• Aucun résultat trouvé

Drop-Based Modelling of Coalescence in Batch Settlers Including Polydispersity

N/A
N/A
Protected

Academic year: 2021

Partager "Drop-Based Modelling of Coalescence in Batch Settlers Including Polydispersity"

Copied!
12
0
0

Texte intégral

(1)

1

Drop-based modelling of

coalescence in batch settlers

including polydispersity

David Leleu, Andreas Pfennig

andreas.pfennig@uliege.be

Products, Environment, and Processes (PEPs)

Department of Chemical Engineering

Université de Liège

www.chemeng.uliege.be/Pfennig

8th International Berlin Workshop (IBW 8) on

Transport Phenomena with Moving Boundaries

25th - 26th October 2018, Berlin, Germany

agenda

settling experiment

ReDrop concept

coalescence model

results

2

(2)

settling cell

3

Leleu, Pfennig (2017). Standardized settling cell to characterize liquid-liquid dispersion. Proceedings of ISEC2017.

continuous phase

time

h

e

ig

h

t

sedimentation

zone

coalesced

disperse phase

t

principles of settling

4

Henschke, Schlieper, Pfennig (2002). Determination of a coalescence parameter from batch-settling experiments. Chemical Engineering J., 85((2-3)), 369-378.

(3)

continuous phase

time

h

e

ig

h

t

sedimentation

zone

coalesced

disperse phase

principles of settling

5

Henschke, Schlieper, Pfennig (2002). Determination of a coalescence parameter from batch-settling experiments. Chemical Engineering J., 85((2-3)), 369-378.

mask of the experiment

(4)

experiment evaluation

7

ReDrop = REpresentative DROPs

time loop

• initialization

• data input

• definition of height elements

for each drop:

drop loop

• sedimentation velocity

• update position

• coalescence between drops

• coalescence with interface

for each height element:

• new hold-up

• new average drop size

• update close-packed zone

• detect settling time

8

Leleu, Pfennig, Bruns (2017). Coalescence in Highly Viscous System. Proceedings of ISEC2017.

(5)

0

2

4

6

0

40

80

120

S

e

d

im

e

n

ta

ti

o

n

v

e

lo

c

it

y

i

n

m

m

/s

drop diameter in mm

rigid sphere

circulating

drop

oscillating drop

deformed drop

single-drop sedimentation

Kalem, Altunok, Pfennig (2010). Sedimentation behavior of droplets for the reactive extraction of zinc with D2EHPA. AIChE Journal, 56(1), 160-167.

Waheed, Henschke, Pfennig (2004). Simulating sedimentation of liquid drops. International Journal for Numerical Methods in Engineering, 59(14), 1821-1837.

9

comparison of simulation and experiment

experiment

simulation

rigid interface

10

Gross-Hardt, Amar, Stapf, Blümich, Pfennig (2006). Flow dynamics measured and simulated inside a single levitated droplet.

(6)

coalescence model

11

Kopriwa, Pfennig (2016). Characterization of Coalescence in Extraction Equipment Based on Lab-Scale Experiments.

Solvent Extraction & Ion Exchange, 34(7), 622-642.

collision frequency

rcollision =

A

collision

A

cell

tcollision

=

π d1+d2

2

vrel

4Acell h1−h2

12

A

cell

d

1

d

1

+d

2

d

2

d

2

h

2

, v

2

h

1

, v

1

(7)

free volume after Boublik and Mansoori

contact probability of two drops in polydisperse dispersion

with

compare: dimensionless density after Carnahan & Starling

3

2 3 2 2 2 2 2 3 2 3

1

8

1

6

1

1

j i j i j i j i ij

r

r

r

r

r

r

r

r

g

V

R

x

N

i m i i m

6

2

 

V

R

N

6

2

3

13

Kopriwa, Pfennig (2016). Characterization of Coalescence in Extraction Equipment Based on Lab-Scale Experiments.

Solvent Extraction & Ion Exchange, 34(7), 622-642.

Coulaloglou & Tavlarides

14

(8)

coalescence probability

15

pnon−coal,Δt

=

exp −

Δt

tcoalescence

pcoal

= 1− exp −

tcontact

tcoalescence

pnon−coal

= exp −

tcontact

tcoalescence

∆t

n=

tcontact

Δt

tcontact

pnon−coal,nΔt

=

pnon−coal,Δt

n

pnon−coal,nΔt

=

exp −

nΔt

tcoalescence

coalescence model: contact time

16

assumptions:

drops follow

contour during the

sedimentation

detachment angle =

opposite of the

collision angle

α

collision

α

collision

(9)

coalescence time, asymmetric dimple

tcoalescence=

3π1.5μReq

2

4rs∗ σFdrivingh

min

17

Henschke, Schlieper, Pfennig (2002). Determination of a coalescence parameter from batch-settling experiments. Chemical Engineering J., 85((2-3)), 369-378. Pfennig, Schwerin (1995). Analysis of the Electrostatic Potential Difference in Aqueous Polymer 2-Phase Systems. Fluid Phase Equilibria, 108((1-2)), 305-315.

dodecahedron deformation after Henschke

18

Henschke, Schlieper, Pfennig (2002). Determination of a coalescence parameter from batch-settling experiments. Chemical Engineering J., 85((2-3)), 369-378.

(10)

0

20

40

60

80

100

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

time in s

s

e

tt

lin

g

c

e

ll

h

e

ig

h

t

in

m

1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

local hold up

ReDrop result

19

status of the model validation

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.2 0.4 0.6 0.8 1.0

q

0

drop diameter in mm

0 20 40 60 80 100 120 20 40 60 80 100 120 140 160 180

time in s

c

e

ll

h

e

ig

h

t

in

m

m

0 0 . 2 0 . 4 0 . 6 0 . 8 1 local holdup

20

(11)

0

20

40

60

80

100

120

140

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

time in s

h

e

ig

h

t

in

m

0.0

0.2

0.4

0.6

0.8

1.0

holdup

ReDrop result

21

close-packed zone

densely packed zone

lag time & system-typical effective diameter

22

average starting drop diameter:

0.05 mm 0.15 mm 0.25 mm

c

o

a

le

s

c

e

n

c

e

p

a

ra

m

e

te

r

0

.1

0

0

0

.0

5

0

0

.0

2

5

(12)

conclusions

drop-based model

 detailed results

high-holdup flow

 densely-packed zone

sedimentation coalescence

 lag time

 system-typical effective diameter

consistent modelling of coalescence

23

24

Drop-based modelling of

coalescence in batch settlers

including polydispersity

David Leleu, Andreas Pfennig

andreas.pfennig@uliege.be

Products, Environment, and Processes (PEPs)

Department of Chemical Engineering

Université de Liège

www.chemeng.uliege.be/Pfennig

8th International Berlin Workshop (IBW 8) on

Transport Phenomena with Moving Boundaries

25th - 26th October 2018, Berlin, Germany

Références

Documents relatifs

L'invention a également pour objet un multiplieur binaire parallèle-série pour calculer le produit entre un opérande série, de valeur binaire quelconque, et

La présente invention concerne une installation d'inertage d'emballages étanches pour produits alimentaires.. Les risques de dégradation de ces

[r]

Sachsenhausen ist ein kleiner Vorort im Nordosten Oranienburgs, etwa 35 Kilometer nördlich von Berlin. Im Sommer 1936, begann die SS hier mit ersten Vorbereitungen für die

Vous pouvez aussi passer par Vordingborg et Kalvehave à vélo, sans prendre le ferry : vous passez le pont, et vous continuez votre route sur l'île de Møn, caractéristique, avec

Dans le cas d'une exécution en matière synthétique la cage selon l'invention peut être obtenue facilement par moulage sans usinage complémentaire... La

l'importance des ponts

Au cours de trois jours de séances plénières retransmises en direct depuis la Schaubünhe de Berlin dans la Grande salle de Nanterre-Amandiers, 60 députés de la General Assembly