



α

ef0





f0

 =

α

.

(32)

Thephaseshiftofthesignal f betweentime0 andn canbesimplyexpressedas: arg



fn

,

f0





=

arg



α

ejβf0

,

f0





=

arg



α

e

f0

,

f0





=

arg



α

e





f0





2



= β.

(33)

Thecomplexscalar productisdefinedon L2

(

[

1

,

+

1]

)

andthisisthe rightwaytotake intoaccount thefactthat all

quantities are definedby polynomials. However, Eq.(32) andEq.(33) are obtainedusing onlythe sesquilinearity ofthe complexscalarproductsincethedefinitionofthescalarproduct(Eq.(30))isneverexplicitlyused.Actually,thedefinition ofbothdispersionanddissipationdoesnotdepend ontheconsideredscalarproduct.Itismoreconvenient(andsimple!) toreplacetheL2 normforfunctionsbythe



2-norm

·

2 ofvectorsin

C

p+1,playingdirectlywiththesolutionsatsolution

points.Ofcourse,thisnormisderivedfromthefollowingcomplexscalarproduct:

∀ (

x

,

y

)



C

p+1



2

,

x

,

y

 =

p+1



l=1 xl

×

conj

(

yl

).

(34)

4.3. Energylossestimation

Asexplainedbefore,wereplacethestandardL2-normoffunctionsbythe



2-normofthesolutionpointvectors



Uni.Let usintroducetheratio

ρn

,mfor

(

n

,

m

)

∈ N

+

× N

+withn

>

m:

ρ

n,m

=



Uni



2



Unim



2

.

(35)

Bydefinition,

ρn

,m representsthe energylossofthe solutionbetweeniterationn

m (n

m) anditerationn. TheMPM

givesthebehaviourof

ρn

,m whenn issufficientlylarge:

ρ

n,m

=

















p+1 l=1





α

l(0)

λ

nl





2 p+1 l=1





α

l(0)

λ

nlm





2

n→+∞



m p+1



 ∼

n→+∞

ρ

m

.

(36)

UsingEq.(36),itisclearthat

ρn

,m isageneralizationofthestandardcriterionforschemedissipationand

ρn

,m behavesas

(15)

Fig. 9. Loss in energy for two values of p as a function of the number of iterations (ν=0.1).

Let

ρn

=

ρ

n,nrepresentanestimationoftheenergylossbytheinitialsignalaftern iterations.InFig. 9,thelossinenergy

fortwovaluesofp isshownasafunctionofthenumberofiterationsforcomputationsperformedatCFLnumber

ν

=

0

.

1. Asexpected,thelossinenergyincreaseswiththenumberofiterationstoperform.

ρn

measuresthedissipationeffectabove

π

butweneedtointroduceanewquantitytoaccountfordispersion.

4.4. Phaseshiftestimation

Letusintroduce

δ

ϕ

n,mfor

(

n

,

m

)

∈ N

+

× N

+withn

>

m:

δ

ϕ

n,m

=

arg





Uni

, 

Unimexp

(

jm

ν

k



x

)





.

(37)

δ

ϕ

n,m representsthephase shiftofthe solutionbetweeniterations n

m andn.Indeed,thefactorexp

(−

jmνk



x

)

takes

intoaccountthetheoreticaladvectiongivenbytheanalyticalsolutionoftheadvectionequationwithaconstantadvective velocity c.Wehave:

δ

ϕ

n,m

n→+∞arg



α

p(0+)1

λ

np+1conj

(

α

p(0+)1

λ

np+m1

)

exp

(

jm

ν

k



x

)



(38)

n→+∞arg

 



α

(p0+1)





2

ρ

nexp

(

jn

νϕ

)

ρ

nmexp

(

j

(

n

m

)

νϕ

)

exp

(

jm

ν

k



x

)



(39)

n→+∞arg



ρ

2nm





α

(p0+)1





2exp

(

jm

ν

(

k



x

ϕ

))



(40)

n→+∞m

ν

(

k



x

ϕ

) .

(41)

This criterioncomputes thephaseshift ofthesignal inducedby thenumerical schemebetweeniterationn and iteration

n

m.Letusnote

δ

ϕ

n,n

= δ

ϕ

nwhichcomputesanestimationofthephasedelaybetweenthesignalaftern iterationsandthe

initialsignalwhichhasbeenanalyticallyconvected.Itmeasurestheoveralldispersioninducedbythetimeintegrationloop. Thislatterisageneralizationoftheusual criterionbutittakesintoaccount theeffectofthetime integration.Indeed,the spectral behaviourevolvesduringthenumberofiterations. Furthermore,

δ

ϕ

n

/

2

π

givesthephaseshiftlengthpernumber

ofwavelength.Forexample,

δ

ϕ

n

/

2

π

=

0

.

1 meansthatbothsignalsareseparatedby0

.

1

λ

where

λ

isthesignalwavelength.

In Fig. 10,thephaseshifts forSD3 andSD5are shownasa functionofthe numberofiterations,ina similarwayasfor

Fig. 9.

4.5. Summary

In this section, new criteriafor dissipation anddispersion havebeen introduced. The criteria take into account both space andtime schemes. It isshown that forwavenumbersabove

π

,aliasing occurs butthe aliasingspeed depends on theCFL number,thetime integrationprocedure,thenumberoftimesteps andthepolynomialdegree p. Thenewcriteria basedonenergylossandphaseshiftareextensionsofthestandardFourierapproachintroducedintheprevioussections.In particular,theresultspresentedinSec.3arerecoveredbythenewapproachforwavenumbersin

[

0

,

π

]

andalargenumber ofiterations(asymptoticbehaviour).Wenotethatthenewcriteriaaregeneralinthesensethattheycanbeappliedtoany kindofnumericalscheme.

In the next section, thesecriteria are usedto compare the Spectral Differencescheme withthe Finite Difference ap-proachesintroducedinSec.2.

(16)

Fig. 10. Phase shift for two values of p as a function of the number of iterations (ν=0.1).

Fig. 11. Spectral analysis forν=0.1: comparison of the schemes. For SD schemes, these results are obviously those given by the MPM. 5. Comparisonwithstandardhigh-orderschemes

Thissectionisdevotedtothecomparisonofthespectralbehaviourbetweenthestandardschemesforaeroacouticsand theSpectralDifferencemethod.

5.1. Naivecomparison

ForstandardspectralanalysisofFDschemes,

G (

k



x

)

definedinEq.(8)canbeseenasthetransferfunctionbetween



un i

and



uni+1 afterapplyingthespatialnumericalscheme,thetimeintegrationandthefilter.Likealltransferfunctions,itcan becharacterised byitsmodulus,whichwascalled

ρ

= |G|

,andits argument,whichwas called

ϕ

= −

arg

(G) /

ν

.Notethat the argumentof

G (

k



x

)

was (i) multipliedby

(−

1

)

because ofthenormalmode choice un

i

=

exp

(

(−

1

)

jn

ω



t

+

ji k



x

)

and (ii) divided by the CFL number

ν

to obtain a quantity which is always equal to k



x in the exact case since the dimensionlessdispersionrelationis

ω



t

=

νk



x.ForthespectralanalysisoftheSpectral Differencemethod,thetransfer functionis

λ

p+1.Indeed,whenthenumberofiterationsislarge,



Uin+1 isobtainedfrom



Uni multipliedby

λ

p+1.Analogously,

ϕ

= −

arg



λ

p+1



/

ν

and

ρ

=



λ

p+1



weredefined.ThesequantitiesareplottedinFig. 11aandFig. 11brespectively.

Inthelightofthesefigures,theRKo6s–SD2schemeseemstohaveasimilarspectralbehaviour asbothRKo6s–CF8–CS6 andRKo6s–SFo11p–FDo11p.Neverthelessonehastorememberthatseveraldegreesoffreedomarelocatedwithinanymesh elementintheSpectralDifferenceapproach.Itisthereforepreferabletointroduceanewcriterionthat takesintoaccount thetotalnumberofdegreesoffreedominsteadofthenumberofmeshelementsandtheirsize.

5.2. Rescalingbythenumberofdegreesoffreedom

Forafaircomparison, theanalysismaybe performedconsideringthe dimensionlesswavenumberk



x builtwiththe mean distancebetween two degreesof freedom andnot with the element size



x.It meansthat, for the Spectral Dif-ferencemethod,thedimensionlesswavenumbershouldbek



x

/

(

p

+

1

)

whereas,forstandardschemes,thedimensionless wavenumberremainsk



x.Ofcourse,thesamerescalingisperformedfortheCFLnumber:



ν

= (

p

+

1

)

c



t

/

x for theSD method while

ν

=

c



t

/

x for FDschemes. Dispersion anddissipation are now defined asa function of the numberof

(17)

Fig. 12. Spectral analysis forν=0.7: comparison of the considered schemes.

points per wavelength(PPW)andtwo definitionsareintroduced:PPW

= (

p

+

1

) λ/

x forthe SpectralDifferencemethod whilePPW

= λ/

x fortheFDschemes.Moreover,theCFLnumberiskeptconstant:



ν

=

0

.

7 forSDmethodand

ν

=

0

.

7 for standardschemes.ThischoiceismotivatedbythefactthatboththeSDandthefinitedifferencemethodsleadtothesame physical time step.Moreover,the CFL valueis chosen inagreement withtheone forprevious aeroacousticcomputations usingthecompactscheme.

Finally,itmustbementionedthatthenewquantity

ν

|

k



x

ϕ

|

isintroducedtoaccountforthechangeinCFLnumber definitionforanalysingdispersion.

In termsofdispersion,theRKo6s–SD4 methodseems tobe equivalentto theRKo6s–CF8–CS6 combinationwhereas in termsofdissipation,theRKo6s–CF8–CS6combinationisbetweentheRKo6s–SD4andRKo6s–SD5method(Fig. 12).However, twoproblemscanbeobserved.First,thedimensionlesswavenumberbelongsto[0

,

π

/(

p

+

1

)

] fortheSDmethod.So,itcan not becomparedonthefullrangeofwavenumbersin[0

,

π

].Moreover,dispersion anddissipationin[0

,

π

/(

p

+

1

)

] come from the asymptotic behaviour introduced in Sec. 3.7.2 anddo not benefit fromthe matrix form ofthe SD method for wavenumbershigherthan

π

/(

p

+

1

)

.Itisthusmandatorytoextendtheanalysisinenergylossandphaseshifttostandard schemesforafaircomparison.

5.3. Newcriteriaextensiontostandardaeroacoustic schemes

FortheconsideredFiniteDifferenceschemeswithtimeintegrationandfiltering,thesolutionisupdatedusingasimple multiplication:



uni+1

=

G



uni (42)

Introducingasbeforethelossinenergyandthephaseshift,itcomes:

ρ

n

=



uni



2



u0i



2

=



G

n



u0 i



2



u0i



2

= |

G

|

n

=

ρ

n

.

(43) and

δ

ϕ

n

=

arg





uniconj

(



ui0exp

(

jn

ν

k



x

))



,

(44)

=

arg



G

n



u0 iconj

(



u0iexp

(

jn

ν

k



x

))



,

(45)

=

arg



G

nexp

(

jn

ν

k



x

)



,

(46)

=

n

ν

k



x

+

n arg

(

G

) ,

(47)

=

n

ν

(

k



x

ϕ

) .

(48)

(18)

Fig. 13. Spectral analysis forν=0.7: analysis of the dissipation-based criterion.

5.4. Pointsperwavelength(PPW)–dissipation-basedcriterion

IntroducingthenewcriteriaforFiniteDifferenceschemes,itisnowpossibletodefineacut-offwavenumberc



x that

isassociatedwiththeconservationofa certainpercentage1

ε

ofenergyaftern iterations.Todoso,itismandatoryto solvethefollowingproblem:

For a given set

(

n

,

ν

,

p

)



N

× R

+∗

× N



, look for

k



x



0

,

c



x



such that

ρ

n

(

k



x

,

n

,

ν

,

p

)



1

ε

Thiscut-off wavenumber can be obviouslyinterpreted asa numberofpoints per wavelength (PPW).The dissipation-basedcriteriaisfinally showninFig. 13forbothFiniteDifferenceschemes,andfortheSpectralDifferenceapproachwith

p ranging from2 to 5 and n from104 to 107 atCFL number

ν

=

0

.

7.The cases withn

=

104 andn

=

105 correspond tothetypical numbersofiterations forstandardLES.Theextremecaseswithn

>

105 areonlycomputedtoillustratethe

Figure

Fig. 2. Effect of time integration on dissipation for the proposed FD schemes.
Fig. 3. Spectral analysis for the RKo6s–SD schemes with CFL condition ν = 0 . 1: effect of the order of the solution reconstruction
Fig. 4. Spectral analysis for t he RKo6s-SD schemes with CFL condition ν = 0 . 1: comparison of theoretical spectral behaviours with numerical solutions and effect of different polynomial orders.
Fig. 6. Final solution for k  x = π / 2.
+6

Références

Documents relatifs

Let K (1) be the identity S × S matrix (seen as a speed transfer kernel, it forces the chain to keep going always in the same direction) and consider again the interpolating

We now consider the response of the climatic oscillator described by eqs. Our purpose is to show that the forcing provides the synchroni- zing element that was

Keywords: second order Markov chains, trajectorial reversibility, spectrum of non-reversible Markov kernels, spectral gap, improvement of speed of convergence, discrete

We study the lattice structure of random number generators of the MIXMAX family, a class of matrix linear congruential generators that produce a vector of random numbers at each

However when attention is divided at test two contrasting predictions are made: a distinctiveness account predicts an absence of a production effect as a result of the disruption

Proof of stability on an arbitrary bounded time interval In this section we first give some technical lemmas and next establish a result showing existence and uniqueness of a

ing uniform in time regularity and asymptotic convergence to equilibrium; • finally we use that the equilibrium is unchanged by the smooth balanced perturbation, and that it

Given a pencil of algebraic plane curves such that a general element is irreducible, the purpose of this paper is to give a sharp upper bound for the number of reducible curves in