• Aucun résultat trouvé

Assessing dynamical correlations between functional and structural brain connectivity

N/A
N/A
Protected

Academic year: 2021

Partager "Assessing dynamical correlations between functional and structural brain connectivity"

Copied!
1
0
0

Texte intégral

(1)

Abstract

 

R.Liégeois

1

,  E.Ziegler

2

,  C.Phillips

2

,  F.Gómez

2,3

 A.Soddu

4

,  S.Laureys

2

 &  R.Sepulchre

1,5  

1  Department of Electrical Engineering and Computer Science, University of Liège, Belgium  

2  Cyclotron Research Centre, University of Liège, Belgium

3 Computer Science Department, Universidad Central de Colombia, Colombia

4 Mind & Brain Institute, Department of Physics and Astronomy, Western University, Canada

5 Department of Engineering, Trumpington Street, University of Cambridge, Cambridge, United Kingdom

The   correlaFon   between   structural   and   funcFonal   connecFviFes   is   not   constant.   One   example  of  this  dynamical  connecFvity  and  its  corresponding  power  spectrum  is  shown   below:                

Figure1:   Results   for   Subject   7   and   window   width   =   6   TR.   (A)   RelaFve   correlaFon   (Rc)  

between   SC   and   FC   computed   following   the   methods   presented   in   Fig.   3D   and   normalized  by  the  staFc  correlaFon  obtained  with  the  classical  staFc  approach  (Fig.  3C).   (B)  Power  spectrum  of  Rc  from  which  the  average  spectral  content  Fm  is  computed.    

Ques6ons:  

① Which  markers  can  we  use  to  characterize  these  curves  ?   ② What  is  the  impact  of  the  window  width  ?  

③ Are  the  fluctuaFons  observed  in  Fig.1A  significant  (i.e.  due  to  neuronal  dynamics)  ?  

è We   showed   that   the   fluctuaFons   are   significant   provided   that   the   window   width   is   chosen   in   a   range   that   both   allows   to   capture   the   neuronal   dynamics   and   reliably  

es3mate  the  func3onal  connec3vity:  

Figure  2:  (A)  EsFmaFon  of  the  significance  region  based  on  Fm  and  (B)  its  interpretaFon  

as  a  tradeoff  between  esFmaFng  funcFonal  connecFvity  and  capturing  its  dynamics.    

 

 

Highlights

 

Methods  and  Answers

 

Take-­‐home  Messages

 

REFERENCES    

[1]  Deco,  G.  et  al.  (2012),  'How  anatomy  shapes  dynamics:  a  semi-­‐analyFcal  study  of  the  brain  at  rest  by  a  simple  spin  model',  Front  Comput  

Neurosci,  vol.  6,  no.  68.  [2]  Hutchison,  R.M.  et  al.  (2013),  'Dynamic  funcFonal  connecFvity:  Promise,  issues,  and  interpretaFons',  Neuroimage  80,  pp.  360–

78.   [3]   Leonardi,   N.   et   al.   (2013),   'Principal   components   of   funcFonal   connecFvity:   A   new   approach   to   study   dynamic   brain   connecFvity   during   rest',  

Neuroimage,  vol.  83,  pp.  937-­‐50.  [4]  Honey,  C.J.  et  al.  (2010),  'Can  structure  predict  funcFon  in  the  human  brain  ?',  NeuroImage  52,  pp.  766–76.  

 

ACKNOWLEDGEMENTS   &   SPONSORS  

-­‐   This   paper   presents   research   results   of   the   Belgian   Network   DYSCO   (Dynamical   Systems,   Control,   and  

OpFmizaFon),  funded  by  the  Interuniversity  AoracFon  Poles  Programme  iniFated  by  the  Belgian  Science  Policy  Office.  

The  link  between  resFng-­‐state  funcFonal  connecFvity  (FC),  measured  by  the  correlaFons   of   the   fMRI   BOLD   Fme   courses,   and   structural   connecFvity   (SC)   has   been   repeatedly   invesFgated   recently   (1).   Meanwhile,   the   importance   of   considering   the   dynamics   of   neuronal  processes  has  also  been  highlighted  (2).  In  this  work  we  show  how  the  classical   staFc   (i.e.   considered   as   constant)   relaFonship   between   SC   and   FC   could   be   enriched   when  the  FC  dynamics  are  taken  into  account.    

We  use  a  sliding  window  approach  to  explore  these  dynamics  and  show  that  the  window   width  should  be  chosen  in  a  parFcular  range  in  order  to  unveil  staFsFcally  significant  (i.e.   not  due  to  noise)  fluctuaFons  of  the  FC-­‐SC  correlaFon.    

Assessing  dynamical  correlaFons  between  funcFonal  and  structural  brain  connecFvity    

C

YCLOTRON

 R

ESEARCH

 C

ENTRE

   |  

hop://www.cyclotron.ulg.ac.be    

|  Raphaël  Liégeois  |  

R.Liegeois@ulg.ac.be

 

0 100 200 300 400 500 600 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.05 0.1 0.15 0.2 0.25 0 1 2 3 4 5

A

B

Frequency (Hz) Time (sec)

Relative Correlation Relative Power (%)

Fm=0.085Hz

Rc

Data  was  collected  from  14  healthy  volunteers  in  resFng  state  with  TR=2  sec.  To  explore   the  FC-­‐SC  correlaFon  dynamics  we  repeated  the  computaFon  of  FC  for  m-­‐w+1  windows   of  the  fMRI  Fme  series  (Fig.  3B)  where  m  is  the  number  of  volumes  and  w  is  the  window   width  (e.g.  (3)).  The  difference  with  the  classical  staFc  approach  is  represented  below:  

Figure   3:   Comparison   between   the   staFc   and   the   dynamic   analysis   of   the   correlaFon  

between  SC  and  FC.  (A)  FC  is  computed  using  the  whole  fMRI  Fme  courses.  (B)  FCs  are   computed  in  windows  of  the  fMRI  Fme  courses  that  are  slided  over  the  whole  fMRI  Fme   courses.  (C)  Classical  staFc  correlaFon  between  SC  and  FC,  as  computed  in  e.g.  (4).  (D)   Time  evolving  correlaFon  between  SC  and  FC  as  used  here.  

Answers  to  the  ques6ons  

①  In   order   to   characterize   dynamics   observed   in   the   Rc   curves,   we   used   the   mean   frequency  Fm  contained  in  these  curves,  computed  as                                                                        .  

②  The  curves  obtained  with  various  values  of  window  width  w  are  represented  in  Fig.   4A.  We  observe  that  the  windowing  acts  as  a  low-­‐pass  filter,  with  a  cutoff  frequency   that  decreases  when  w  increases.  

 

③  In   order   to   disentangle   neuronal   dynamics   from   noise   we   did   the   same   computaFons  as  in  Fig.  4A  but  with  random  permutaFons  of  the  fMRI  volumes  (Fig.   4B).  Doing  so  leaves  the  overall  correlaFon  unchanged  whereas  the  evoluFon  of  Rc   is   totally   rearranged.   In   the   example   of   Fig.   4   we   can   observe   that   the   disFncFon   between  the  ordered  and  the  resampled  cases  based  on  Fm  is  more  pronounced  for   w=13  TR  than  for  w=4  TR  or  w=50  TR.  To  test  the  staFsFcal  difference  at  the  group   level   between   the   two   configuraFons   we   compared   Fm   in   both   cases   for   all   the   subjects  and  window  widths.  The  results  are  shown  in  Fig.  2A  and  we  can  observe  a   peak  of  staFsFcal  significance  around  w=20  TR.  

A

fMRI time series

B

fMRI time series

C

D

m w Structural connectivity matrix

Fm =

F * P(F)dF

0 100 200 300 400 500 600 0 0.2 0.4 0.6 0.8 1 0 0.05 0.1 0.15 0.2 0.25 0 1 2 3 4 0 100 200 300 400 500 600 0 0.2 0.4 0.6 0.8 1 0 0.05 0.1 0.15 0.2 0.25 0 1 2 3 0 100 200 300 400 500 600 0 0.2 0.4 0.6 0.8 1 0 0.05 0.1 0.15 0.2 0.25 0 5 10 15 w=4 w=50 w=13 Relative Po wer (%) Relative Co rrelatio n

Time (sec) Frequency (Hz)

Fm=0.090Hz Fm=0.083Hz Fm=0.021Hz 0 100 200 300 400 500 600 0 0.2 0.4 0.6 0.8 1 0 0.05 0.1 0.15 0.2 0.25 0 1 2 3 0 100 200 300 400 500 600 0 0.2 0.4 0.6 0.8 1 0 0.05 0.1 0.15 0.2 0.25 0 1 2 3 4 5 0 100 200 300 400 500 600 0 0.2 0.4 0.6 0.8 1 0 0.05 0.1 0.15 0.2 0.25 0 5 10 15 Relative Co rrelatio n Relative Po wer (%)

Time (sec) Frequency (Hz)

w=4 w=13 w=50 Fm=0.091Hz Fm=0.020Hz Fm=0.058Hz

A

B

w

Figure  4:  Effect  of  window  width  and  comparison  between  starFng  from  ordered  (A)  and  

permuted  (B)  fMRI  Fme  series.  

We  showed  that  there  are  significant  dynamics  of  the  FC-­‐SC  correlates  which  could  be  helpful  to  refine  the  current  models  based  on  a  staFc  FC-­‐SC  relaFonship  (1,4).  

 

è

There  is  informaFon  contained  in  the  fMRI  Fme  series  dynamics    

è

The  window  width  should  be  chosen  carefully:  sufficiently  large  to  reliably  esFmate  FC  but  sufficiently  small  to  capture  its  dynamics    

è

Possible  interpretaFons  of  these  fluctuaFons  such  as  mind-­‐wandering  should  be  further  explored  

 

1 10 100 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Average p-value Region of statistical significance Average + 1StD p-value wl wh Small Large 1 0 Estimating Correlation Capturing Dynamics Region of globally higher statistical significance (low p-value)

Window width (w) Window width (w)

p -v alue Sta tistical Sig ni ficanc e

B

A

Références

Documents relatifs

In order to probe moderately high Reynolds number flows, hydraulic jumps might be created by impacting a jet on a solid surface, as in the commonly operation of opening the tap of

To confirm the effect of the CLDN1-specific mAb on HCV-induced signaling in liver tissue from HCV-infected patients (Supplementary Table 4), freshly isolated liver biopsies were

• For negative strain paths (ρ≤0) and when the combination of FT/NH bilayer is considered, the necking band orientation is found to be independent of the elastomer

While the degradability and the HAp crystalline phase formation are important to initiate the bone tissue re generation, the low biodegradability of 3DOM BG/Fe does not disrupt the

While small cancellation theory over a hyperbolic group studies quo- tients of hyperbolic groups by means of their action on their (hyperbolic) Cayley graphs, the previous

The first samples of muskeg received by the Division of Building Research were obtained at McInnes Island on the coast of British Columbia at the entrance to Millbank Sound,

tmRNA Decreases the Bactericidal Activity of Aminoglycosides and the Susceptibility to Inhibitors of Cell Wall

We proved with Proposition 1.2 that a cartesian product of a finite numbers of copies of an Archimedean Dedekind-complete totally ordered ring is a Simple Complete