• Aucun résultat trouvé

Thyroid dysfunction in sea bass (Dicentrarchus labrax): Underlying mechanisms and effects of polychlorinated biphenyls on thyroid hormone physiology and metabolism

N/A
N/A
Protected

Academic year: 2021

Partager "Thyroid dysfunction in sea bass (Dicentrarchus labrax): Underlying mechanisms and effects of polychlorinated biphenyls on thyroid hormone physiology and metabolism"

Copied!
10
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Aquatic

Toxicology

j o ur na l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / a q u a t o x

Thyroid

dysfunction

in

sea

bass

(Dicentrarchus

labrax):

Underlying

mechanisms

and

effects

of

polychlorinated

biphenyls

on

thyroid

hormone

physiology

and

metabolism

Joseph

G.

Schnitzler

a,∗

,

Niko

Celis

b

,

Peter

H.M.

Klaren

c

,

Ronny

Blust

b

,

Alin

C.

Dirtu

d,e

,

Adrian

Covaci

b,d

, Krishna

Das

a

aMareCentre,LaboratoryforOceanologyB6c,LiègeUniversity,Liège,Belgium

bLaboratoryofEcophysiology,BiochemistryandToxicology,DepartmentofBiologyUniversityofAntwerp,B-2020Antwerp,Belgium cRadboudUnivNijmegen,InstWaterWetlandRes,FacSci,DeptAnimPhysiol,Heyendaalseweg135,NL-6525AJNijmegen,TheNetherlands dToxicologicalCenter,UniversityofAntwerp,B-2610Wilrijk-Antwerp,Belgium

eDepartmentofChemistry,“Al.I.Cuza”UniversityofIasi,700506Iasi,Romania

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1June2011

Receivedinrevisedform26July2011 Accepted29July2011 Keywords: Dicentrarchuslabrax Polychlorinatedbiphenyls Thyroidhormones Deiodination Glucuronidation Sulfation Invivoexposure

a

b

s

t

r

a

c

t

ThecurrentstudyexaminestheeffectofsubchronicexposuretoamixtureofAroclorstandardsonthyroid hormonephysiologyandmetabolisminjuvenileseabass.Thecontaminantmixturewasformulatedto reflectthepersistentorganicpollutiontowhichtheEuropeanseabasspopulationcouldconceivablybe exposed(0.3,0.6and1.0␮g7PCBspergfoodpellets)andhigher(10␮g7PCBspergfoodpellets).After 120daysofexposure,histomorphometryofthyroidtissue,muscularthyroidhormoneconcentrationand activityofenzymesinvolvedinmetabolismofthyroidhormoneswereassessed.Meanconcentrationsof 8,86,142,214and2279ngg−1ww(7ICESPCBcongeners)weredeterminedafter120daysexposure.

TheresultsshowthattheeffectsofPCBexposuresonthethyroidsystemaredose-dependent.Exposureto environmentallyrelevantdosesofPCB(0.3–1.0␮g7PCBspergfoodpellets)inducedalargervariability ofthefolliclediameterandstimulatedhepaticT4outerringdeiodinase.Muscularthyroidhormonelevels

werepreservedthankstothePCBinducedchangesinT4dynamics.At10timeshigherconcentrations

(10␮g7PCBspergfoodpellets)animportantdepressionofT3andT4levelscouldbeobservedwhich

areapparentlycausedbydegenerativehistologicalchangesinthethyroidtissue.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Inarecentfieldstudywehaveestablishedcorrelationsbetween

exposuretoorganochlorinecontaminantsandthyroidfunctionin

wildseabassfromEuropeancoasts(Schnitzleretal.,2011a).

Mul-tivariatestatisticalanalysisspecificallyrevealedtheinvolvement

ofhigherchlorinatedPCBsinthyroiddysfunction.Indeed,fishes

withhigherPCBconcentrationsdisplayedalterationsinmetabolic

pathways,viz.deiodinationandsulfation,thataffectcirculatingand

tissuethyroidhormonelevels(Schnitzleretal.,2011a).

The mechanisms of how endocrine disruptors alter thyroid

function have been extensively investigated but are still not

fully understood. The regulatory pathways involvedin thyroid

∗ Correspondingauthor.

E-mailaddresses:joseph.schnitzler@ulg.ac.be(J.G.Schnitzler),

Niko.Celis@ua.ac.be(N.Celis),p.klaren@science.ru.nl(P.H.M.Klaren),

ronny.blust@ua.ac.be(R.Blust),alindirtu@yahoo.com(A.C.Dirtu),

adrian.covaci@ua.ac.be(A.Covaci),krishna.das@ulg.ac.be(K.Das).

homeostasisarenumerousandcomplex.Asaconsequence

envi-ronmentalchemicalscanactatmanylevelsinthethyroidsystem

(Ishiharaetal.,2003).Thereareatleastthree independent,but

possiblyinteracting,mechanismsthatmayexplaintheabilityof

PCBtoreducecirculatingand tissuelevelsofthyroidhormones.

First, PCBshave beenshowntochangethyroidglandstructure,

possiblydirectlyinterferingwiththyroidglandfunction(Collins

andCapen,1980b)anddisruptingdirectlythehormone

synthe-sisin thethyroidgland(Boasetal.,2006;Brown etal.,2004a;

Ishiharaet al.,2003).PCBsmaydirectlyinterferewiththe

abil-ityofthethyroidglandtosynthesizethyroidhormonesbyaltering

mechanismsinvolvedinactiveaccumulationofiodideand

prote-olysisofthyroglobulin.Second,PCBscantargetthyroidhormone

metabolism.Theymayaffectextrathyroidaliodothyronine

deiodi-nases,enzymesthatcontroltheconversionofthyroidhormones

and arethus essentialin theregulationoflevelsof biologically

active T3 locally and systemically (Ishihara et al.,2003; Zoeller

andTyl,2007).IthasbeenshownthatPCBexposureincreasesbile

flowrateaswellasthebiliaryexcretionofT4(CollinsandCapen,

1980a).PCBexposurealsoinducestheexpressionandactivityof

0166-445X/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.aquatox.2011.07.019

(2)

thephase-IIenzymesglucuronosyltransferaseandsulfotransferase

thatalsoutilizethyroidhormonesasconjugategroupacceptorsand

increaseT4 conjugation(KlaassenandHood,2001;Visseretal.,

1993).TheseactionsfacilitateT4clearancebyhepaticmetabolism,

reducingthebiologicalhalf-lifeofT4.Finally,PCBscompetitively

bindtothyroidhormonebindingproteinsliketransthyretin(TTR)

inblood(Boasetal.,2006;Ishiharaetal.,2003;Wadeetal.,2002)

andcanpotentiallydisplacethyroidhormonesfromtheircarrier

molecules.Moreover,thesemayinteracttoproducesummative

effects.Besidesthesedirecteffects,indirecteffectsviadisruption

ofthyroidhormonereceptorsandaccessoryproteinsthatdirectly

controlthegeneexpressionthroughthyroidhormoneresponsive

elementscanalsointerferewiththethyroidsystem(Blantonand

Specker,2007;Ishiharaetal.,2003).

Disruptionofthyroidfunctioncanhavesevereconsequences

asthyroidhormonesplayanimportantroleinthemaintenanceof

anormalphysiologicalstatusinvertebrates.Inadultfish,thyroid

hormonesareofprimaryimportanceintheregulationofsuch

fun-damentalphysiologicalprocessesasgrowth,nutrientutilization,

andreproduction.Fishgrowfasterandarehealthierwhenthyroid

hormonelevelsareadequate(Poweretal.,2001;Yamano,2005),

providinganeconomicrationaletostudythyroiddisruptorsina

fisheryandaquaculturecontext.Thisexplainsourchoiceofthe

testspecies,Europeanseabass(Dicentrarchuslabrax),asitisan

importantcommercialspecies,toppredatorofasimplefoodweb,

commonlyfoundinEuropeancoastalwaters,andwithawell

doc-umentedbiology(Loizeauetal.,2001;PickettandPawson,1994).

Polychlorinatedbiphenylshavebeenshowntoalterthyroid

hor-monelevelsinexperimentalanimals,includingfish(Brouweretal.,

1989/7;Coimbra and Reis-Henriques,2007; Collins and Capen, 1980a,b;Fowlesetal.,1997;Hallgren,2001,2002;Iwanowiczet

al.,2009).Moststudiesonfishthyroidologyhaveinvolvedambient

concentrations ofxenobiotics deliveredatsublethal,

concentra-tionsthat, however, are still higher than those encountered in

thefield(Blanton andSpecker, 2007;Brownet al.,2004a).Our

studyaimedtogainanintegratedinsightintotheeffectsofa

4-monthinvivoexposuretovariousenvironmentallyrelevantdoses

ofcommercialmixtures of polychlorinatedbiphenyls (PCBs)on

thethyroidsystemofD.labrax.Severalendpointswereanalyzed

simultaneously:thyroidglandhistology,hepatic5-deiodination

(orouterringdeiodination,ORD)activitiesthatconvertthe

thy-roidprohormoneT4 tothebioactivehormoneT3,andmuscular

T4andT3levels.Inaddition,twobiochemicalpathways,i.e.

sulfa-tionandglucuronidation,involvedinthyroidhormonemetabolism

andphase-2responsetotoxicants,wereassayed.Thisapproach

allowedustodetermineunderlyingmechanismsanddose

depen-dencyoftheeffectsofthesepollutantsonthethyroidsystemof

thesefish,andtoexaminetheconsequencesofapotential

disrup-tionofthethyroidsystemongrowthperformanceandcondition

factorinthesecommerciallyimportantfishspecies.

2. Methods

2.1. Foodpreparation

Thecontaminantmixturewasformulatedtoreflectthe

persis-tentorganicpollutiontowhichtheEuropeanseabasspopulation

couldconceivablybeexposed.Ourpreviousfieldstudyonseabass

fromEuropeancoastalregionsrevealedPCBpatternsdominated

byalargecontributionfromthehepta-,hexa-and

pentachlori-natedPCBs(Schnitzleretal.,2011b).Thesecongenersarethemost

abundantduetotheirwidespreaduseincommercialmixturessuch

asAroclor1254and1260.Wethereforedecidedtoworkwitha

1:1mixtureofAroclor1254and1260.Loizeauetal.(2001)caught

suprabenthicspecies(gobies,shrimpsandmysidaceans)thatare

potentialpreyofseabassintheSeineestuary(Loizeau,2001).Based

onthereportedthePCBconcentrations(ondryweightbasiswith

standarddeviation),wecalculatedtheofthe7markerPCB

con-geners(IUPACnos.28,52,101,118,138,153,180)presentedin

Table1.Wecontaminatedthefoodwitha1:1mixtureofAroclor

1254and1260toreachconcentrationsofthe7ICESmarker

con-genersrangingfrom300to1000ngg−1 food,toreflectbestthe

observedconcentrationincommonseabassprey.

Aroclormixtureswereaddedto100mLhexaneand100-g

por-tionsofcommercialfishfood(T-2PClassic.Trouw.France)intoa

1000mLroundbottomflask.Themixturewasslowlystirredby

arotaryevaporator(waterbathat60◦C,refrigerationat5◦Cand

pressureat875Pa)tilldryness(ca.1h).Theresultingfoodspiked

withchemicalswasthenthoroughlydriedat40◦Covernight.The

foodpelletskepttheirinitialformandconsistency.Controlfood

waspreparedinthesamemannerasidefromaddingthetest

mix-ture.

The concentrations for the 7 ICES PCB congeners in

pel-lets designed for the five different exposure conditions were

measuredasdescribed below, andtheobtainedresultsare: (1)

27ngg−1 (assignedlabel: Control), (2) 329ngg−1 (assigned the

nominal valueof 300ngg−1dw),(3) 629ngg−1 (assigned value

600ngg−1dw), (4) 1021ngg−1 (assigned value 1000ngg−1dw)

and(5)11,395ngg−1 (assignedvalue10,000ngg−1dw).The

cor-relationfactor betweennominaland effectiveconcentrations is

0.9999(Table1).

2.2. Husbandry

ExperimentaltrialswereconductedintheBiologyDepartment

ofAntwerpUniversity,Belgium.Seventy-fivejuvenileseabass(D.

labrax,L.)wereobtainedfromacommercialfishfarm(Ecloserie

marinedeGravelines,Gravelines,France).Theirbodymassranged

from7to20g(mean13.2±2.8g).Fishwerehousedin200-Ltanks

withanaturalphotoperiod.Thewatertemperaturewasmaintained

at15◦Cduringtheexperiment.Wateraerationwassettomaintain

100%airsaturation.Thewaterwascontinuouslyfilteredthrough

mechanical,charcoalandextensivebiologicalfiltersbeforebeing

recycled.

Fish were randomly assigned to a control group and four

treatmentgroups (group size n=15in each case) thatreceived

contaminated foodat0.3, 0.6,1.0and10.0␮gg−1 (of[7ICES

PCBs] per gof food pellets),respectively. Fish were fedspiked

foodfor120days.Thedailyfeedingrationwas2.0%ofthemean

bodymassofthefish,adjustedaftereachsamplingperiodbased

onmeanweightofthesub-samplefishthatweresacrificed.Feed

was presented by sprinkling at the surface of the water and

wasgenerallycompletelyconsumedbyeachgroupoffishwithin

1min.Fivefishweresampledfromeachtankondays40,80and

120.Fish werealwayssampled24hafterthepreviousfeeding.

Weightand lengthweremeasuredandthespecificgrowthrate

(SGR=100%×(lnfinal weight−lninitialweight)/totaldays)and

conditionfactor(CF=weight×100/length3)werecalculated.The

subpharyngealareawasremovedandimmersedinformalin

fix-ative (VWRInternationalBVBA). Approximately10gof skeletal

musclewasexcisedcaudallyofthehead,dorsaltothelateralline

andanteriortothedorsalfin.Muscleandliversampleswerefrozen

immediatelyondryiceandstoredat−80◦Cuntilanalysis.

2.3. Organiccontaminantanalysis

2.3.1. Standardsandreagents

AllindividualPCBandpesticidestandardswereobtainedfrom

Dr. EhrenstorferLaboratories GmbH(Augsburg,Germany).

Ace-tone, n-hexane (Hex), dichloromethane, and isooctane were of

(3)

Table1

Contaminationlevelsforthe7tracerPCBcongenersincurrentpreyofD.labraxandinartificiallyArochlor1254and1260contaminatedfood.(Accordingto:Loizeau,V., Abarnou,A.,Ménesguen,A.,2001.ASteady-StateModelofPCBBioaccumulationintheSeaBass(Dicentrarchuslabrax)FoodWebfromtheSeineEstuary,FranceEstuaries Vil.24,No6B,p1074–1087.). 28 52 101 118 153 138 180 sum7PCB Preys N.integer 12.5±1.4 40.2±4.2 65.1±6.6 53.3±5.4 119.6±12.0 94.9±10.0 59.0±6.0 444.6±35.1 P.microps 9.3±1.0 36.5±3.3 74.6±7.2 71.5±6.9 146.5±15.0 121.5±12.8 44.0±4.6 503.9±48.3 P.longirostris 5.6±0.6 29.2±3.1 23.2±2.0 52.6±5.4 96.4±10.0 75.2±8.1 51.2±5.3 333.4±31.3 C.crangon 8.4±0.5 31.2±3.3 26.5±2.1 59.7±6.1 156.4±16.0 131.5±13.6 81.9±9.0 495.6±55.8 D.labrax 10.3±1.5 44.1±4.8 126.5±13.0 144.8±15.0 338.8±35.0 298.7±27.1 131.3±12.7 2397.7±502,4 Food Control 5.7±2.4 10.6±3.0 4.7±1.2 1.4±0.5 2.5±0.5 1.9±0.3 0.3±0.1 27.1±3.5 0.3␮gg−1 5.7±0.1 29.8±0.7 55.6±0.8 36.2±0.9 87.3±3.5 73.0±2.6 41.2±1.6 328.8±27.5 0.6␮gg−1 5.9±0.6 52.0±0.1 105.0±4.0 74.9±1.6 170.4±4.5 139.4±4.4 81.2±3.3 628.7±54.7 1.0␮gg−1 10.0±2.1 79.9±12.0 167.2±18.9 121.5±12.0 278.6±30.0 226.7±23.4 136.9±17.4 1020.8±89.5 10␮gg−1 82.3±5.6 825.9±110.7 1907.6±219.1 1342.7±141.2 3106.4±312.3 2579.8±263.4 1549.9±1023.9 11394.6±1023.9

basic aluminium oxide, and silica gel (Merck) were used after pre-washingwithHexandheatingovernightat120◦C.An acceler-atedSoxhletextractorB-811(Buchi,Switzerland)wasusedforthe extractionoftargetcompoundsfromfishtissuesandfeed.

2.3.2. Samplepreparationandanalysis

Afishfilletwasthawedatroomtemperature,andapproximately 1gwaspreciselyweighed,groundwith20ganhydroussodium sul-fateandplacedintoanextractionthimble.Afteradditionofinternal standards(PCB46andPCB143),themixturewasextractedfor2.5h byhotSoxhletwith80mLofhexane/acetone=3:1(v/v).Theextract wassubjectedtocleanupon5gofacidsilica(44%sulfuricacid, w/w).Hexane(20mL)wasusedforthecompleteelutionofPCBs. Thefinaleluatewasconcentratedundernitrogenuntil100␮Land transferredtoaGCvial.

One ␮Lwasinjected inpulsedsplitless modeona Hewlett-Packard6890GCconnectedviadirectinterfacetoaHP5973mass spectrometer.A50m×0.22mm×0.25mm,HT-8capillarycolumn (SGE,Zulte,Belgium)wasusedwithheliumascarriergasata con-stantflowof0.7mL/min.Injectorandinterfacetemperatureswere setat270and300◦C,respectively.Theoventemperatureprogram beganat90◦C,kept1min,andthenincreasedwith15◦C/minto 170◦C,heldfor3min,thenincreasedat4◦C/minto270◦C,heldfor 1min,andwasfurtherincreasedat10◦C/minto290◦Candheld for15min.Themassspectrometerwasoperatedinelectronimpact ionizationmode.Twomostabundantionsweremonitoredforeach levelofchlorinationforPCBs.Methodlimitsofdetection(LOD)for individualPCBcongenersrangedbetween0.1and0.5ngg−1lipid. Recoveriesoftargetcompoundsrangedbetween72%and80%.We investigated38PCBcongeners(IUPACnos.18,31,28,52,49,47,44, 74,95,101,99,87,110,118,105,151,149,146,132,153,138,128, 156,187,183,174,177,171,172,180,170,199,196/203,195,194, 205,206and209)inall75musclesamples,and21metabolites (IUPACnos.4-HO-CB119,4-HO-CB120,3HO-CB118,4HO-CB109, 3HO-CB153, 4HO-CB146, 4HO-CB127, 3HO-CB138, 4HO-CB130, 4HO-CB163,4HO-CB187,4-HO-CB162,4-HO-CB202,4-HO-CB177, 3HO-CB180,4HO-CB172,4HO-CB193,4-HO-CB198,4-HO-CB-199, 4-diHO-CB202and4-HO-CB208)infivemuscleandliversamples. The methodwassubmittedtoregular qualityassuranceand control procedures. Retention times, ion chromatograms, and intensityratios of themonitored ions wereused as identifica-tioncriteria. A deviationof the ion intensityratioswithin 20% ofthemeanvaluesof thecalibrationstandards wasconsidered acceptable.Themethodperformancewasassessedthrough rig-orous internal quality control,which includeda daily check of calibrationcurvesandregularanalysisofproceduralblanksand certifiedreferencematerialCRM350(PCBsinmackereloil).The methodwastestedbyregularparticipationtointerlaboratorytests organizedbytheUSNationalInstituteofStandardsand Technol-ogy(NIST)forthedeterminationofPCBsinbiologicalsamples.The

resultsoftheindividualPCBcongenersdeviatedlessthan20%from thetargetvalues.

2.4. Thyroidparameters 2.4.1. Standardsandreagents

Thyroxine(T4),uridine5-diphosphateglucuronicacid(UDPGA)

and 3-phospho-adenosine-5-phosphosulfate (PAPS) were obtained from Sigma Chemical Co. (St. Louis, MO). Sephadex LH-20waspurchasedfromAmershamPharmaciaBiotechBenelux (Roosendaal, The Netherlands). Outer ring labeled [125I]T

4

(23.3TBq/mmol) was obtained from Perkin-Elmer Life Science, Inc.(Boston,MA).Allotherchemicalswereanalyticalgradeand obtainedfromcommercialsuppliers.Radiolabelediodothyronines werepurifiedshortlybeforeusebySephadexLH-20column chro-matography.Radioactivitywasmeasuredina 1272-Clinigamma gammacounter(LKB/WallacOy,Turku,Finland).Protein concen-trationsweredeterminedusingaCoomassieBrilliantBlueG-250 kit(Bio-Rad,München,Germany)andbovineserumalbuminasa standard.

2.4.2. Muscularthyroidhormonedeterminations

MusculartotalT3andtotalT4concentrationsweremeasured

byradioimmunoassay(SiemensCoat-a-Count,Brussels,Belgium) according to themanufacturer’s instructions. Details of extrac-tion methods and the assay protocol are described elsewhere (Schnitzleretal.,2008).Theaccuracyoftheassaywasdetermined

byblindanalysisofqualitycontrolstandardsathigh,mediumand

lowconcentrations.Thesesampleswereinsertedinduplicateat

thefront,middleandendoftheassayandmeanmeasured

concen-trationswerethencomparedtoactualconcentrationstodetermine

assayreliability.Theassaywasacceptedwithreliabilitybetween

90and110%.Todeterminetheefficacyoftheextractionprocess

inrecoveringthyroidhormonesaswellastransferofsamplesinto

differenttypesoftubes,tworecoverysystemswereused.

Unla-belledthyroidhormonewasaddedtothemincedfishmuscleprior

tohomogenization.Thesampleswerethensubjectedtothesame

homogenization,extraction,reconstitutionandthyroidhormone

assayproceduresastheunknownandstandardcurvesamples.The

percentageofthyroidhormonerecoveredfromeachspikedtube

wascalculatedandrevealedquantitativerecoveriesof92%T4and

93%T3.

2.4.3. Sulfotransferase

SulfotransferaseactivitywasmeasuredinduplicatewithT4as

theconjugategroupacceptor,whilePAPSwasusedasthesulfate

groupdonor.SulfotransferaseactivitytowardsT4wasmeasuredby

theincubationofapproximately50␮ghomogenateproteinat37◦C

for 120minin 200␮L100-mMNa-phosphate bufferand 2mM

EDTA(pH7.2),1␮M125I-labeledT

(4)

wasterminatedwith800␮Lice-cold0.1MHCl,andthequenched

incubatewasappliedtoSephadexLH-20 minicolumns(2mLof

a10%,w/vsuspension)toresolveliberatediodide,water-soluble

conjugatesandnativeiodothyronines,respectively,asdescribedin

detailpreviously(vanderHeideetal.,2002).Radioiodideactivities

inthewater-solublefractionswereinterpretedtohaveoriginated

fromthepresenceofsulfatediodothyronines.Controlincubations

intheseassayswereintheabsenceofPAPS.Netsulfotransferase

activitiesareexpressedasapercentageofthetotalsumofall

frac-tionsoftheSephadexLH-20chromatograms.

2.4.4. UDPglucuronyltransferase(UGT)

UGTactivitywasmeasuredinduplicatewithT4 asthe

conju-gategroupacceptor.UDPGAwasusedastheglucuronosylgroup

donor.TheglucuronidationofT4wasmeasuredbytheincubation

of50␮ghomogenateproteinat37◦Cfor120minin200␮Lbuffer

containing100mMTris/HCl(pH7.4),5mMMgCl2and0.05%Brij56

(Polyethyleneglycolhexadecylether;acolorlessnonionic

deter-gent and emulsifier; Sigma–Aldrich), supplemented with 1␮M

125I-labeledT

4and5mMUDPGA.Thereactionwasquenchedwith

200␮Lice-cold methanol,andtheincubatewascentrifugedfor

10minat 1500×g.To 300␮Lof thesupernatantthus obtained

700␮L 0.1M HCl was added, and the mixture was subjected

toSephadexLH-20columnchromatographyasdescribedabove.

Radioiodide activities in the water-soluble fractions were here

interpretedtohaveoriginatedfromthepresenceofglucuronidated

iodothyronines.ControlincubationswereintheabsenceofUDPGA.

2.4.5. Outerringdeiodinase(ORD)

5-Deiodinase activities were measured in duplicate as

describedindetailelsewhere(Klarenetal.,2005).Briefly,50␮g

homogenateproteinwasincubatedfor1hundersaturating

sub-strateconditionsof20␮MT4in200␮Lof100mMNa-phosphate

buffer(pH7.2).Outerringlabeled[125I]T

4wasusedasatracer,and

waspurifiedona10%(w/v)SephadexLH-20mini-columnshortly

beforeuse.Thereactionwasquenchedbytheadditionof100␮L

ice-cold5%BSA,followedby500␮Lice-cold 10%TCA,and

cen-trifugedat1400×g(15min,4◦C).To500␮Lofthedeproteinised

supernatantthusobtainedanequalvolumeof1.0MHClwasadded,

andliberatediodidewasseparatedfromthenativeiodothyronine

usingSephadex LH-20columnchromatography. Non-enzymatic

outerringdeiodinationwasdeterminedintheabsenceofa

prepa-ration.

2.4.6. Thyroidhistomorphometricanalysis

Thethyroidtissuesenclosedinthesubpharyngealareawere

storedinformalinfixative.Thetissuewasthendecalcifiedin5%

formicacidand5%formaldehydeforadayandtransferredintoa

sodiumsulfatesolutionforanotherday.Thetissueswere

dehy-dratedin agraded seriesof ethanol beforebeingembeddedin

paraffinwax. Theparaffin blocks werelongitudinally sectioned

(8␮m)throughallthethyroidtissuesandstainedconventionally

withhaematoxylin-eosin.

Sections were analyzed with a light microscope. Images of

50 randomlyselectedfollicles at100times magnification were

observed. Thyroid histomorphometry was measured using the

Macnification® software(version1.6.1OrbiculeEnhancedLabs).

Thedifferentmeasurementsinthethyroidtissueweredetermined

bymanuallyselectingthecontoursofthefolliclesinthetissue.The

folliclearea,perimeter,diameter,lengthandwidthofevery

fol-liclecrosssectionweremeasured.Theshapeofthefollicleswas

describedwiththreedimensionlessshapedescriptors:roundness,

formfactorandaspectratiothatwerecalculatedasfollows.

• Roundness=4Area(␮m2)/Diameter2 (␮m).Afolliclewitha

maximumroundnessvalueof1perfectlyresemblesacircle.

• Form factor=4 Area (␮m2)/Perimeter2 (␮m).The form

fac-torexpressestheevennessofthefolliclesoutline;asitsvalue

approaches1,theoutlineresemblesacircle.

• Aspectratio=maximumlength(␮m)/maximumwith(␮m).The

largertheaspectratio,themoreelongatedthefollicleis;aratio

of1correspondstoaperfectlycircularfollicle.

Aselectionofthyroidtissuewasglutaraldehyde-fixedandthen

embeddedinepoxyresin.Ultra-thinsectionswereobtainedusing

adiamondknifeonaReichert–Jungultra-microtome(UltracutE),

contrastedwithuranylacetate(alcoholicsolution)andleadcitrate,

andobservedinaJeolJEM100-SXelectronmicroscopeat80kVof

acceleratingvoltage.

2.5. Calculationsandstatistics

Meanvalues±standarddeviation,(median)andmin–maxare

presented, unlessindicated otherwise.Statisticalanalysisofthe

datawasperformedusingSPSSforMac®software(SPSSInc.,

ver-sion16.0.2).TheKolmogorov–Smirnofftestwasusedtotestfor

normalityofthestatisticallytreated variables.Treatmentgroup

comparisonsofthethyroidparametersweredonebyanalysisof

variance(ANOVA)tocomparemeans.Therelationshipsbetween

thyroidparameters(folliclehistomorphometry,thyroidhormone

concentrations and metabolicpathways) and toxicological data

wereanalyzedbycorrelationtests.Growthcurveswerecompared

byadistribution-freestatisticalmethodology.Resultswere

consid-eredsignificantwhenp<0.05.

3. Results

Nodifferencesinlength,weightandconditionfactorwerefound

betweenPCBexposedandcontrolseabassandnootherexternal

signofadverseeffectsofPCBexposurecouldbeobserved(Fig.3A).

Allfishwereinexcellentconditionwithaconditionfactoraround

1.18±0.06.

TheinitialaverageconcentrationsofPCBsmeasuredinseabass

muscleusedinaccumulationexperimentswereclosetoorlower

than themethodLOQ(meanconcentrationof 10ngg−1ww 7

markerPCBcongeners).ThisinitialaverageconcentrationofPCBs

didnotchangesignificantlyinthemusclesofseabassfromthe

controltankduringtheexperimentalperiod(p=0.81).Also,

mus-cularPCBsconcentrationsincreasednotsignificantlywithexposure

timeinallaccumulationexperiments(p>0.05)(Fig.1).The

penta-,hexa-andhepta-CBsrepresented88%ofthePCBcongenersand

thesetoptencongenerstendedtobefoundindecreasing

abun-dance,asfollows:CB153>CB180>CB138>CB149>CB101>CB

110>CB95>CB118>CB 187(Fig. 2).The muscular

concentra-tionsofthedifferentcongenerscorrelatedstronglyandwiththe

PCBs (R=0.65–0.99, p<0.001), as the contamination mixture

wasformulatedfromthesamestocksolution.Asaconsequence,

congener-specificanalysisofeffectsonthyroidsystemcameout

withidenticalresults.Wethereforepresentinthefollowingeffect

analysis,thecorrelationbetweeneffectsandthePCBs.

Mean concentrations of 8, 86, 142,214 and 2279ngg−1ww

(7ICESPCBcongeners)weredeterminedafter120days

expo-sure(Fig.1).AlthoughPCBsarenotreadilymetabolizedbyfish

(Letcheret al., 2000),we investigated the presence of

hydrox-ylated PCB metabolites in both muscle and liver fish samples

collected from highest treatment group. Only a few HO-PCB

congeners wereidentified in liver, but nonecould bedetected

in muscle samples. With a mean±standard deviation (based

(5)

Fig.1.Bioaccumulationof[7ICESPCB]inthemuscleasafunctionoftimeinthe differentexposuretanks.

consisted of approximately 0.4% from thesum PCBs measured

in the same tissues (data not shown). According to theirrank

orderof concentration,themostabundant metabolites(mainly

high-chlorinated ones) were: 4HO-CB187>4HO-CB163>

4-HO-CB-199>4HO-CB172>4HO-CB193>4HO-CB146>4-HO-CB177.

LowerchlorinatedPCBs(penta-hexa),despitebeingdominantin

thediet,didnotformHO-PCBmetabolitesatdetectablelevelsin

skeletalmuscletissue.

The tested thyroid parameters did not vary significantly

betweentime-points(40, 80 and 120days)indicating thatthe

exposures exert already their effect after 40 days (Fig. 3A–F).

Thedataarethereforepooledbyexposuregroups,without

tak-ingthedifferent time-pointsintoaccount in Table2. Muscular

T4 concentrations did not change significantly following

expo-sure to contaminated food containing 0.3 up to 1.0␮gg−1dw

[7 ICES PCB]. Muscular T3 levels had increased 1.5 fold from

0.52±0.17to0.76±0.22ngg−1(F3,56=3.68,p=0.017,n=60)infish

fedcontroland contaminatedfood(1.0␮gg−1dw[7ICESPCB]),

respectively(t=−3.26,p=0.003).Inthecaseofexposure

exceed-ingtheenvironmentallyrelevantrange(10␮gg−1dw[7ICESPCB]),

lowermuscularthyroidhormoneconcentrationscouldbeobserved

(t=6.58,p<0.001andt=2.03,p=0.045forT4andT3respectively)

comparedtocontrol.TheT4andT3concentrationwerereducedto

75%and30%comparedtocontrols(Fig.3B,C,DandTable1).

The thyroid parameters were not directly related to each

other.Correlationtestcouldnotidentifysignificantrelationships

betweenT4, T3 and hepatic deiodinase,sulfotransferaseor

glu-curonyltransferaseactivity(p>0.05).

A1.9-foldincreaseinORDactivitycouldbeobservedinfishes

with higher contamination levels (Fig. 3E).This observationis

supportedbythepositive correlationbetweenthehepaticORD

activity and the effective PCB concentration measured in the

muscle of these fish (R=0.414, p<0.001, n=75). The activities

of conjugatingenzymes in liverresponded differentially tothe

PCBexposure.Whereastheglucuronyltransferase(UGT)activity

remainedunchanged(R=−0.026,p=0.906,n=55),thehepatic

sul-fotransferase(SULT)activitywasmaximallyreducedto47%ofits

controlvalue.Thisobservationwasalsosupportedbyanegative

correlationbetweenthehepaticsulfotransferaseactivityandthe

effectivePCBconcentrationmeasuredinthemuscleofthesefish

(R=−0.512,p=0.009,n=75)(Fig.3FandTable1).

Histologicalexaminationrevealedchangesinthethyroid

fol-licles of fishes exposed to 0.3–10␮gg−1dw [7 ICES PCB]). The

epithelialcellheightrangedfrom18to31␮mand didnotvary

significantlybetweentheexposuregroups(F4,21=1.94,p=0.157).

Themeanfolliclediameterintheexposuregroupsrangedbetween

92and121␮mandnosignificantdifferencecouldbeidentified

(F4,21=0.34,p=0.897).Alargerheterogeneityoffolliclesizewas

observed in thyroidsof the1.0 and 10␮gg−1dw [7ICES PCB]

groups,thestandarddeviationwas4–6timeshigherthanin

con-trolgroupandtwiceashighthanintheotherexposuregroups

(0.3and0.6␮gg−1dw[7ICESPCB]).Thyroidsofhighlyexposed

fish (1.0 and 10␮gg−1dw [7 ICES PCB]) contained small

folli-cles(Ø≈80␮m)andvery bigfollicles (Ø≈180␮m).Onlyslight

differences inroundness, formfactor andaspect ratiocouldbe

identifiedamongthedifferenttreatmentgroups(Table2).Electron

microscopyrevealedthatcellsformingthelargerfolliclesobserved

inthethyroidsofhighexposedfish(1.0␮gg−1dw[7ICESPCB]),

containedextensivelamellararraysofroughendoplasmic

reticu-lum.Therewerenumerouslargeelectrondensecolloiddroplets

(6)

Table2

Histomorphometricanalysis,muscularthyroidhormonelevels,meanhepaticmetabolicactivityandcontaminationlevelsinwhitemuscleofEuropeanseabassThe concentrationsaregiveninngg−1wetweight(mean±standarddeviation,(median)andmin–max)*significantANOVA;asignificantafterDunnett’smultiplecomparisons.

Food[7ICESPCB] Control 0.3␮gg−1dw 0.6␮gg−1dw 1␮gg−1dw 10␮gg−1dw ANOVA

n 15 15 15 15 15 SumICESPCB(ngg−1) 9.9±10.2 60.4±30.5 104.8±76.8 175.9±99.5 1497.0±797.3 F(4,71)=46.5 (8.3) (51.4) (75.2) (137.2) (1234.5) p<0.001* 3.8–46.9 23.4–118.6 46.2–338.5 79.3–443.1 652.6–3222.3 SumPCB(ngg−1) 31.3±23.3 156.2±76.8 268.9±187.1 441.4±240.5 3641.1±1924.4 F(4,71)=46.1 (27.1) (133.4) (194.3) (348.4) (3003.7) p<0.001* 17.9–117.0 63.4–301.7 130.0–835.9 211.0–1084.1 1615.2–7840.7 T4(ngg−1) 9.3±3.6 5.5±2.7a 10.0±2.2 9.2±3.1 2.9±1.1a F(4,71)=19.7 (9.9) (5.4) (10.5) (10.3) (3.1) p<0.001* 1.1–13.9 1.6–11.3 4.8–13.0 1.3–13.7 0.8–4.6 T3(ngg−1) 0.52±0.17 0.56±0.26 0.66±0.19 0.76±0.23a 0.40±0.14a F(4,71)=6.7 (0.51) (0.54) (0.71) (0.83) (0.37) p<0.001* 0.20–0.80 0.10–0.90 0.30–1.01 0.30–1.10 0.20–0.70 deiodinaseactivity (fmolmin−1␮g−1) 3.8±2.8 2.8±2.0 5.4±3.8 6.4±2.5a 8.2±1.3a F(4,71)=7.0 (2.8) (2.2) (4.4) (5.3) (7.8) p<0.001* 0.3–9.3 0.3–7.0 0.6–13.0 3.1–11.5 0.8–17.1 sulfatationactivity (fmolmin−1␮g−1) 3.2±0.4 3.2±1.9 2.4±1.3 1.7±1.0 1.5±1.3a F(4,21)=1.9 (3.2) (3.5) (2.7) (1.7) (2.1) p=0.154 2.5–3.5 0.5–5.7 0.6–3.9 0.7–2.8 0.1–2.5 glucuronidationactivity (fmolmin−1␮g−1) 7.7±5.2 7.2±5.7 7.1±3.1 6.6±3.2 5.8±3.2 F(4,21)=1.5 (7.4) (6.2) (7.9) (6.8) (6.3) p=0.960 1.2–15.0 1.3–15.1 3.4–10.0 1.4–9.6 1.4–9.1 folliclediameter(␮m) 92±5 110±14 116±14 121±21 116±29 F(4,21)=0.3 (92) (108) (117) (120) (110) p=0.897 88–94 98–126 103–118 92–169 80–180 cellheight(␮m) 21±5 21±4 22±3 29±3 22±4 F(4,21)=1.9 (21) (19) (22) (30) (23) p=0.157 18–25 19–26 20–25 25–31 18–25 roundness 0.81±0.03 0.73±0.01 0.77±0.05 0.74±0.02 0.75±0.02 F(4,21)=2.4 (0.81) (0.73) (0.76) (0.74) (0.74) p=0.081 0.79–0.83 0.73–0.75 0.73–0.83 0.72–0.75 0.74–0.77 formfactor 0.83±0.02 0.75±0.02 0.79±0.04 0.77±0.01 0.76±0.03 F(4,21)=3.2 (0.83) (0.75) (0.78) (0.78) (0.76) p=0.034* 0.82–0.85 0.72–0.76 0.76–0.84 0.76–0.78 0.74–0.79 aspectratio 0.98±0.07 0.94±0.18 1.01±0.05 0.99±0.07 1.23±0.35 F(4,21)=1.0 (0.98) (1.03) (1.00) (0.97) (1.06) p=0.433 0.93–1.03 0.74–1.06 0.98–1.06 0.94–1.08 1.00–1.65

similartothatofluminalcolloidwithinfollicularcells.Large lyso-somalbodieswithaheterogeneousinternalstructurewerepresent inlargernumbersthaninsmallerfollicles.TheGolgiapparatusand mitochondriaarewelldevelopedandcompressedbythenumerous colloiddroplets.Longprojectionsoffollicularcellcytoplasmoften extendedfromtheapicalsurfaceintothecolloidallumen(Fig.4).

Inthecaseof exposureexceedingtheenvironmentallyrelevant

range(10␮gg−1dw[7ICESPCB]),enlargementofinterstitialtissue

betweenfolliclesanddegeneratedcolloidwereobserved(Fig.5).

4. Discussion

Ourstudydemonstratesthatsubchronicexposuretoamixture

ofPCBsaffectsthyroidhormonephysiologyinjuvenileseabass.

Clearly,effectsofexposuretoenvironmentallyrelevant

concen-trationsdifferedineffectsandpathwaysfromthoseobservedat

higherlevels.Atlowerexposuredoses(0.3–0.6␮gg−1dw[7ICES

PCB]infoodpellets),thyroidhormonehomeostasisappeared

unaf-fectedwhileasignificantdiminutionofthyroidhormonelevelswas

observedathigherconcentrations.

Environmentally relevant exposures to PCBs affected

thy-roid hormone metabolism and thyroid hormone synthesis. The

histomorphometricalanalysisshoweda largervariabilityof the

folliclediameter and especially increasedepithelialcell heights

withhigherPCBexposure.Thefinestructureoffishthyroidgland

ismoreheterogeneousthanitsmammaliancounterpart,

contain-ingfolliclesandcellsofdifferentsizesandfunctionalstates(Eales,

1979).Themechanismsthatgeneratethemarkedheterogeneity

infolliclearchitectureinresponsetocontaminantsareunknown.

Eales(1979)recognizedtheimportanceofthisheterogeneityof

fishthyroidcontainingbothfolliclesandcellsofdifferentsizesand

functionalstatesthatarehypothesizedtogothrougha

histophys-iologicalcycleofgeneration,maturationanddecay(Eales,1979).

Therefore, anyminorproliferation ofthyroidtissueis fairly

dif-ficulttodetermine.Thesizeofthefolliclesand theformofthe

follicularcellsgivesanindicationofthesecretoryactivityofthe

gland.Thyroidsdominatedbysmallfollicleslinedbycuboidand

columnarcellscanbeclassifiedashighlyactive.Relatively

inac-tivethyroidsshowlargefollicleslinedbyloworflattenedepithelial

cells(Hallgren,2002).Ourobservationssupportthehypothesisthat

thecontaminationbyPCBmixturesinducesahyperactivityofthe

thyroid tissueindicatedbythehypertrophyoffollicular

epithe-lial cells. Theseobservations are in accordance withpreviously

reportedchangesinthyroidhistologicalappearance(Leatherland,

1993;Leatherlandand Sonstegard,1978,1980;Schnitzleretal., 2008).

(7)

Fig.3.(A)Meanspecificgrowthrate(%/day),(B)meanmuscular[T3]/[T4]ratio,(C)meanmuscularT4concentration(ngg−1),(D)meanmuscularT3concentration(ngg−1),

(E)meandeiodinaseactivity(fmol/min/␮g)andF:meansulfotransferaseactivity(fmol/min/␮g)asafunctionofPCBconcentrationinfoodandexposuretime.Thedataare giveninmean±standarddeviation;asignificantlydifferentfromcontrolafterDunnett’smultiplecomparisonsofexposuregroups;npertimepointis5.

Thesimultaneouspresenceofsmallandbigfolliclesinhighly

exposedfish(1.0and10␮gg−1dw[7ICESPCB])indicatedan

asyn-chronyofcellularactivityin thethyroid gland.Thehistological

ultrastructureofepithelialcellssurroundingthesebiggerfollicles

wasdifferentcomparedtothesmallerfollicles,indicatingdifferent

secretoryactivities.Theorganellesinthecytoplasmofthesecells

weremoredeveloped,especiallytheroughendoplasmicreticulum,

probablyrelatedtoanincreasedsynthesisactivity.Withregardto

theprojectionsoffollicularcellcytoplasmfromtheapicalsurface

intothecolloidallumen,thefollicularcellstakeupcolloiddroplets

byendocytosis.A highnumber of colloiddroplets accumulated

noticeablyinthecytoplasmoffollicularcells.Comparable

obser-vationshavebeenmadeinPCB-fedrats(Capenetal.,1977;Collins

andCapen,1980a,b).CollinsandCapensuggestedthatthe

lysoso-malbodieswereunabletointeractwithcolloiddropletsinanormal

manner,leadingtotheinhibitionofthyroglobulinproteolysisand

thyroidhormonerelease(CollinsandCapen,1980b).

Themainmetabolicpathwaysforthyroidhormonesare

deio-dination,glucuronidation and sulfation (Brouwer et al., 1998b;

Ealesand Brown,1993).Iodothyroninedeiodinaseareenzymes

involvedlikewise inthe activationof thyroid hormone.In fish,

apparentlymorethaninothervertebrates,theseimportant

thy-roidhormonetransformationsarecontrolledoutsidethethyroid

andoccurmainlyinperipheraltissues(liver,brain,kidney,gill).

FishliverexpressesthehighestT4ORDactivity,whichsupportsthe

notionthatlivercouldplayadualrole,contributingtobothlocal

andsystemicsupplyofT3(BlantonandSpecker,2007).Exposureof

ratstoPCBsresultedinaninhibitionofhepaticdeiodinaseactivity

(Brouweretal.,1998a;Morseetal.,1996;Visseretal.,1993).

Enzy-maticouterringdeiodinationactivitiesweresignificantlyhigherin

animalsexposedto1and10␮gg−1dw[7ICESPCB]infoodpellets.

ThisincreasewasaccompaniedbyanincreaseinmuscularT3in

fishexposedtoenvironmentalrelevantdosesofPCB.Adamsetal.

(2000)examinedthyroidhormonedeiodinationinplaice

follow-ingshort-termexposuretoPCB77and126(Adamsetal.,2000).

TheyfoundthatPCB77increasesthedeiodinationenzymeactivity

whereasPCB126didnotalterT4ORDinplaice.Thesedifferencesin

effectmaybeduetothegreaterpotentialforPCB77tobe

hydroxy-lated(Brouweretal.,1998b).Inmammals,co-planarPCBsgenerally

depressedhepaticT4ORD(Brouweretal.,1989/7).Unfortunately,

duetothecross-correlationofthedifferentPCBs,itwasnot

(8)

Fig.4. Thyroidfollicularcellsofseabassexposedto1␮gg−1[7PCBs]infood (×2000):

(A)betweentwosmallerfollicles,wecanseefewapicalcytoplasmicprocesses extendingintofollicularlumen,welldevelopedroughendoplasmicreticulum(RE) andlargeGolgiapparatuses(G)andfewcolloiddroplets(C)andlysosomalbodies (L)

(B)oflargefollicle,wecanseeapicalcytoplasmicprocessesextendinginto follicu-larlumen(Arrow),dilatedprofilesofroughendoplasmicreticulum(RE),numerous largecolloiddroplets(C)andlysosomalbodies(L).

thePCB-inducedchangesindeiodinatingactivitylikelyrepresents

compensatoryresponsestodisrupting effectsthat might

other-wisehavedepressedtheplasmaT3levels.Thedifferentresponses

betweenmammalianandfishspeciesrestsonthefactthatinfish

theT3levelsareprimarilyunderperipheralcontrol.

Thyroidhormoneconjugationwithglucuronicacidinactivates

thethyroidhormones,increasestheirsolubilityandfacilitatestheir

excretioninbileandurine(Brouweretal.,1998b).Inour

exper-iment noeffect of PCB exposureon T4UGTcould beobserved,

whereasotherstudieshavereportedmarkedinductioninrats

fol-lowingexposuretoindividualPCBcongeners(Adamsetal.,2000;

Brownetal.,2004b;Morseetal.,1993;Spearetal.,1990;Visser

etal.,1993)andmixtures(Hood,1999;KlaassenandHood,2001;

Morseetal.,1996).InmostofthesereportsreducedT4levelsinthe

sameanimalaccompaniedanincreasedT4UGTactivityand

nega-tivecorrelationsbetweenthosetwoparameterssuggestedacausal

relationship.Generally,phenolicPCBsundergodetoxificationby

glucuronidationand inducehepaticUGTs tofacilitateexcretion

ofPCBs(KlaassenandHood,2001;Visseretal.,1993).Although

therewasnoincreaseinhepaticT4-UGTactivityinourexperiment.

ThismaybebecausetheT4-glucuronidationenzymeassaydoesnot

evaluateactivityforspecificUGTisoforms.UGTactivityinduction

canbedependentonarylhydrocarbonreceptor(AhR)activation

(Richardsonetal.,2008).AntagonisticinteractionsbetweenAhR

agonistssuchasPCB126andotherAhR-inactivePCBshavebeen

demonstrated(Safeetal.,1998).

Anotheressentialstepinmetabolismofiodothyroninesisthe

sulfationbysulfotransferases(Schuuretal.,1999).Theyalso

inac-tivatethethyroidhormones,increasetheirsolubilityandfacilitate

theirexcretioninbileandurinelikeUGT.FurthermoreTHsulfates

donotbindtoT3receptorsandarethusunabletomimicthyroid

hormoneactivityandarerapidlydegradedbyinnerring

deiodi-nases(Brouweretal.,1998b;Schuuretal.,1999).Inourexperiment

weobservedageneraldecreaseofSULTactivity.Thisisin

accor-dancewithinvitrostudiesusingratandhumanhepatomacelllines

thatrelatedastronginhibitionofthyroidhormonesulfationwith

hydroxylated metabolitesofPCB(Brouweretal.,1998b;Schuur

etal.,1999).ThisreducedT4SULTactivityisaccompaniedbyan

increaseofmuscularT4levelsinanimalsexposedto

environmen-tallyrelevantdosesofPCB.

Theheterogeneityoffishthyroidsystemsandtheirresilienceto

perturbationsmakeitdifficulttointerpretthesechangesinactivity.

ItiswellacceptedthatsomePCBcongeners,duetotheirstructural

similarity,areabletoserveasbindingligandsforT4-binding

pro-teins(Darnerudetal.,2001).Bythesemeanstheyreducethyroid

hormone levelsbydisplacing themfromtransportproteinsand

increasingtheirexcretion.BothT4 andT3 havea negative

feed-backeffectonTSHsecretionbythepituitaryinteleostfishspecies

(Yoshiuraetal.,1999).Thatmayhavestimulatedtheproductionof

T4,revealedbythyroidhistomorphometry.Thedeiodinase

activ-ity wasincreased,thus more conversionof T4 toT3, and there

isless excretionofthyroid hormonesthroughthehepatic

path-wayasthesulfationactivitydecreasedwithraisingPCBexposure.

Thesemodificationsin thyroidhormonedynamicscontributeto

maintainthyroidhormonelevelsinanacceptablerange.ThePCB

induceddisruptionofthyroidsystemiscounteredbyanextensive

self-regulatoryfeedbackcontrol.

Nevertheless,weobserveanimportantloweringofmuscularT3

andT4levelsinanimalsexposedto10␮gg−1dw[7ICESPCBs]in

foodpellets.Thisobservationindicatesthatatthoseexposure

lev-elsothercausesthanthemetabolicpathwaysareinvolved.Inthese

fishesthehistologicalexaminationrevealedlymphoidcell

infiltra-tionandenlargementoftheinterstitialtissuebetweenfolliclesand

degeneratedcolloid.Thefolliclesappearedinlowernumberand

thetissueseemsdisorganized.Thesedegenerativechangesmight

havecausedtheobservedhypothyroidisminthesefish.Probably,

thepollutantsatthisdoseinterferewiththesynthesisandsecretion

ofthyroidhormones.

(9)

Thethyroidstatushaspronouncedeffectsongrowthand

devel-opment in fish (Blanton and Specker, 2007; Inui et al., 1995;

Klarenetal.,2008;Poweretal.,2001;Shiaoand Hwang,2006; Yamano,2005).Dependingonthedosageused,T3supplementation

hasanabolicandcataboliceffectswhereashypothyroidismalways

resultsingrowthretardation(Theodorakis etal.,2006;Vander

Geytenetal.,2001).Inthisstudy,neithersizenorweight

differ-encescouldbefoundbetweenthetreatmentgroups,whichcan

beexplainedbythehighfeedingrateofthesefishes.Thyroid

hor-monereserveshavenotbeendeterminedfullyinanyfishspecies

butbasedonhumanvaluesitwouldseemadvisabletocontinue

studiesforseveralmonthstodetermineatruemeasureofeffecton

thethyroidalstatus(Brownetal.,2004a).

5. Conclusions

ThepresentedresultsshowclearlythattheeffectsofPCB

expo-sures on the thyroid system are dose-dependent. Exposure to

environmentallyrelevantdosesofPCBmodifieshepaticT4outer

ringdeiodinaseandinducedthehormonesynthesisandsecretion.

Ultrastructuralhistologicalinvestigationsshowedapotential

inhi-bitionofthyroglobulin proteolysisandthyroidhormone release

inthethyroidsofhighexposedfish(1.0␮gg−1dw[7ICESPCB]).

Meanwhile, the thyroid hormone levels were preserved. The

presentedmechanismsare partof theextensiveautoregulatory

feedbackcontrol at both central and peripherallevels,and the

inducedchangesinthyroidhormonedynamicskeepthelevelsinan

acceptablerange.At10timeshigherconcentrations,animportant

depressionofmuscularT3andT4levelscouldbeobservedwhich

areapparentlycausedbyothermechanismsthanmetabolic

path-ways.Hereweobserveddegenerativehistologicalchangesinthe

thyroidtissuethatmighthavecausedthehypothyroidisminthese

fish.

Acknowledgements

Schnitzler,J.receivedgrantsfromFRIA(Fondspourlaformation

àlarecherchedansl’industrieetdansl’agriculture).Krishna,D.is

aF.R.S.–FNRSResearchAssociate(FondsdelaRecherche

Scien-tifique).TheauthorsaregratefultoPr.Thomé,JP.,andLouvet,M.

fortheirlogisticalassistanceinfoodpelletpreparation.Covaci,A.

acknowledgesapostdoctoralfellowshipfromtheResearch

Scien-tificFoundationofFlanders(FWO).Dirtu,A.acknowledgesfinancial

supportfromUA.ThisisaMAREpublication213.

References

Adams,B.A.,Cyr,D.G.,Eales,J.G.,2000.Thyroidhormonedeiodinationintissuesof Americanplaice,Hippoglossoidesplatessoides:characterizationandshort-term responsestopolychlorinatedbiphenyls(PCBs)77and126.Comparative Bio-chemistryandPhysiologyPartC:Pharmacology,ToxicologyandEndocrinology 127,367–378.

Blanton,M.L.,Specker,J.L.,2007.Thehypothalamic-pituitary-thyroid(HPT)axis infishanditsroleinfishdevelopmentandreproduction.CriticalReviewsin Toxicology37,97–115.

Boas,M.,Feldt-Rasmussen,U.,Skakkebaek,N.E.,Main,K.M.,2006. Environmen-talchemicalsandthyroidfunction.EuropeanJournalofEndocrinology154, 599–611.

Brouwer,A.,Morse,D.,Lans,M.,Schuur,A.,Murk,A.,Klasson-Wehler,E.,1998a. Interactionsofpersistentenvironmentalorganohalogenswiththethyroid hor-monesystem:mechanismsandpossibleconsequencesforanimalandhuman health.ToxicologyandIndustrialHealth14,59–84.

Brouwer,A.,Morse, D.C.,Lans, M.C.,Schuur, A.G.,Murk, A.J.,Klasson-Wehler, E.,Bergman,A.,Visser,T.J.,1998b.InteractionsofPersistentEnvironmental OrganohalogenswiththeThyroidHormoneSystem:MechanismsandPossible ConsequencesforAnimalandHumanHealth.PrincetonScientificPublInc,pp. 59–84.

Brouwer,A.,Reijnders,P.J.H.,Koeman,J.H.,1989/7.Polychlorinatedbiphenyl (PCB)-contaminatedfishinducesvitaminAandthyroidhormonedeficiencyinthe commonseal(Phocavitulina).AquaticToxicology15,99–105.

Brown,S.B.,Adams,B.A.,Cyr,D.G.,Eales,J.G.,2004a.Contaminanteffectsonthe teleostfishthyroid.EnvironmentalToxicologyandChemistry23,1680–1701. Brown,S.B.,Evans,R.E.,Vandenbyllardt,L.,Finnson,K.W.,Palace,V.P.,Kane,A.S.,

Yarechewski,A.Y.,Muir,D.C.G., 2004b.Alteredthyroidstatusinlaketrout (Salvelinusnamaycush)exposedtoco-planar3,3’,4,4’,5-pentachlorobiphenyl. AquaticToxicology67,75–85.

Capen,C.C.,Collins,W.T.,Kasza,L.,1977.Effectsofpolychlorobiphenyl(PCB)on fine-structureandfunctionofthyroid-glandinrat.LaboratoryInvestigation36, 332–333.

Coimbra,A.,Reis-Henriques,M.,2007.TilapialarvaeAroclor1254exposure:effects ongonadsandcirculatingthyroidhormonesduringadulthood.Bulletinof Envi-ronmentalContaminationandToxicology79,488–493.

Collins,W.T.,Capen,C.C.,1980a.Biliaryexcretionof125I-Thyroxineandfine

struc-turalalterationsinthethyroidofGunnRatsfedpolychlorinatedbiphenyls(PCB). LaboratoryInvestigation43,158–164.

Collins,W.T.,Capen,C.C.,1980b.Finestructurallesionsandhormonalalterationsin thyroidglandsofperinatalratsexposedinuteroandbyMilktopolychlorinated biphenyls.AmericanAssociationofPathologists99,125–142.

Darnerud,P.O.,Eriksen, G.S.,Johannesson,T., Larsen,P.B.,Viluksela,M.,2001. Polybrominateddiphenylethers:occurence,dietaryexposure,andtoxicology. EnvironmentalHealthPerspectives109,49–68.

Eales,J.G.,1979.Thyroidfunctionincyclostomesandfishes.In:Barrington,E.J.(Ed.), HormonesadEvolution.AcademicPress,NewYork.

Eales,J.G.,Brown,S.B.,1993.Measurementandregulationofthyroidalstatusin teleostfish.ReviewsinFishBiologyandFisheries3,299–347.

Fowles,J.R.,Fairbrother,A.,Trust,K.A.,Kerkvliet,N.I.,1997.EffectsofAroclor1254 ontheThyroidgland,immunefunction,andhepaticcytochromeP450activity inmallards.EnvironmentalResearch75,119–129.

Hallgren,S.,2001.Effectsofpolybrominateddiphenylethers(PBDEs)and polychlo-rinatedbiphenyls(PCBs)onthyroidhormoneandvitaminAlevelsinratsand mice.ArchivesofToxicology75,200–208.

Hallgren, S., 2002. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls(PCBs)andchlorinatedparaffins(CPs)inrats–testinginteractions andmechanismsforthyroidhormoneeffects.Toxicology177,227–243. Hood,A.,1999.Effectsofmicrosomalenzymeinducersonthyroid-follicularcell

pro-liferation,hyperplasia,andhypertrophy.ToxicologyandAppliedPharmacology 160,163–170.

Inui,Y.,Yamano,K.,Miwa,S.,1995.Theroleofthyroidhormoneintissue develop-mentinmetamorphosingflounder.Aquaculture135,87–98.

Ishihara,A.,Sawatsubashi,S.,Yamauchi,K.,2003.Endocrinedisruptingchemicals: interferenceofthyroidhormonebindingtotransthyretinsandtothyroid hor-monereceptors.MolecularandCellularEndocrinology199,105–117. Iwanowicz,L.R.,Blazer,V.S.,McCormick,S.D.,VanVeld,P.A.,Ottinger,C.A.,2009.

Aro-clor1248exposureleadstoimmunomodulation,decreaseddiseaseresistance andendocrinedisruptioninthebrownbullhead,Ameiurusnebulosus.Aquatic Toxicology93,70–82.

Klaassen,C.D.,Hood,A.M.,2001.Effectsofmicrosomalenzymeinducersonthyroid follicularcellproliferationandthyroidhormonemetabolism.Toxicologyand Pathology29,34–40.

Klaren,P.,Wunderink,Y.,Yufera,M.,Mancera,J.,Flik,G.,2008.Thethyroidgland andthyroidhormonesinSenegalesesole(Soleasenegalensis)duringearly developmentandmetamorphosis.GeneralandComparativeEndocrinology155, 686–694.

Klaren,P.H.M.,Haasdijk,R.,Metz,J.R.,Nitsch,L.M.C.,Darras,V.M.,VanderGeyten, S.,Flik,G.,2005.Characterizationofaniodothyronine5’-deiodinaseingilthead seabream(Sparusauratus)thatisinhibitedbydithiothreitol.Endocrinology146, 5621–5630.

Leatherland, J.F., 1993. Field observation on reproductive and developmental dysfunctioninintroducedandnativesalmonidsfromtheGreatLakes. Histo-chemicalJournal19,737–751.

Leatherland,J.F.,Sonstegard,R.A.,1978.Loweringofserumthyroxineand triiodothy-roninelevelsinyearlingcohosalmonbydietarymirexandPCBs.Journalof FisheriesResearchBoard,Canada35,1285–1289.

Leatherland,J.F.,Sonstegard,R.A.,1980.Effectofdietarypolychloninatedbiphenyls (PCBs)ormirexincombinationwithfooddeprivationandtestosterone admin-istrationonserumthyroidhormoneconcentrationandbioaccumulationof organochlorinesinrainbowtrout,Salmogairdneri.JournalofFishDiseases3, 115–124.

Letcher,R.J.,Klasson-Wehler,E.,Bergman,A.,2000.Methylsulfoneand hydrox-ylatedmetabolitesofpolychlorinatedbiphenyls.In:NewTypesofPersistent HalogenatedCompounds.Springer-VerlagBerlin,Berlin,pp.315–359. Loizeau,V.,2001.Asteady-statemodelofPCBbioaccumulationintheseabass

(Dicentrarchuslabrax)foodwebfromtheSeineestuary,France.Estuaries24, 1074–1087.

Loizeau,V.,Abarnou,A.,Cugier,P.,Jaouen-Madoulet,A.,LeGuellec,A.M.,Menesguen, A.,2001.AmodelofPCBbioaccumulationintheseabassfoodwebfromtheseine estuary(EasternEnglishChannel).MarinePollutionBulletin43,242–255. Morse, D.C., Groen, D., Veerman, M., Vanamerongen, C.J., Koeter, H.,

Van-prooije,A.E.S.,Visser,T.J.,Koeman,J.H.,Brouwer,A.,1993. Interferenceof polychlorinated-biphenylsinhepaticandbrainthyroid-hormonemetabolism in fetal and neonatal rats. Toxicology and Applied Pharmacology 122, 27–33.

Morse,D.C.,Wehler,E.K.,Wesseling,W.,Koeman,J.H.,Brouwer,A.,1996.Alterations inratbrainthyroidhormonestatusfollowingpre-andpostnatalexposureto polychlorinatedbiphenyls(Aroclor1254).ToxicologyandApplied Pharmacol-ogy136,269–279.

(10)

Pickett,G.D.,Pawson,M.G.,1994.SeaBass-Biology,Exploitation,andConservation. ChapmanandHall,London.

Power,D.M.,Llewellyn,L.,Faustino,M.,Nowell,M.A.,Björnsson,B.T.,Einarsdottir, I.E.,Canario,A.V.M.,Sweeney,G.E.,2001.Thyroidhormonesingrowthand devel-opmentoffish.ComparativeBiochemistryandPhysiologyPartC:Toxicology& Pharmacology130,447–459.

Richardson,V.M.,Staskal,D.F.,Ross,D.G.,Diliberto,J.J.,DeVito,M.J.,Birnbaum,L.S., 2008.PossiblemechanismsofthyroidhormonedisruptioninmicebyBDE47,a majorpolybrominateddiphenylethercongener.ToxicologyandApplied Phar-macology226,244–250.

Safe,S.,Wang,F.,Porter,W.,Duan,R.,McDougal,A.,1998.Ahreceptoragonists asendocrinedisruptors:antiestrogenicactivityandmechanisms.Toxicology Letters103,343–347.

Schnitzler,J.G.,Klaren,P.H.M.,Bouquegneau,J.-M.,Das,K.,2011a.Environmental factorsaffectingthyroidfunctionofwildseabass(Dicentrarchuslabrax)from Europeancoasts,Chemosphere,submittedforpublication.

Schnitzler,J.G.,Koutrakis,E.,Siebert,U.,Thomé,J.P.,Das,K.,2008.Effectsofpersistent organicpollutantsonthethyroidfunctionoftheEuropeanseabass (Dicentrar-chuslabrax)fromtheAegeansea,isitanendocrinedisruption?MarinePollution Bulletin56,1755–1764.

Schnitzler,J.G.,Thomé,J.P.,Lepage,M.,Das,K.,2011b.Organochlorinepesticides andpolychlorinatedbiphenylresiduesinwildseabass(Dicentrarchuslabrax) offEuropeanestuaries.ScienceoftheTotalEnvironment409,3680–3686. Schuur,A.G.,Bergman,Å.,Brouwer,A.,Visser,T.J.,1999.Effectsofpentachlorophenol

andhydroxylatedpolychlorinatedbiphenylsonthyroidhormone conjuga-tion in a rat and a human hepatoma cell line. Toxicology in Vitro 13, 417–425.

Shiao,J.,Hwang,P.,2006.Thyroidhormonesarenecessaryforthemetamorphosis oftarponMegalopscyprinoidesleptocephali.JournalofExperimentalMarine BiologyandEcology331,121–132.

Spear, P.A., Higueret, P., Garcin, H., 1990. Increased thyroxine turnoverafter 3,3’,4,4’,5,5’-hexabromobiphenylinjectionandlackofeffectonperipheral tri-iodothyronineproduction.CanadianJournalofPhysiologyandPharmacology 68,1079–1084.

Theodorakis,C.,Rinchard,J.,Anderson,T.,Liu,F.,Park,J.-W.,Costa,F.,McDaniel, L.,Kendall,R.,Waters,A.,2006.Perchlorateinfishfromacontaminatedsitein east-centralTexas.EnvironmentalPollution139,59–69.

VanderGeyten,S.,Toguyeni,A.,Baroiller,J.-F.,Fauconneau,B.,Fostier,A.,Sanders, J.P.,Visser,T.J.,Kühn,E.R.,Darras,V.M.,2001.HypothyroidisminducestypeI iodothyroninedeiodinaseexpressioninTilapialiver.GeneralandComparative Endocrinology124,333–342.

vanderHeide,S.,Visser,T.,Everts,M.,Klaren,P.,2002.Metabolismofthyroid hor-monesinculturedcardiacfibroblastsofneonatalrats.JournalofEndocrinology 174,111–119.

Visser,T.J.,Kaptein,E.,Vantoor,H.,Vanraaij,J.,Vandenberg,K.J.,Joe,C.T.T., Vanenge-len,J.G.M.,Brouwer,A.,1993.Glucuronidationofthyroid-hormoneinrat-liver –effectsofin-vivotreatementwithmicrosomal-enzymeinducersandin-vitro assayconditions.Endocrinology133,2177–2186.

Wade,M.,Parent,S.,Finnson,K.W.,Foster,W.,Younglai,E.,McMahon,A.,Cyr,D.G., Hughes,C.,2002.Thyroidtoxicityduetosubchronicexposuretoacomplex mixtureof16organochlorines,leadandcadmium.ToxicologicalSciences67, 207–218.

Yamano,K.,2005.TheroleofthyroidhormoneinFishdevelopmentwithreference toaquaculture.JARQ39,161–168.

Yoshiura,Y.,Sohn,Y.,Munakata,A.,Kobayashi,M.,Aida,K.,1999.Molecularcloning ofthecDNAencodingthebetasubunitofthyrotropinandregulationofits geneexpressionbythyroidhormonesinthegoldfish,Carassiusauratus.Fish PhysiologyandBiochemistry21,201–210.

Zoeller,R.T.,Tyl,R.W.S.W.T.,2007.Currentandpotentialrodentsscreenandtests forthyroidtoxicants.CriticalReviewinToxicology37,55–95.

Figure

Fig. 1. Bioaccumulation of [7 ICES PCB] in the muscle as a function of time in the different exposure tanks.
Fig. 3. (A) Mean specific growth rate (%/day), (B) mean muscular [T 3 ]/[T 4 ] ratio, (C) mean muscular T 4 concentration (ng g −1 ), (D) mean muscular T 3 concentration (ng g −1 ), (E) mean deiodinase activity (fmol/min/␮g) and F: mean sulfotransferase act
Fig. 5. Thyroid histological section of a control and an exposed sea bass (10 ␮g g −1 dw).

Références

Documents relatifs

Mais, si le nombre d’entrées en formation commandées par Pôle emploi est proche de celui des conseils régionaux en 2017, le nombre d’heures de formation commandées par

In the adult retina, nearly all neurons of the ganglion cell layer (GCL, ganglion cells and displaced amacrine cells) showed strong β -gal labeling.. In the inner nuclear layer (INL),

Même si la nouvelle région Occitanie doit relever une série de défis importants : fusion de deux anciennes politiques ferroviaires régionales très différentes, mise

Ce chapitre présente l’état de l’art sur la réponse atmosphérique des moyennes lati- tudes aux fluctuations de température de surface de l’océan (SST), pour la circulation

The relative agreement in the comparison of the tidal param- eters determined from the daytime WINDII observations and the K-lidar nighttime observations encouraged us to carry

Studies of other nuclear receptors indicate that DNA-bound nuclear receptor dimers have allosteric properties, meaning that ligand binding, DNA binding, heterodimerization,

Cette prise en charge moderne de l’usure permet au praticien une nouvelle re´flexion en s’affranchissant des re`gles strictes de la pre´pa- ration pour prothe`se conjointe couˆteuse

La cohérence des résultats mesurés ici avec des estimations de vitesse de colonisation en m par siècle en dehors de toute structure identifiée comme corridor,