• Aucun résultat trouvé

Trophic diversity and potential role of detritivorous crustaceans in Posidonia oceanica litter

N/A
N/A
Protected

Academic year: 2021

Partager "Trophic diversity and potential role of detritivorous crustaceans in Posidonia oceanica litter"

Copied!
35
0
0

Texte intégral

(1)

Trophic diversity and potential role

of detritivorous crustaceans

of detritivorous crustaceans

in Posidonia oceanica litter

Nicolas Sturaro

Sylvie Gobert

Anne-Sophie Cox

(2)

P. oceanica litter

• Fragmented material

- abscised dead leaves

- degraded leaf fragments

- degraded leaf fragments

• Uprooted shoots

and drift macroalgae

• Food and shelter for an abundant animal community

(3)

40 50 60 70 80 90 100 110 In d . k g -1 d ry w e ig h t Gam mar ids Shr imps Lept ostr acea ns Pag urid s Isop ods Oth er c rust acea ns Cer ithiid s Oth er m ollu sks Pol ycha etes Ech inod erm s 0 10 20 30 40 Macrofauna In d . k g

(4)

Problems

• How is coexistence possible between the

detritivores living in Posidonia litter ?

 apparently homogeneous food sources

• What is the role of these species in the

degradation of Posidonia litter ?

 apparently homogeneous food sources

 poor nutritional value of Posidonia

leaf litter

• Are they a link between seagrass primary

(5)

Objective

Determine the trophic diversity and potential role of

amphipod and isopod living in P. oceanica litter

(6)

Material & Methods

Sampling and study area

March 2004: Cox (2004)

March 2005

Calvi

Revellata Bay

(7)

Material & Methods

Diet analysis

2 methods



Gut content

analysis

(ingested material)

(ingested material)



Stable isotope

analysis: carbon & nitrogen

(Assimilated material)

- The isotope signature of an animal is a

weighted mixture of the isotopic values of the

food sources assimilated

(8)

Results and Discussion

Results and Discussion

(9)

Target species

Gammarella fucicola

Gammarus aequicauda

Idotea baltica

(10)

Gut contents

semi-quantitative estimation

P. oceanica

litter

Macroalgae

(Drift & epiphytes)

Crustaceans

Microorganisms

(Diatoms, Foraminifera)

G. aequicauda

G. fucicola

I. baltica

I. hectica

(11)

Frequency of occurrence in guts

P. oceanica litter

G. aequicauda

~ 100 %

G. fucicola

I. baltica

I. hectica

~ 50 %

~ 90 %

~ 90 %

(12)

Ingested fragments of P. oceanica

litter are small (5-100 cells)

 Potentiel role of these species in

 Potentiel role of these species in

(13)

Results of isotopic ratios

Results of isotopic ratios

(14)

2.5 3.0 3.5 4.0 4.5 5.0 5.5 1 5

N

(

)

-35.0 -32.5 -30.0 -27.5 -25.0 -22.5 -20.0 -17.5 -15.0 -12.5 -10.0 0.0 0.5 1.0 1.5 2.0 2.5

δδδδ

13

C (‰)

δδδδ

1 5

(15)

2.5 3.0 3.5 4.0 4.5 5.0 5.5 1 5

N

(

)

-35.0 -32.5 -30.0 -27.5 -25.0 -22.5 -20.0 -17.5 -15.0 -12.5 -10.0 0.0 0.5 1.0 1.5 2.0 2.5

SA

PEA

PoL

δδδδ

13

C (‰)

δδδδ

1 5

(16)

2.5 3.0 3.5 4.0 4.5 5.0 5.5

G.a

1 5

N

(

)

-35.0 -32.5 -30.0 -27.5 -25.0 -22.5 -20.0 -17.5 -15.0 -12.5 -10.0 0.0 0.5 1.0 1.5 2.0 2.5

SA

PEA

PoL

δδδδ

13

C (‰)

δδδδ

1 5

(17)

2.5 3.0 3.5 4.0 4.5 5.0 5.5

G.a

G.f

1 5

N

(

)

-35.0 -32.5 -30.0 -27.5 -25.0 -22.5 -20.0 -17.5 -15.0 -12.5 -10.0 0.0 0.5 1.0 1.5 2.0 2.5

SA

PEA

PoL

δδδδ

13

C (‰)

δδδδ

1 5

(18)

2.5 3.0 3.5 4.0 4.5 5.0 5.5 1 5

N

(

)

-35.0 -32.5 -30.0 -27.5 -25.0 -22.5 -20.0 -17.5 -15.0 -12.5 -10.0 0.0 0.5 1.0 1.5 2.0 2.5

SA

PEA

PoL

δδδδ

13

C (‰)

δδδδ

1 5

(19)

2.5 3.0 3.5 4.0 4.5 5.0 5.5 1 5

N

(

)

-35.0 -32.5 -30.0 -27.5 -25.0 -22.5 -20.0 -17.5 -15.0 -12.5 -10.0 0.0 0.5 1.0 1.5 2.0 2.5

SA

PEA

PoL

δδδδ

13

C (‰)

δδδδ

1 5

C

(20)

2.5 3.0 3.5 4.0 4.5 5.0 5.5

I.b

1 5

N

(

)

-35.0 -32.5 -30.0 -27.5 -25.0 -22.5 -20.0 -17.5 -15.0 -12.5 -10.0 0.0 0.5 1.0 1.5 2.0 2.5

SA

PEA

PoL

C

δδδδ

13

C (‰)

δδδδ

1 5

(21)

3,0 3,5 4,0 4,5 1 5

N

(

)

3,0 3,5 4,0 4,5 1 5

N

(

)

Hypothesis : Modification of the diet during growth

of the animal 





 agrees with gut content results

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Taille (mm)

1,0 1,5 2,0 2,5

δ

1 5 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Taille (mm)

1,0 1,5 2,0 2,5

δ

1 5

Lenght (mm)

(22)

2.5 3.0 3.5 4.0 4.5 5.0 5.5

I.b

1 5

N

(

)

-35.0 -32.5 -30.0 -27.5 -25.0 -22.5 -20.0 -17.5 -15.0 -12.5 -10.0 0.0 0.5 1.0 1.5 2.0 2.5

SA

PEA

PoL

C

δδδδ

13

C (‰)

δδδδ

1 5

(23)

2.5 3.0 3.5 4.0 4.5 5.0 5.5

I.b

I.h

1 5

N

(

)

-35.0 -32.5 -30.0 -27.5 -25.0 -22.5 -20.0 -17.5 -15.0 -12.5 -10.0 0.0 0.5 1.0 1.5 2.0 2.5

SA

PEA

PoL

C

δδδδ

13

C (‰)

δδδδ

1 5

(24)

2.5 3.0 3.5 4.0 4.5 5.0 5.5

I.b

I.h

G.a

1 5

N

(

)

 Important trophic diversity

-35.0 -32.5 -30.0 -27.5 -25.0 -22.5 -20.0 -17.5 -15.0 -12.5 -10.0 0.0 0.5 1.0 1.5 2.0 2.5

SA

PEA

PoL

C

G.f

δδδδ

13

C (‰)

δδδδ

1 5

(25)

Mixing model

• Mathematic model that can estimate relative

contribution of different food sources

• Method :

 find a distribution of feasible solutions

for the different food sources

- Phillips & Gregg (2003)

(26)

10

15

10

15

10

15

10

15

Posidonia litter

F

re

q

u

en

cy

(

%

)

0-30 %

0

5

0

10

20

30

40

50

60

70

80

90

100

0

5

0

10

20

30

40

50

60

70

80

90

100

0

5

0

10

20

30

40

50

60

70

80

90

100

0

5

0

10

20

30

40

50

60

70

80

90

100

Source contribution (%)

F

re

q

u

en

cy

(

%

)

I.b

I.h

G.f

(27)

 Difference with gut content results

10

15

50-57 %

F

re

q

u

en

cy

(

%

)

Posidonia litter

0-30 %

0

5

0

10

20

30

40

50

60

70

80

90

100

F

re

q

u

en

cy

(

%

)

Source contribution (%)

G.a

I.b

I.h

G.f

(28)

Gut contents

semi-quantitative estimation

P. oceanica

litter

G. aequicauda

G. fucicola

I. baltica

I. hectica

(29)

 Difference with gut content results

10

15

50-57 %

F

re

q

u

en

cy

(

%

)

Posidonia litter

0-30 %

0

5

0

10

20

30

40

50

60

70

80

90

100

F

re

q

u

en

cy

(

%

)

Source contribution (%)



Micro-organisms colonising leaf litter may constitute

an important food source for litter fauna

(30)

Fungi

Bacteria

Photos: Dr. Mathieu Poulicek

(31)

0 5 10 15 0 10 20 30 40 50 60 70 80 90 100 0 5 10 15 0 10 20 30 40 50 60 70 80 90 100

Sciaphilous algae

F

re

q

u

en

cy

(%

)

44 %

13 %

I.h

G.f

I.b

F

re

q

u

en

cy

Source contribution (%)

0 5 10 15 0 10 20 30 40 50 60 70 80 90 100 0 5 10 15 0 10 20 30 40 50 60 70 80 90 100

Crustacean fragments

12 %

30 %

(32)

Summary of mixing model results

Species

Principal assimilated

food sources

G. aequicauda

Posidonia litter - PEA

G. fucicola

I. baltica

I. hectica

PEA

PEA - Crustacea

SA - PEA

(33)

Conclusions

Our results demonstrate

• The important trophic diversity existing between

detritivorous crustaceans in Posidonia litter

• Importance of combined methods in diet studies

(ingested material vs assimilated material):

Posidonia leaf litter are ingested but a little

(34)

• Role in the mechanical degradation

• The transfer to higher trophic level and the

Conclusions

• The transfer to higher trophic level and the

link between seagrass primary production

and adjacent habitats

 macrofauna of the litter is

(35)

Acknowledgments

We are very thankful to the staff of

the oceanographic station STARESO

(CORSICA) for their hospitality and

assistance during field work

.

This study was supported by FNRS

(Fonds National pour la Recherche Scientifique)

Contract FRFC 2.45.69.03

Contact : Nicolas.Sturaro@student.ulg.ac.be

www.ulg.ac.be/oceanbio

Références

Documents relatifs

La résistance par le droit durant la Seconde Guerre mondiale Paul H ANSON , Jean D ISCRY , Paul T SCHOFFEN et le procès de.. Louveignée du 13

Cette réflexion sur ce triptyque relationnel marque, homme, machine à travers l’objet technologique chatbot nous a ainsi amené à nous poser une question de départ simple :

We present here a phenotyping platform designed to analyse various aspects of root systems architecture and dynamics and how they interfere with soil water uptake, in a

- allocation of newly posted annotations: section 3.3 shows how agents use the contract-net protocol together with a pseudo semantic distance between a new annotation and an archive

Keywords: Parkinson’s disease – non apoptotic cell death – Ferroptosis – iron metabolism –.. oxidative stress– lipid peroxidation -

In this work, we establish such regret guarantee for HCT, which is another hierarchical optimistic optimization algorithm that needs to know the smoothness.. This confirms the

Figure 4: Solar oblateness (difference ∆r between the equatorial and polar radius) as deduced from Pic du Midi heliometer observations (lozenges), SDS balloon flights

8.% Dans quelle mesure éprouvez-vous de la difficulté en raison de votre épaule lorsque vous faites des push-ups ou d’autres exercices exigeants pour