• Aucun résultat trouvé

WhoSGlAd : A precise characterisation of the Kepler Legacy sample

N/A
N/A
Protected

Academic year: 2021

Partager "WhoSGlAd : A precise characterisation of the Kepler Legacy sample"

Copied!
28
0
0

Texte intégral

(1)

WhoSGlAd : A precise characterisation of

the Kepler Legacy sample

Martin Farnir Université de Liège Prof. Marc-Antoine Dupret

(2)

Introduction

Introduction

• Aims:

→ Constrain solar-like models taking advantage of

Kepler data precision:

→ Ex: Helium - mass degeneracy, extra mixing

• Outline:

→ Solar-like spectrum and glitches

→ Method

→ Results: Kepler Legacy Sample, 16 Cyg A

(3)

Introduction Solar-like spectrum

Solar-like spectrum and Acoustic glitches

Solar-like oscillations spectra exhibit:

¬

regular pattern,smooth

­

oscillation,glitch, caused

by a sharp variation (Γ1, c), provide localised info:

→ Surface helium content, Ys

→ Nature/amount of convective extra mixing

→ Glitches can help lift model

degeneracies 0.4 0.6 0.8 ν/∆ν modulo 1 1500 2000 2500 ν (µ Hz) νo,s νo 1500 2000 2500 ν (µHz) −2 −1 0 1 δν (µ Hz) δνofit δνowith σ τHe AHe

(4)

Introduction Solar-like spectrum

Solar-like spectrum and Acoustic glitches

Solar-like oscillations spectra exhibit:

¬

regular pattern,smooth

­

oscillation,glitch, caused

by a sharp variation (Γ1, c), provide localised info:

→ Surface helium content, Ys

→ Nature/amount of convective extra mixing

→ Glitches can help lift model

degeneracies 0.4 0.6 0.8 ν/∆ν modulo 1 1500 2000 2500 ν (µ Hz) νo,s νo,s+ δνo νo 1500 2000 2500 ν (µHz) −2 −1 0 1 δν (µ Hz) δνofit δνowith σ τHe AHe

(5)

Introduction Solar-like spectrum

Why improve methods?

Several glitches analysis, for solar-like, have been realised :

Basu et al. 2004,Verma et al. 2014,Monteiro et al. 2014,... However,

• Separatetreatment of glitch and smooth components,

• Use ofcorrelatedindicators,

• Seismic and non-seismic constraints not combined in

a statistically relevant way.

(6)

WhoSGlAd

WhoSGlAd

• Whole Spectrum and Glitches Adjustment

(Farnir et al. 2019)

→ Coherentadjustment ofboth smoothandglitches

component of the oscillation spectrum

→ Propercovariancesretrieved

⇒ Precise seismic measurements⇒ better constraints on stellar modelling

(7)

WhoSGlAd Principle

Principle

Represent νn,l∼(n + l)∆l+p2,l(n)+δνHe+δνCZas: 2ndorder polynomial 13 15 17 19 21 23 1500 2000 2500 ν (µ H z) 13 15 17 19 21 23 n −2 0 2 4 6 δν (µ H z) (n + l)∆l p2,l(n) + oscillatory function 12.5 15.0 17.5 20.0 22.5 −0.5 0.0 0.5 1.0 δνH e (µ H z) 12.5 15.0 17.5 20.0 22.5 n + l/2 −1 0 1 δνC Z (µ H z) δνHe δνCZ

(8)

WhoSGlAd Indicators

Indicators

Combineindependentcoefficients into indicators:

ˆ

r0l(∼Roxburgh & Vorontsov 2003) Mean distance

between 2 ridges → Info about:

• ˆr01: Composition

• rˆ02: Evolution σ 4 times smallerthan

usual indicators 0.4 0.6 0.8 ν/∆ modulo 1 1500 2000 2500 ν (µ Hz) νo ˆ r01 ˆ r02 ˆr03

(9)

WhoSGlAd Indicators

ˆ

r01

- ∆01

diagram

Evolution on MS of models of given mass and composition:

0.2 0.4 0.6 0.8 1.0 ∆01(µHz) ×10−2 0.02 0.04 0.06 0.08 ˆr01 αov=0.005 αov=0.10 αov=0.15 αov=0.20 αov=0.25 αov=0.30

Credits:Farnir et al. 2019

αov = 0.00 αov = 0.10 αov = 0.15 αov = 0.20 αov = 0.25 αov = 0.30

Credits:Deheuvels et al. 2016

Relative slope differences: ∆0l= ∆∆0l − 1 →∆01: central extra mixing

(10)

WhoSGlAd Indicators

Helium glitch amplitude

Models at fixed ∆: 0.16 0.18 0.20 0.22 0.24 Ysurf 10 20 30 40 AHe 1M 1.025M 1.052M 1.052M Surf. eff. σ 0.006 0.008 0.010 0.012 0.014 Zsurf 10 15 20 25 30 AHe 1M 1.025M 1.052M

Credits:Farnir et al. 2019

→ Very good indicator of Ys

→ ButYs− Zsdegeneracy (see alsoBasu et al. 2004)

(11)

Results Kepler Legacy

WhoSGlAd and Kepler Legacy Sample

66 solar-like stars→ best quality data

Credits:Silva Aguirre et al. 2016

Application: • Free parameters: → M , t, αov, (Z/X)0, Y0 • Constraints: → ∆, ˆr01, ˆr02, ∆01, AHe, [F e/H]

(12)

Results Kepler Legacy

WhoSGlAd and Kepler Legacy Sample

• No αovand M correlation observed (to be confirmed) • Y0and (Z/X)0correlated ⇒ Galactic enrichment? Typical precision: • σ(M )∈ [0.02, 0.05]M • σ(t)∈ [0.1, 0.5] Gyrs • σ(Y )∈ [0.01, 0.05] • σ(αov)∈ [0.01, 0.05]

Only one set of input physics tested

⇒ σ relative to the method

(13)

Results 16 Cygni A

In depth modelling: 16 Cygni A

1.02 1.04 1.06 1.08 M (M ) 6.50 6.75 7.00 7.25 Age (Gyr) 3.755 3.760 3.765 3.770 log(Teff) 0.14 0.16 0.18 0.20 0.22 log( L/L ) Obs AGSS09 GN93 OP LANL CEFF OPAL05 Dturb αMLT=1.7 0.030 0.035 0.040 0.68 0.70 0.72 X0 1.02 1.04 1.06 1.08 M (M ) 6.50 6.75 7.00 7.25 Age (Gyr) 3.755 3.760 3.765 3.770 log(Teff) 0.14 0.16 0.18 0.20 0.22 log( L/L ) Obs AGSS09 GN93 OP LANL CEFF OPAL05 Dturb αMLT=1.7 0.030 0.035 0.040 (Z/X)0 0.68 0.70 0.72 X0 Physics tested: • Solar ref. • Opacity • EOS • αMLT • Diffusion

(14)

Conclusion

Conclusion

• Method:

→ σ4 timeslower⇒ better models

• 16 Cyg A: (Farnir et al. 2019b in prep.)

→ Possibility to discriminate choices of physics

• Kepler Legacy: (Farnir et al. 2019c in prep.)

→ Both [ Fe/H ] and AHenecessary

→ Correlation between Y0and (Z/X)0

⇒ Galactic enrichment?

→ No correlation between αov and M observed

• Future perspectives:

→ Adaptation to subgiants and mixed modes

(15)

Appendices Principle

Principle

Observed spectrum νobs Independent coefficients νf =P j ajqj Projection over basis aj =hνobs|qji

• Gram-Schmidt→ discreteorthonormalbasis functions

→ glitchcompletely independentof smooth part

• Combine coefficients aj → seismic indicators as

uncorrelatedas possible

(16)

Appendices Gram-Schmidt

Gram-Schmidt

Construction of orthonormal basis elements

¬

Subtract from current element its projection on the

previous orthonormal elements,

­

Normalise it. uj0 = pj0 − j0−1 X j=1 pj0|qj qj, (1) qj0 = uj0 kuj0k . (2)

(17)

Appendices An Illustrative Example

An Illustrative Example : Smooth

At a given degree,

projection of the frequencies on the successive basis elements.

→ 0 order : mean value;

→ 1st order : straight line approximation;

→ 2nd order : parabola

approximation.

Follow the properorderingto

define seismic indicators

13 15 17 19 21 23 1500 2000 2500 ν (µ H z) 13 15 17 19 21 23 n −2 0 2 4 6 δν (µ H z)

(18)

Appendices An Illustrative Example

An Illustrative Example : Glitch

Simultaneous projection of the frequencies for every spherical degree on the successive basis elements.

→ First for the helium;

→ Then for the convection

zone. 12.5 15.0 17.5 20.0 22.5 −0.5 0.0 0.5 1.0 δνH e (µ H z) 12.5 15.0 17.5 20.0 22.5 n + l/2 −1 0 1 δνC Z (µ H z)

(19)

Appendices Formulation

Formulation

f (n, l) = Smooth z }| { 2 X k=0 ak,lnk + He Glitch z }| { 4 X k=5 sk,Hesin(4πTHeen) + ck,Hecos(4πTHeen)  e n−k (3)

(20)

Appendices Y-Z Degeneracy

Degeneracy

• Correlated with Ysurf; • Anti-correlated with Zsurf; → Γ1 toy model provides an explanation. 0.95 0.96 0.97 0.98 0.99 r/R 1.4 1.5 1.6 1.7 Γ1 (Z/X)0= 0.022 1.052M⊙ Y0= 0.24

(21)

Appendices Y-Z Degeneracy

Degeneracy

• Correlated with Ysurf; • Anti-correlated with Zsurf; → Γ1 toy model provides an explanation. 0.95 0.96 0.97 0.98 0.99 r/R 1.4 1.5 1.6 1.7 Γ1 (Z/X)0= 0.022 1.052M⊙ Y0= 0.24 Y0= 0.25

(22)

Appendices Y-Z Degeneracy

Degeneracy

• Correlated with Ysurf; • Anti-correlated with Zsurf; → Γ1 toy model provides an explanation. 0.95 0.96 0.97 0.98 0.99 r/R 1.4 1.5 1.6 1.7 Γ1 (Z/X)0= 0.022 1.052M⊙ Y0= 0.24 Y0= 0.25 Y0= 0.26

(23)

Appendices Y-Z Degeneracy

Degeneracy

• Correlated with Ysurf; • Anti-correlated with Zsurf; → Γ1 toy model provides an explanation. 0.95 0.96 0.97 0.98 0.99 r/R 1.4 1.5 1.6 1.7 Γ1 (Z/X)0= 0.022 1.052M⊙ Y0= 0.24 Y0= 0.25 Y0= 0.26 Y0= 0.27

(24)

Appendices Y-Z Degeneracy

Degeneracy

• Correlated with Ysurf; • Anti-correlated with Zsurf; → Γ1 toy model provides an explanation. 0.95 0.96 0.97 0.98 0.99 r/R 1.4 1.5 1.6 1.7 Γ1 (Z/X)0= 0.022 Y0= 0.24 1.052M⊙ Y0= 0.24 Y0= 0.25 Y0= 0.26 Y0= 0.27 Z0= 0.008

(25)

Appendices Y-Z Degeneracy

Degeneracy

• Correlated with Ysurf; • Anti-correlated with Zsurf; → Γ1 toy model provides an explanation. 0.95 0.96 0.97 0.98 0.99 r/R 1.4 1.5 1.6 1.7 Γ1 (Z/X)0= 0.022 Y0= 0.24 1.052M⊙ Y0= 0.24 Y0= 0.25 Y0= 0.26 Y0= 0.27 Z0= 0.008 Z0= 0.011

(26)

Appendices Y-Z Degeneracy

Degeneracy

• Correlated with Ysurf; • Anti-correlated with Zsurf; → Γ1 toy model provides an explanation. 0.95 0.96 0.97 0.98 0.99 r/R 1.4 1.5 1.6 1.7 Γ1 (Z/X)0= 0.022 Y0= 0.24 1.052M⊙ Y0= 0.24 Y0= 0.25 Y0= 0.26 Y0= 0.27 Z0= 0.008 Z0= 0.011 Z0= 0.014

(27)

Appendices Y-Z Degeneracy

Degeneracy

• Correlated with Ysurf; • Anti-correlated with Zsurf; → Γ1 toy model provides an explanation. 0.95 0.96 0.97 0.98 0.99 r/R 1.4 1.5 1.6 1.7 Γ1 (Z/X)0= 0.022 Y0= 0.24 1.052M⊙ Y0= 0.24 Y0= 0.25 Y0= 0.26 Y0= 0.27 Z0= 0.008 Z0= 0.011 Z0= 0.014 Z0= 0.017

(28)

Appendices Γ1Toy Model

Γ1

Toy Model

4.8 4.9 5.0 5.1 5.2 5.3 log(T ) 1.58 1.60 1.62 1.64 1.66 Γ1 Y0 Y > Y0 Y < Y0 Y > Y0, ref. T ,ρ profiles Y < Y0, ref. T ,ρ profiles 4.95 5.00 5.05 5.10 log(T ) 1.59 1.60 1.61 Γ1 Z0 Z > Z0 Z < Z0 Z > Z0, ref. T ,ρ profiles Z < Z0, ref. T ,ρ profiles

Références

Documents relatifs

Dans le r´ef´erentiel h´eliocentrique, les plan`etes d´ecrivent des ellipses dont le centre S du Soleil est l’un des foyers.. Fiche issue de

Trois siècles plus tard, Nicolas Copernic (1473-1543), astronome polonais, propose un modèle héliocentrique du système solaire : à l'instar de Ptolémée, l'astronome polonais

Trois siècles plus tard, Nicolas Copernic (1473-1543), astronome polonais, propose un modèle héliocentrique du système solaire : à l'instar de Ptolémée, l'astronome polonais

La vitesse d’une planète devient donc plus grande lorsque la planète se rapproche du soleil.. Elle est maximale au voisinage du rayon le plus court (périhélie),

Tout d’abord, il m’a paru utile de faire une étude exhaustive du système hamiltonien que constitue l’espace des phases du problème de Kepler, en particulier

K EPLER evaluation metrics among other pioneering systems for Multifarm track (different ontologies).. Whereas in the same ontologies case, the method occupies the first place with

- de déterminer le vecteur position en recherchant la primitive par rapport au temps de chaque coordonnée du vecteur vitesse et en utilisant les coordonnées du vecteur

Rendue prudente par les différents échecs qui ont ponctué l’étude de la conjecture de Kepler, la communauté mathématique confie à douze spécialistes particulièrement qualifiés