• Aucun résultat trouvé

Alternative single-step type genomic prediction equations

N/A
N/A
Protected

Academic year: 2021

Partager "Alternative single-step type genomic prediction equations"

Copied!
28
0
0

Texte intégral

(1)

Alternative single-step type genomic prediction

equations

N. Gengler *

1

, G. Nieuwhof

2,3

, K. Konstantinov

2,3

, M. Goddard

3,4

1 ULg - Gembloux Agro-Bio Tech, B-5030 Gembloux, Belgium 2 ADHIS, Bundoora, Australia

3 DPI, Victoria, Bundoora, Australia

4 University of Melbourne, Melbourne, Australia

63rd Annual Meeting of the EAAP

Bratislava, Slovakia, August 27-31, 2012

(2)

Partitioning Genetic (Co)variances

 General Model for Genomic Prediction

• Two

sources of genetic (co)variances

1. Explained by genomic differences between animals

• Currently SNP based

• But can also be known QTLs, major gene effects or copy-number variant (CNV) based effects

2. Explained by pedigree  polygenic “residual”

• Logical choice

Random mixed inheritance model – Jointly modelling and estimating:

• SNP (or similar) effects and • residual polygenic effects

(3)

• Expectation and variances

• Remarks:

– G, Q and D can have whatever structure needed

– G always function of A (pedigree based relationship) and polygenic (co)variances

– u*, G* where “*” indicates linked to polygenic AND SNP effects

– F strictly genomic (co)variance structure , .

F

G

QDQ'

G

G

with

R

0

0

0

0

G

G

QD

0

G

G

0

0

DQ'

0

D

e

u

u

g

Var

and

0

0

0

0

e

u

u

g

E

* * * *

















e

ZQg

Zu

e

Zu

y

*

General Model

0 G

e.g.,GAG0

(4)

             

y

R

Z'

Q'

y

R

Z'

y

R

X'

g

u

β

D

ZQ

R

Z'

Q'

Z

R

Z'

Q'

X

R

Z'

Q'

ZQ

R

Z'

G

Z

R

Z'

X

R

Z'

ZQ

R

X'

Z

R

X'

X

R

X'

1 1 1 1 1 1 1 1 1 1 1 1 1 1

ˆ

ˆ

ˆ

      

y

R

Z'

y

R

X '

u

β

G

Z

R

Z'

X

R

Z'

Z

R

X '

X

R

X '

1 1 * 1 * 1 1 1 1

ˆ

ˆ

(1)

(2)

e

ZQg

Zu

e

Zu

y

*

(5)

             

y

R

Z'

Q'

y

R

Z'

y

R

X'

g

u

β

D

ZQ

R

Z'

Q'

Z

R

Z'

Q'

X

R

Z'

Q'

ZQ

R

Z'

G

Z

R

Z'

X

R

Z'

ZQ

R

X'

Z

R

X'

X

R

X'

1 1 1 1 1 1 1 1 1 1 1 1 1 1

ˆ

ˆ

ˆ

      

y

R

Z'

y

R

X '

u

β

G

Z

R

Z'

X

R

Z'

Z

R

X '

X

R

X '

1 1 * 1 * 1 1 1 1

ˆ

ˆ

(1)

(2)

Simpler MME?

e

ZQg

Zu

e

Zu

y

*

(6)

             

y

R

Z'

Q'

y

R

Z'

y

R

X'

g

u

β

D

ZQ

R

Z'

Q'

Z

R

Z'

Q'

X

R

Z'

Q'

ZQ

R

Z'

G

Z

R

Z'

X

R

Z'

ZQ

R

X'

Z

R

X'

X

R

X'

1 1 1 1 1 1 1 1 1 1 1 1 1 1

ˆ

ˆ

ˆ

      

y

R

Z'

y

R

X '

u

β

G

Z

R

Z'

X

R

Z'

Z

R

X '

X

R

X '

1 1 * 1 * 1 1 1 1

ˆ

ˆ

(1)

(2)

Simpler MME?

Similarity to Genetic Groups!

e

ZQg

Zu

e

Zu

y

*

(7)

Alternative MME based on

Quaas-Pollack Transformation

• Please note

three advantages

:

1. Inverted G here based on inverted A, no genomic relationships!

Major advantage, usual method to set-up

2. Explicit equations for estimation of SNP effects (g)

Major advantage of multi-step genomic prediction (MS-GP)

3. Direct estimation of

Major advantage of single-step genomic prediction (SS-GP)

          

0

y

R

Z'

y

R

X'

g

u

β

D

Q

G

Q'

G

Q'

0

Q

G

G

Z

R

Z'

X

R

Z'

0

Z

R

X'

X

R

X'

1 1 * 1 1 1 1 1 1 1 1 1

ˆ

ˆ

ˆ

* uˆ -1 A

(3)

(8)

General MME based on

Quaas-Pollack Transformation

          

0

y

R

Z'

y

R

X'

g

u

β

D

Q

G

Q'

G

Q'

0

Q

G

G

Z

R

Z'

X

R

Z'

0

Z

R

X'

X

R

X'

1 1 * 1 1 1 1 1 1 1 1 1

ˆ

ˆ

ˆ

(9)

Identification Of Two Blocks in

Transformed MME – 1

st

Block

          

0

y

R

Z'

y

R

X'

g

u

β

D

Q

G

Q'

G

Q'

0

Q

G

G

Z

R

Z'

X

R

Z'

0

Z

R

X'

X

R

X'

1 1 * 1 1 1 1 1 1 1 1 1

ˆ

ˆ

ˆ

       

g

Q

G

y

R

Z'

y

R

X '

u

β

G

Z

R

Z'

X

R

Z'

Z

R

X '

X

R

X '

1 1 1 * 1 1 1 1 1

ˆ

ˆ

ˆ

(10)

Identification Of Two Blocks in

Transformed MME – 2

nd

Block

          

0

y

R

Z'

y

R

X'

g

u

β

D

Q

G

Q'

G

Q'

0

Q

G

G

Z

R

Z'

X

R

Z'

0

Z

R

X'

X

R

X'

1 1 * 1 1 1 1 1 1 1 1 1

ˆ

ˆ

ˆ

1

1

1

*

u

G

Q

g

D

Q

G

Q

'

ˆ

'

ˆ

(11)

Practical Considerations

• In practice

not all animals genotyped

– Non-genotyped animals = “1” – Genotyped animals = “2”

• Definition of

direct SNP contribution

to GEBV (dGV)

– For genotyped animals:

– For non-genotyped animals predicted from dGV of genotyped animals using selection index theory:

2 1 -22 12 1 2 -1 22 12 1 -1 22 12 1

Q

G

G

Q

g

Q

G

G

d

G

G

d

ˆ

ˆ

ˆ

g

Q

d

ˆ

2

2

ˆ

(12)

Not All Animals Are Genotyped

(System II: “SNP” System)

NB: 1 = non-genotyped, 2 = genotyped animals

1

*

u

G

Q

g

D

Q

G

Q

'

-1

ˆ

'

-1

ˆ

1

*

u

G

Q

g

D

Q

G

Q

2

'

-122 2

ˆ

2

'

-122

ˆ

2

 

2 12 1 11 2 1 -22 12

-Q

I

G

G

Q

I

G

G

Q

1121 1222 1

-G

G

G

G

G

(13)

• First assume only genotyped animals have records

• Recovering genetic (co)variance not explained by

strictly polygenic effect by assuming proportionality

between polygenic and total (co)variance:

• Predicting animals without genotypes

Not All Animals Are Genotyped

(System I: “BLUP” System)

     

g

Q

G

y

R

Z'

y

R

X'

u

β

G

Z

R

Z'

X

R

Z'

Z

R

X'

X

R

X'

1 1 * 1 1 1 1

ˆ

ˆ

ˆ

2 1 -22 2 1 -22 1

T

1

G

then

T

G

φ

φ

1 * *

u

T

T

u

ˆ

1

12 22-1

ˆ

2

(14)

Further Modification “BLUP” System

• Introducing

• Predicting animals without genotypes inside MME

(Henderson, 1976)

• Lifting restriction on records only for animals 2

     

g

Q

G

y

R

Z'

y

R

X'

u

β

T

G

T

Z

R

Z'

X

R

Z'

Z

R

X'

X

R

X'

1 1 * 1 1 1 1

ˆ

ˆ

ˆ

2 1 -22 2 1 -22 1 -22 1 -22 -1 22

T

     

g

Q

G

0

y

R

Z'

y

R

X'

u

u

β

T

G

T

T

T

T

Z

R

Z'

X

R

Z'

Z

R

X'

X

R

X'

1 1 * * 1 1 1 1

ˆ

ˆ

ˆ

ˆ

2 1 -22 2 1 1 -22 1 -22 22 21 12 11

(15)

Further Modification “BLUP” System

• Using again , following MME are derived

• Please note similarity to

Bayesian procedures to

integrate external information into genetic evaluations

(Vandenplas and Gengler, 2012)

1

T

1

G

φ

1                                                                        g Q T 0 y R Z' y R X' u u β T T T T T Z R Z' X R Z' Z R X' X R X' 1 1 * * 1 1 1 1 ˆ ˆ ˆ ˆ 2 1 -22 2 1 1 -22 22 21 12 11 φ 1 1 φ 1

(16)

Reassembling Systems I and II

                                                                         0 y R Z' y R X' g u β D Q T ' Q T ' Q 0 0 Q T 0 T T T T T Z R Z' X R Z' 0 Z R X' X R X' 1 1 * 1 1 1 1 1 ˆ ˆ ˆ φ φ 1 φ 1 φ 1 1 φ 1 2 1 -22 2 1 -22 2 2 1 -22 1 -22 22 21 12 11

(17)

Reassembling Systems I and II

Alternative MME using

strictly

genomic (co)variances F

                                                                         0 y R Z' y R X' g u β D Q T ' Q T ' Q 0 0 Q T 0 T T T T T Z R Z' X R Z' 0 Z R X' X R X' 1 1 * 1 1 1 1 1 ˆ ˆ ˆ φ φ 1 φ 1 φ 1 1 φ 1 2 1 -22 2 1 -22 2 2 1 -22 1 -22 22 21 12 11

                                                                         0 y R Z' y R X' d u β F T T 0 0 T 0 T T T T T Z R Z' X R Z' 0 Z R X' X R X' 1 1 2 * 1 1 1 1 1 ˆ ˆ ˆ φ φ 1 φ 1 φ 1 1 φ 1 1 -22 1 -22 1 -22 1 -22 22 21 12 11

(18)

Equivalence with Single-Step MME

1 22 1 1 1 -22 1 22 1 -22 1 -φ φ 1 φ 1 φT22FTTTF  T

                                                                         0 y R Z' y R X' d u β F T T 0 0 T 0 T T T T T Z R Z' X R Z' 0 Z R X' X R X' 1 1 2 * 1 1 1 1 1 ˆ ˆ ˆ φ φ 1 φ 1 φ 1 1 φ 1 1 -22 1 -22 1 -22 1 -22 22 21 12 11

                                      y R Z' y R X' u β T F T T T T T Z R Z' Z R X' Z R X' X R X' 1 1 * 22 1 1 1 1 ˆ ˆ 1 -22 1 -22 21 12 11 φ

Equivalence derived from:

1. Absorb equations for d into those for u* 2. Apply rules inverse of sum of matrices:

(3)

(19)

                                                                         0 y R Z' y R X' d u β F T T 0 0 T 0 T T T T T Z R Z' X R Z' 0 Z R X' X R X' 1 1 2 * 1 1 1 1 1 ˆ ˆ ˆ φ φ 1 φ 1 φ 1 1 φ 1 1 -22 1 -22 1 -22 1 -22 22 21 12 11

     

y

R

Z'

y

R

X'

u

β

T

F

T

T

T

T

T

Z

R

Z'

Z

R

X'

Z

R

X'

X

R

X'

1 1 * 22 1 1 1 1

ˆ

ˆ

1 -22 1 -22 21 12 11

φ

(20)

                                                                         0 y R Z' y R X' d u β F T T 0 0 T 0 T T T T T Z R Z' X R Z' 0 Z R X' X R X' 1 1 2 * 1 1 1 1 1 ˆ ˆ ˆ φ φ 1 φ 1 φ 1 1 φ 1 1 -22 1 -22 1 -22 1 -22 22 21 12 11

     

y

R

Z'

y

R

X'

u

β

T

F

T

T

T

T

T

Z

R

Z'

Z

R

X'

Z

R

X'

X

R

X'

1 1 * 22 1 1 1 1

ˆ

ˆ

1 -22 1 -22 21 12 11

φ

Polygenic and Genomic (Co)Variances

Often called genomic (co)variance matrix (infact combined one with implicit weights)

(21)

                                                                         0 y R Z' y R X' d u β F T T 0 0 T 0 T T T T T Z R Z' X R Z' 0 Z R X' X R X' 1 1 2 * 1 1 1 1 1 ˆ ˆ ˆ φ φ 1 φ 1 φ 1 1 φ 1 1 -22 1 -22 1 -22 1 -22 22 21 12 11

     

y

R

Z'

y

R

X'

u

β

T

F

T

T

T

T

T

Z

R

Z'

Z

R

X'

Z

R

X'

X

R

X'

1 1 * 22 1 1 1 1

ˆ

ˆ

1 -22 1 -22 21 12 11

φ

Polygenic and Genomic (Co)Variances

Definition of polygenic “residual” as part of total genetic (co)variance T

(22)

                                                                         0 y R Z' y R X' d u β F T T 0 0 T 0 T T T T T Z R Z' X R Z' 0 Z R X' X R X' 1 1 2 * 1 1 1 1 1 ˆ ˆ ˆ φ φ 1 φ 1 φ 1 1 φ 1 1 -22 1 -22 1 -22 1 -22 22 21 12 11

     

y

R

Z'

y

R

X'

u

β

T

F

T

T

T

T

T

Z

R

Z'

Z

R

X'

Z

R

X'

X

R

X'

1 1 * 22 1 1 1 1

ˆ

ˆ

1 -22 1 -22 21 12 11

φ

Polygenic and Genomic (Co)Variances

F represents strictly genomic (co)variance matrix

(23)

                                                                         0 y R Z' y R X' d u β F T T 0 0 T 0 T T T T T Z R Z' X R Z' 0 Z R X' X R X' 1 1 2 * 1 1 1 1 1 ˆ ˆ ˆ φ φ 1 φ 1 φ 1 1 φ 1 1 -22 1 -22 1 -22 1 -22 22 21 12 11

     

y

R

Z'

y

R

X'

u

β

T

F

T

T

T

T

T

Z

R

Z'

Z

R

X'

Z

R

X'

X

R

X'

1 1 * 22 1 1 1 1

ˆ

ˆ

1 -22 1 -22 21 12 11

φ

Polygenic and Genomic (Co)Variances

Weight here defined as constant across all traits, however equations

can be modified to allow different weights across traits

(24)

Most Useful MME  No F

-1

Needed

                                                                         0 y R Z' y R X' g u β D Q T ' Q T ' Q 0 0 Q T 0 T T T T T Z R Z' X R Z' 0 Z R X' X R X' 1 1 * 1 1 1 1 1 ˆ ˆ ˆ φ φ 1 φ 1 φ 1 1 φ 1 2 1 -22 2 1 -22 2 2 1 -22 1 -22 22 21 12 11

• Alternative Single Step Genomic Prediction (SS-GP)

– Allows combining advantages of SS-GP and MS-GP

• Different implementations, other advantages

– Setting-up as one systems (cf. above)  direct solving

– Setting-up two systems as seen before, some advantages: • Solving through parallel systems by updating RHS periodically • Alternative “SNP” Systems possible  alternative models, solvers • Excluding some u* (e.g., preferentially treated cows),

(25)

Conclusions

• Developed alternative genomic prediction equations have

many advantages:

– Explicit weighting of genomic (SNP) and polygenic effects – Direct estimation of SNP effects

• Better use of High-Density SNP panels

• Other genetic effects (e.g. CNV) can be accommodated – Direct estimation of GEBV effects

– Genomic relationship matrix never explicitly formed, stored or inversed – Implementation straight-forward

• Based on use of existing software

• System I and System II can run in parallel (updating of RHS)

• But

additional research

required:

(26)

Final Remarks

• General consensus

– Single-step methods combine all sources of information into accurate rankings for animals with and without genotypes

– Especially adapted for novel traits (e.g., milk fat composition) and more complex models (e.g., multitrait, random regression model) – With increasing number of genotyped animals equivalent models

not requiring inverting genomic relationship matrix

• Therefore currently

different research efforts

– To get these equivalent models

• This

development complementary approach

because

– Not based on (matrix of) relationship differences – But on partitioning of genetic (co)variances

(27)

Acknowledgments

• ADHIS and DPI - Victoria (“Visiting Fellows Project”)

– Support for stay of Nicolas Gengler in Australia in 2011

• National Fund for Scientific Research (Belgium)

– Support for Nicolas Gengler as former Senior Research Associate (until end of 2011) and as recipient of several research and travel grants

• European Commission, Directorate-General for Agriculture and

Rural Development, under Grant Agreement 211708

This study has been carried out with financial support from the Commission of the European Communities, FP7, KBBE-2007-1. It does not necessarily reflect its view and in no way anticipates the Commission's future policy in this area

• And many colleagues, in particular Jérémie Vandenplas

(28)

Thank you very much

for your attention

Références

Documents relatifs

We present two new features for our prototype of European Speed Limit Support system: detection and recognition of end-of-speed-limit signs, as well as a

This part is considered among negative environmental process of dams and it is predicted that the resultant of impacts on surface water quality within Sangtudeh 2 project

The generalised method of scheduling road projects presented in this work provides a basis for constructors to decide on appropriate production rates, progress

Key attributes of the policy-making context in Belgium Knowledge brokering mechanisms and models in use Spotlight on a selected knowledge-brokering organization Case studies

Cette présentation clinique la plus fréquente des insuffisances aortique (IA) et mitrale (IM) aiguës n ’amène pas de façon évidente au diagnostic de ces valvulopathies en raison de

For genetic evaluation schemes integrating genomic information with records for all animals, genotyped or not, this is often not the case: expected means for pedigree founders

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Weighted Single-step Genomic BLUP: an Iterative Approach for Accurate Calculation of GEBV and GWAS.. X