• Aucun résultat trouvé

Influence of normal and radial contributions of local current density on local electrochemical impedance spectroscopy.

N/A
N/A
Protected

Academic year: 2021

Partager "Influence of normal and radial contributions of local current density on local electrochemical impedance spectroscopy."

Copied!
10
0
0

Texte intégral

(1)

To link to this article: DOI:10.1016/j.electacta.2011.11.053

URL:

http://dx.doi.org./10.1016/j.electacta.2011.11.053

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 5474

To cite this version:

Ferrari, J.V. and De Melo, Hercílio Gomes and Keddam, M. and Orazem,

Mark E. and Pébère, Nadine and Tribollet, Bernard and Vivier , Vincent

Influence of normal and radial contributions of local current density on

local electrochemical impedance spectroscopy. (2012) Electrochimica

Acta, vol. 60 . pp. 244-252. ISSN 0013-4686

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers

and makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes.diff.inp-toulouse.fr

(2)

Influence

of

normal

and

radial

contributions

of

local

current

density

on

local

electrochemical

impedance

spectroscopy

J.V.

Ferrari

a,b,c

,

H.G.

De

Melo

c

,

M.

Keddam

a,b

,

M.E.

Orazem

d

,

N.

Pébère

e

,

B.

Tribollet

a,b

,

V.

Vivier

a,b,∗

aCNRS,UPR15,LaboratoireInterfacesetSystèmesElectrochimiques,F-75005Paris,France bUPMCUnivParis06,UPR15,LISE,4placeJussieu,F-75005Paris,France

cChemicalEngineeringDepartmentofthePolytechnicSchooloftheSãoPauloUniversity,P.O.Box61548,CEP05424-970,SãoPaulo,SP,Brazil dDepartmentofChemicalEngineering,UniversityofFlorida,Gainesville,FL32611,USA

eUniversitédeToulouse,CIRIMAT,UPS/INPT/CNRS,ENSIACET,4,alléeEmileMonso,BP44362,31030Toulousecedex4,France

Keywords: LEIS Currentdistribution Microprobes Blockingelectrode

a

b

s

t

r

a

c

t

Anewtri-electrodeprobeispresentedandappliedtolocalelectrochemicalimpedancespectroscopy (LEIS)measurements.Asopposedtotwo-probesystems,thethree-probeoneallowsmeasurementnot onlyofnormal,butalsoofradialcontributionsoflocalcurrentdensitiestothelocalimpedancevalues. Theresultsconcerningthecasesoftheblockingelectrodeandtheelectrodewithfaradaicreactionare discussedfromthetheoreticalpointofviewforadiskelectrode.Numericalsimulationsandexperimental resultsarecomparedforthecaseoftheferri/ferrocyanideelectrodereactionatthePtworkingelectrode disk.Atthecentreofthedisk,theimpedancetakingintoaccountbothnormalandradialcontributions wasingoodagreementwiththelocalimpedancemeasuredintermsofonlythenormalcontribution.At theperipheryoftheelectrode,theimpedancetakingintoaccountbothnormalandradialcontributions differedsignificantlyfromthelocalimpedancemeasuredintermsofonlythenormalcontribution.The radialimpedanceresultsattheperipheryoftheelectrodeareingoodagreementwiththeusual expla-nationthattheassociatedlargercurrentdensityisattributedtothegeometryoftheelectrode,which exhibitsagreateraccessibilityattheelectrodeedge.

1. Introduction

Local electrochemical techniques such as scanning elec-trochemical microscopy (SECM), scanning vibrating electrode technique(SVET)orlocalelectrochemicalimpedancespectroscopy (LEIS)arenowwidelyusedforthecharacterizationofsurface reac-tivity[1–6],thedeterminationofelectrontransferkinetics[7–9], as wellasstudyingcomplex electrochemicalreactions[10–12]. Amongthesetechniques,localelectrochemicalimpedance spec-troscopy(LEIS),pioneeredbyIsaacsetal.[13,14],takesadvantage ofelectrochemicalimpedancespectroscopytoprobethelocal elec-trochemicalreactivityofaninterface[15–17].Fromthisseminal work,differentapproaches havebeenenvisionedfor measuring LEIS.Themostwidespreadprocedureemploysabi-electrodeto sensesimultaneouslythelocalpotentialattwolocationsabovethe substrate[18,19].Thiscanbeachievedusingalargebi-electrode(Pt electrodesinthemillimetrerangewithaninter-electrodedistance offewmillimetresarecommerciallyavailable)[20–23]orsmaller

∗ Correspondingauthorat:CNRS,UPR15,LaboratoireInterfacesetSystèmes Elec-trochimiques,F-75005Paris,France.

E-mailaddress:vincent.vivier@upmc.fr(V.Vivier).

probesthatconsistoftwomicro-electrodesembeddedinaglass capillary[14,19,24,25].Inthelattercase,Ag/AgClmicro-reference electrodescanbeused[19].Thelocalcurrentdensityisthus calcu-latedfromthislocalpotentialdifferenceandtheOhm’slawforthe electrolyte.

AnadaptationofSVETtoACpolarizationwasalsodevisedand tookadvantageoftheuseofasingleprobethatisvibrated,allowing afineandeasycontroloftheinter-electrodedistancebycontrolling theamplitudeofthevibration[26,27].Thistechnique,however, suffersfromlocalconvectioninducedbytheprobevibrationand fromthecontributionoftheredoxpotentialatametallicelectrode [26].SincethedepositofAg/AgClattheapexofthevibratingtip resultsinafragileprobe,nosignificantimprovementinthe mea-surementofthelocalpotentialcanbereached.

Acommonfeatureoftheaboveconfigurationsisthatonlythe normalcomponentoftheAC-currentinsolutionismonitored,i.e., curvature ofequipotentialsurfacesin solutionis nottakeninto account.Thereforetheresultingestimateforlocalcurrentdensity isvalidonlywhenthesensingprobeislocatedabovethecentreof thedomainofinterest;otherwisethelocalcurrentinsolutionisthe vectorsumofboththenormalandtheradialcomponents.In addi-tion,inspiteofthecapabilityofSVETtomeasuresimultaneously thenormalandradialdc-currentcomponents[28–32],tothebest

(3)

ofourknowledge,onlythenormalcomponentofthecurrenthas beenconsideredforthemeasurementofLEIS.

Morerecently,somedevelopmentsofthemicrocelltechnique havebeenreported[33,34],whereonlyasmallareaofanelectrode isisolatedbyaglasscapillaryandplacedindirectcontactwiththe electrolyteforperformingLEISmeasurements.Itshouldbenoted thatusingamicrocapillary,equipotentialsurfacesareconstrained bythecapillarygeometry,thusequipotentialsurfacesareparallel totheelectrodesurfacealongthecylinderbetweentheworking electrodeandthecounterelectrode.Withsuchadevice,local mea-surementcanbeperformed,buttheelectrochemicalresponsedoes notaccountforthesurroundingenvironmentofthelocaldomain analyzed.

The objective of the present work is to report on the use of a tri-electrode system which is used for the first time to performLEIS measurements.A theoretical framework is devel-oped for a classical blocking electrode and for an electrode withfaradaicreaction,allowingadirectcomparisonwith previ-ousworks[24,25,35–37].Then,experimentalinvestigationfor a modelsystem(ferri/ferrocyanideredoxcoupleatPtelectrode)was performedtoillustratetherelevanceofthesimultaneous measure-mentofbothnormalandradialcurrentcomponents.

2. Experimental

Theinstrumentation,thenewtri-electrodecurrentsensor,and chemicalsusedintheexperimentalworkaredescribedbelow.

2.1. Instrumentation

The LEIS apparatus consisted of an in-house made device witha3-axispositioningsystem(UTM25,Newport)drivenbya motionencoder(MM4005,Newport)allowingaspatialresolution of0.2mminthethreedirections.Thepotentialswerecontrolledby ahome-madepotentiostat.Theexperimentalsetupwascomputer controlledby a single software developed under theLabview®

environment.Useofafour-channelfrequencyresponseanalyzer (Solartron–FRA1254)allowedbothglobalandlocalimpedances toberecordedsimultaneously[24,36,38].Home-madelow-noise analogdifferentialamplifierswithbothvariablegainandhighinput impedanceweredevelopedforrecordingboththelocalpotentials andcurrentvariations.

TheLEISexperimentswereperformedusing50mV peak-to-peaksinewaveperturbation,50acquisitioncyclesoverafrequency rangeof65kHzto100mHzwith7pointsperdecades.

2.2. Tri-electrodecurrentsensor

Thetri-electrodeconsistedofthreesilvermicrowiresof100mm indiameter,eachofthemlaterallyinsulatedusingacataphoretic paint(fewmicrometersthick),andthensealedinacapillaryglass withanepoxyresin.Theelectrodearrangementwasoptimizedfor themeasurementofbothnormalandradiallocalcurrentdensities (Fig.1).Suchasetupisequivalenttothevibratingprobedeveloped forSVETexperiments,exceptthattheuseofamultisensoravoided localforcedconvection.Theapexoftheelectrodewaspolishedwith SiCemerypaperupto1200grade,andanelectrochemicaldeposit ofAgClwasperformedbypotentiostaticoxidationofAginaKCl 0.5Msolutiononeachelectrode.Thissetofreference microelec-trodesallowedsimultaneousmeasurementofthreelocalpotentials intheclosevicinityofthesubstrate.Itshouldbementionedthat, aspreviouslydemonstrated,therelevantparametersforthelocal measurementsarethesizeofeachprobe,thedistancebetweentwo probes,andthetip-to-sampledistance[15].

Fig.1.Opticalimageofasilvertri-electrodeusedforLEISmeasurement.Eachwire is100mmindiameter.

2.3. Chemicalsandsamples

All the experiments were performed using analytical grade chemicals as received. Electrolytic solutions were prepared in twice-distilledwater(18Mcm).A10mMferri/ferrocyanide solu-tionwaspreparedina0.5MKClelectrolyte.APtworkingelectrode waslaterallyinsulated witha cathaphoreticpaint,heat treated for 1h at 150◦C, and then molded into an epoxy resin

(Buh-ler,EpoxycureTM).Thiselectrodewassecuredatthebottomofa

TefloncellwithanO-ringlargerthanthenominalPtdiameter.The counterelectrodewasalargeplatinumgauzesurroundingallthe electrochemicalcellinordertominimizecurrentandpotential dis-tributionsduetothecellgeometry.Asaturatedcalomelelectrode (SCE)wasusedasreferenceelectrode.Allpotentialsarereported withrespecttothisreferenceunlessotherwisestated.

3. Mathematicalmodels

Themathematicalmodelsdevelopedforthisworkandthe defi-nitionsemployedinthedescriptionoftheimpedanceresponseare presentedbelow.First,thedefinitionsemployedin the descrip-tionoftheimpedanceresponsearepresented.Then,simulations weredeveloped for ablocking electrodeand an electrodewith Faradaicreaction.Allsimulationswereperformedusingfinite ele-mentmethod,implementedinComsolMultiphysicsonaPC. 3.1. Definitions

Previousworksdefinedglobal,local,localinterfacial,andlocal ohmic impedances using a bi-electrode for probing the solu-tionpotentialanda multi-channelfrequency responseanalyzer [35–37].ThelocalAC-currentdensityiloc(ω)wasobtainedthrough

theOhm’slawusing[13]: iloc(ω)= 1Vprobe(ω)

d (1)

where  is the electrolyte conductivity, 1Vprobe(ω) is the

AC-potentialdifferencebetweenthetwoprobes,anddisthedistance betweenthetwoprobes.AsshowninFig.2,forthediskgeometry, thelocalcurrentdensityinsolutionisthevectorsumofradialand normalcontributions: in(ω)=1V n(ω) dn (2) ir(ω)=1Vr(ω) dr (3)

(4)

Fig.2. Currentandpotentialdistributionsinthevicinityofaninlaiddiskelectrode.

where1Vnisthepotentialdifferencemeasuredbytheprobeina

directionnormaltotheelectrodesurface,and1Vristhepotential

differencemeasuredbytheprobeinaradialdirection,parallelto theelectrodesurface.

Thetwolocalimpedances,zn(ω)andzr(ω),involvetheelectrode

potentialmeasuredwithrespecttoareferenceelectrodelocatedfar fromtheelectrodesurface:

zn(ω)= V (ω)˜ −˚ref in(ω) = ˜ V (ω) 1Vn(ω) dn  (4) zr(ω)= V (ω)˜ −˚ref ir(ω) = ˜ V (ω) 1Vr(ω) dr  (5)

where ˜V (ω)−˚refrepresentstheAC-potentialdifferencebetween

theworkingelectrodeandthereferenceelectrodeinthebulk solu-tion.

Thetwolocalinterfacialimpedances,zn

0(ω)andz0r(ω),involve

thepotentialof theelectrode referencedtothepotentialofthe electrolytemeasuredattheinnerlimitofthediffuselayer. zn0(ω)= V (ω)˜ − ˜˚0(ω) in(ω) = ˜ V (ω)− ˜˚0(ω) 1Vn(ω) dn  (6) zr 0(ω)= ˜ V (ω)− ˜˚0(ω) ir(ω) = ˜ V (ω)− ˜˚0(ω) 1Vr(ω) dr  (7)

Thus, thelocal Ohmic impedances, zn

e(ω) and zer(ω), can be

deducedbycalculatingthedifferencebetweenthelocalimpedance andlocalinterfacialimpedanceforbothnormalandradial contri-butions.

zne(ω)=zn(ω)−zn0(ω) (8)

zr

e(ω)=zr(ω)−zr0(ω) (9)

Following previous developments in this area [34–37], the Ohmic impedance can be a complex number. Throughout this paper,theresultsareexpressedintermsofadimensionless fre-quency,K,whichisdefinedby:

K= C0ωr0

 (10)

whereC0istheinterfacialcapacitanceandr0istheelectroderadius.

3.2. Blockingelectrode

Thepotential˚insolutioninthevicinityofaninlaiddisk elec-trodeisgovernedbytheLaplace’sequation.

2˚=0 (11)

Using cylindrical coordinates and taking into account the cylindricalsymmetrycondition,thepotentialdistributioncanbe expressedas: ∂2˚ ∂r2 + 1 r



∂˚ ∂r



+∂ 2˚ ∂y2 =0 (12)

whereyisthenormaldistancetotheelectrodesurface,andristhe radialcoordinate.Asablockingelectrodecanbedescribedbyapure capacitivebehaviour,thefluxboundaryconditionattheelectrode surfacewaswrittenas:

C0 ∂(V−˚0) ∂t =− ∂˚ ∂y

y=0 (13)

whereistheelectrolyteconductivity,Vistheelectrodepotential, and˚0isthepotentialjustoutsidethedoublelayer.Onthe

sur-roundinginsulatorandfarfromtheelectrodesurface,theboundary conditionsweregivenby:

∂˚ ∂y

y=0 =0 for r>r0 (14) and: ˚→0 when r2+y2→∞ (15)

3.3. ElectrodewithFaradaicreaction

The second model describes an electrochemical reaction of redoxmoietyinsolutionthatalsotakesintoaccountcurrentand potentialdistributions.Aone-stepelectrochemicalreaction involv-ingasingleelectronexchangewasassumedtooccuratthedisk interface,e.g.,

ox+e−

⇄red (16)

Thereactionrate(

v

)followstheButler–Volmerrelationship:

v

=k0



C redexp

h

˛F RT(V−E 0)

i

C oxexp

h

−(1−˛)F RT(V−E 0)

i

(17) where Cred and Cox are the interfacial concentrations of

elec-troactivespecies,k0 isthestandardrateconstant,˛thetransfer

coefficient,E0thestandardpotential.Iftheelectrochemicalcellis

assumedtobeconvectionfreeduringthedurationofthe exper-iment,themasstransportofelectroactivespeciesisgovernedby thesecondFick’slaw:

∂Ci ∂t =Di



∂2C i ∂r2 + 1 r



∂Ci ∂r



+∂ 2C i ∂y2



(18)

wherethesubscriptiaccountsforoxorred,andDiisthe

diffu-sioncoefficientofthespeciesi.Fortheelectrochemicalimpedance simulations,thisproblemwassplitintwocontributions:a steady-state contributionand a harmonic contribution.The latter was obtained from the linearization of Butler–Volmer equation as alreadydescribedelsewhere[39,40].Thus,thesystemtobesolved consistedinfivecoupleddifferentialequations(twoforeachredox moietydescribingthesteady-stateandtheharmoniccontributions, andoneforthepotential).Thefaradaicadmittancewasobtained byintegratingthefluxalongtheradialdirectionoftheelectrode foreachangularfrequency(ω=2f).

(5)

Fig.3.Localnormalandlocalradialimpedances(a),andlocalnormalandlocal radialinterfacialimpedances(b)calculatedabovetheelectrodesurface(ata dis-tancey=100mm)closetothecentreofthedisk(r=100mm)withC0=10mFand =0.01S/cm.

4. Resultsanddiscussion

Simulations were performed for a blocking electrode, and bothsimulationsandexperimentsweredoneforamodel ferri-cyanide/ferrocyanideredoxsystem.

4.1. Blockingelectrode

In thefollowing, thecase of a blockingelectrode is investi-gated.Itconsistsofadiskelectrodeof0.25cminradius,embedded in an infinite insulator and which behaves as a purecapacitor (C0=10mF).Theelectrolyteconductivityis=0.01S/cm.

Calculatednormalandradiallocalelectrochemicalimpedances arepresentedinFig.3aforaprobepositionedabovetheelectrode surface(ata distancey=100mm)and closetothecentreofthe disk(r=100mm).Thehigh-frequencylimitofthespectrumisabout 0.5forthenormallocalimpedance,andismuchlarger(about 320)inthecaseoftheradiallocalimpedance.Similarly,inthe caseofthelocalinterfacialimpedanceshowninFig.3b,thehigh fre-quencylimitisabout12mforthenormalcontribution;whereas,

Fig.4.Localnormalandlocaltotalimpedances(a);andlocalnormalandlocal totalOhmic impedances(b)calculatedabove theelectrodesurface(ata dis-tancey=100mm)closetothecentreofthedisk(r=100mm)withC0=10mFand =0.01S/cm.

itisabout8fortheradialcontribution.Itshouldbenotedthat, inbothcases,theratioofthehighfrequencylimitisthesame.

Thelocalimpedancecalculatedfrombothnormal andradial contributionsundertheconditionsdescribedforFig.3iscompared inFig.4atothelocalimpedancecalculatedonlywiththenormal contributionofthecurrentdensity.Diagramsareverysimilarin bothshapeandintensity.Theerrormadebyusingonlythenormal contributionisabout0.2%inthehighfrequencies,andabout1.5%in themediumfrequencies.ThelocalOhmicimpedancediagrams cal-culatedfrombothnormalandradialcontributionarecomparedin Fig.4btothelocalOhmicimpedancecalculatedonlywiththe nor-malcontributionofthecurrentdensity.Asalreadyobservedinthe caseofthenormalcomponentonly[35–37],thediagramsexhibita singleinductiveloopinthehigh-frequencydomainwiththesame timeconstantthantheoneobservedforthelocalimpedance.Thus, abovetheelectrodecentre,theuseofonlythenormalcurrent den-sityforthedeterminationofthelocalimpedancesresultsinminor error,usuallyintherangeoftheexperimentalerror.

The local impedance calculated close to the electrode edge (r=0.24cm) is presented in Fig. 5a. In that case, both local impedancescalculatedfromthenormalorfromtheradialcurrent

(6)

Fig.5.Localnormal,localradial,andlocaltotalimpedances(a),andlocalnormal, localradial,andlocaltotalinterfacialimpedances(b)calculatedabovetheelectrode surface(atadistancey=100mm)closetotheedgeofthedisk(r=0.24cm)with C0=10mFand=0.01S/cm.

densityareofthesameorderofmagnitude.Asaresult,thelocal impedanceclosetotheelectrodeedgeissmallerthantheone cal-culatedwithonlyonecontribution.Forinstance,ifonlythenormal currentdensityisconsidered,theerrorislargerthan50%inthe wholefrequencyrange.Suchabehaviourisattributedtothe geom-etryoftheelectrode,whichexhibitsagreateraccessibilityatthe electrodeedge.ThesametrendsareshowninFig.5bforthelocal interfacialimpedance.However,thedifferencebetweentheradial andthenormallocalinterfacialimpedancesislargerbecause,close totheelectrodesurface,thecurvatureofthecurrentlinesisless significant.

ThelocalOhmicimpedancecalculated closetotheelectrode edgeisshowninFig.6a.ThelocalOhmicimpedancecalculated withthenormalcurrentdensityismainlycapacitivewithasmall inductive feature in thehigh frequencies. Conversely, the con-tribution calculated with the radial current density only is an inductiveloopinahigherfrequencyrange.Thus,thelocalOhmic impedanceis characterizedbytwo time constantsasshown in Fig.6b.

Thus in the case of a blocking electrode, the geometry of the cell cannot be neglected. The radial component of the

Fig.6.Localnormal,localradial,andlocaltotalOhmicimpedancescalculated abovetheelectrodesurface(atadistancey=100mm)closetotheedgeofthe disk(r=0.24cm)withC0=10mFand=0.01S/cm;zoomonthelocaltotalOhmic impedance.

current is to be considered when the probe is close to the boundarybetweentheconductingpartoftheelectrodeandthe surrounding insulator. It is also interesting to note that both contributionsofthelocalcurrentdensityresultintwodifferent time-constantsthatcanbeobservedinthelocalOhmicimpedance spectra.

4.2. Ferri/ferrocyanideataPtelectrode

Experimentsandsimulationswerealsoperformedonamodel system (Fe(CN)64−/Fe(CN)63−) in order to investigate the

con-tribution of normal and radial current densities on the most commoncontributionssuchaschargetransferresistanceand dif-fusionimpedances.Threesuccessiveglobalimpedancediagrams, performed with a 0.25cm in radius Pt electrode in a 10mM ferri/ferrocyanideand0.5MKClsolutionattheequilibrium poten-tial,areshowninFig.7.ThePtdiskelectrode wasnotpolished norelectrochemicallyactivatedinordertodecreasetherateofthe electronexchangereaction(i.e.,causinga largerchargetransfer resistance).Thediagramswereobtainedinabsenceorinpresence ofthetri-electrodeintheclosevicinityofthesubstrate.Itcanbe

(7)

Fig.7.Globalimpedancemeasurements(successiveexperiments)onaPt elec-trodeimmersedinaferri/ferrocyanidesolutionwiththetri-electrodeclosetothe electrodecentreorclosetotheelectrodeedgeandwithoutthetri-electrode.

seenthatevenifthepresenceoftheprobeundoubtedlymodifies thecurrentandpotentialdistributionsatthedisk,nosignificant effectisseen.

ExperimentallocalimpedancediagramsareshowninFig.8a fora probe positionclosetotheedge orclosetothecentre of theelectrode. Thesediagramshavethesameshape asdoesthe globalmeasurement(Fig.7)andhavesimilartimeconstants. How-ever,theimpedanceclosetotheelectrodeedgeislarger,which correspondstosmallercurrentdensityattheelectrodeedgethan atthecentre.Thisbehaviourwaspreviouslyobservedby perform-ingsystematiclocalimpedancemeasurementsalonganelectrode radius of AZ91Mg alloy[41]. Due tothe edge effect, one can imaginethatthelocalcurrentdensityshouldbelargeratthe elec-trodeedgethanatthecentre[42,43],thustheradialcontribution cannotbe neglected. Thiswasconfirmedbythe useofthe tri-electrode(Fig.8b),whichallowstheradiallocalimpedancetobe measuredsimultaneouslywiththenormalcontribution.The low-frequencylimit(0.1Hz)showninFig.8bisabout8timeslargerat theelectrodecentrethanattheedge,butthegeneralshapeofthe signalcorrespondstoahigh-frequencycapacitiveloopattributed tothechargetransferresistanceinparallelwiththedoublelayer capacitance,and theWarburg impedance inthe low frequency domainfor thediffusion ofelectroactivespecies. In addition, a highfrequencyinductivefeatureappearswhentheprobeisabove theelectrodecentre.Suchabehaviourwaspreviouslyattributed tothediskgeometryofthesubstrate[35–37].Simulationswere performedtoaccountforsuch abehaviourusingfiniteelement methods to describe simultaneously diffusion of electro-active speciesandcurrentandpotentialdistributionsinthe electrochemi-calcell.Allcalculationswereperformedwithadiffusioncoefficient of10−5cm2/s,aheterogeneousrateconstantof10−3cm/s,a

trans-fercoefficientof0.5,anequimolarconcentrationofredoxmoieties (10−2mol/l)atip-to-substratedistanceof100mm,an

interelec-trodedistanceof100mm,C0=10mFand=0.01S/cm;andresults forbothradialandnormallocalimpedanceareshowninFig.9.The simulationresultsareinagreementwiththeexperimentalones, showingthatwhenthemeasurementisperformedabovethe elec-trodecentre,thenormalcomponentofthelocalcurrentdensity (thus,thenormallocalimpedance)describeswithagood approx-imationthelocalbehaviour.However,closetotheelectrodeedge, theradialcurrentdensityincreasesandcannolongerbeneglected. Itshouldbenotedthatsuchbehaviourdoesnotapplyonlyforadisk electrode.Itcanbeeasilyextendedtomorecomplicatedsystem, e.g.,formultiphaseelectrodesforwhichdiscontinuityexistsateach boundarybetweengrains.Infact,theinfluenceoftheradial com-ponentofthecurrentwaspreviouslyarguedinthecaseofgalvanic couplingbetweentwometalsinordertoexplainthevariationsin thehighfrequencydomainoflocalimpedancemeasuredwitha bi-electrode[44,45].

Fig.8. Localnormal(a)andlocalradialimpedances(b)experimentallyobtainedat thecentreandclosetotheedgeoftheelectrodeinferri/ferrocyanidesolutionatthe equilibriumpotential.

However,somedifferencesbetweenexperimentaland simu-lateddiagramscanbenoticed.Inparticular,theamplitudeofthe diagramsisdifferentandthereisa smallshiftofthe character-isticfrequencies.Thisisduetolimitationsofthesimulation for whichwecannotextendthenumberofmeshesthroughoutthe wholedomain.Tocircumventthisproblem,wehaveused geomet-ricparameters(probe-to-substratedistance,distancebetweenthe twoprobes)forthecalculationsslightlydifferentfromthe exper-imentalconditions.Accordingly,thesimulationsaccountenough fortheobservedexperimentalvariationsandvalidatedthe contri-butionsofthenormalandradialcontributionsonlocalimpedance measurements.Theobjectivewasnottofitaccuratelythe experi-mentalresults.

Fig. 10a shows the experimental local normal Ohmic impedances measured at the centre and at the edge of the electrode.Inbothcase,twotimeconstantsareobservedat650Hz andat1Hz.Itshouldbementionedthatthisimpedancechanges frominductivetocapacitivebehaviourfromthecentretotheedge,

(8)

Fig.9. Simulationoflocalnormal(a)andlocalradial(b)impedancesatthe cen-treandclosetotheedgeforafaradaicsysteminvolvingdiffusion;(c)zoomof thelocalradialimpedanceclosetotheedge.Calculationswereperformedwith D=10−5cm2/s,k

0=10−3cm/s,˛=0.5,Cox=Cred=10−2mol/l,atip-to-substrate

dis-tanceof100mm,aninterelectrodedistanceof100mm,C0=10mFand=0.01S/cm.

respectively. The HFtime constant should beattributed tothe relaxationofchargetransferresistanceinparallelwiththedouble layercapacitance,andthelowfrequencyloopistobelinkedtothe diffusionprocess.

Fig.10. Experimentallocal normalohmic impedance (a)andlocal radial (b) impedancesatthecentreandclosetotheedgeinferri/ferrocyanidesolutionat theequilibriumpotential.

Theradialcontributionswerealsomeasured(Fig.10b).Close to the electrode edge, this local Ohmicimpedance exhibits an additional high-frequencytime constant, which isattributedto the geometry of the electrode, and a shift towards smaller value of the time constant is also observed. Above the elec-trode centre, no reliable measurement could be obtained (see below).

Thenumericalsimulationsofthetwocomponentsofthelocal OhmicimpedancearepresentedinFig.11a.Agoodagreementwith theexperimentalresultspresentedinFig.10forboththeshapeand thefrequencyshiftisobserved.AsshowninFig.11b,theradiallocal Ohmicimpedanceisverylarge(inthemegaOhmrange),which cor-respondstoverysmallcurrentdensity.Thisexplainswhytheradial contributionstolocalOhmicimpedancecouldnotbemeasuredat thecentreoftheelectrode,andwhyonlythecontributionatthe electrodeedgeisreportedinFig.10b.

(9)

Fig.11.Simulationof localnormal ohmicimpedance(a)and localradial (b) impedancesatthecentreandclosetotheedgeforafaradaicsysteminvolving diffusion.SameconditionsthanforFig.9.

5. Conclusions

Thenumericalsimulationsshowthatthecontributionofthe radialcurrenttotheimpedanceresponseissignificantnearthe electrode peripheryfor electrodesexhibiting bothblocking and faradaicbehaviour.Thus,neartheelectrodeperiphery,thelocal impedancecalculatedabovetheelectrodesurfaceusingonlythe normalcurrentcomponentislargerthanwouldbeobtainedusing thecorrectcurrentdensitycontainingbothradialandnormal com-ponents.Atthecentreoftheelectrode,theradialcomponentof currentdensitymaybeneglected,andthelocalimpedance calcu-latedusingonlythenormalcurrentcomponent isequaltothat whichwouldbeobtainedusingboth radialand normal compo-nents.

Thedevelopmentofatri-electrodeprobehasallowed measure-mentofaxialandradialcontributionstolocalcurrentdensityandto localimpedancevalues.Atthecentreofadiskelectrode,theradial componentcontributedlittletotheoverallimpedanceresponse, and theimpedancetakinginto accountboth normaland radial contributionsisingoodagreementwiththelocalimpedance mea-suredintheusualwayintermsofonlythenormalcontribution.At theperipheryoftheelectrode,theradialcomponentofthecurrent densityissignificant,andtheimpedancetakingintoaccountboth normalandradialcontributionsdifferssignificantlyfromthelocal impedancemeasuredintheusualwayintermsofonlythe nor-malcontribution.Thus,abi-microelectrodemaybeusedtoobtain quantitativedatawhentheprobeislocatedabovethecentreofthe electrode;whereas,onlyqualitativeinformationcanbeobtained abovetheedge.Theradialimpedanceresultsattheperipheryof theelectrodeareingoodagreementwiththeusualexplanation thattheassociatedlargercurrentdensityisattributedtothe geom-etryoftheelectrode,whichexhibitsagreateraccessibilityatthe electrodeedge.Inaddition,theinductiveandcapacitivebehaviour observedonthelocalOhmicimpedancefortheblockingelectrode arelinkedtoradialandnormallocalcurrentdensity,respectively. Acknowledgments

M.E.OrazemacknowledgesfinancialsupportfromtheCharles A.Stokesprofessorship,andJ.FerrariacknowledgeshisPh.D.grant supportedbyCAPES.

References

[1]K.Eckhard,X.Chen,F.Turcu,W.Schuhmann,Phys.Chem.Chem.Phys.8(2006) 5359.

[2]K.Eckhard,W.Schuhmann,Analyst133(2008)1486.

[3]F.O.Laforge,J.Velmurugan,Y.Wang,M.V.Mirkin,Anal.Chem.(Washington, DC,U.S.)81(2009)3143.

[4]M.J.Franklin,D.C.White,H.S.Isaacs,Corros.Sci.33(1992)251.

[5]H.S.Isaacs,M.W.Kendig,Corrosion(Houston,TX,UnitedStates)36(1980)269. [6]C.Gabrielli,E.Ostermann,H.Perrot,V.Vivier,L.Beitone,C.Mace,Electrochem.

Commun.7(2005)962.

[7]A.J.Bard,M.V.Mirkin,P.R.Unwin,D.O.Wipf,J.Phys.Chem.96(1992)1861. [8]B.Liu,M.V.Mirkin,J.Phys.Chem.B106(2002)3933.

[9]H.Cachet,C.Debiemme-Chouvy,C.Deslouis,A.Lagrini,V.Vivier,Surf.Interface Anal.38(2006)719.

[10]C.Demaille,P.R.Unwin,A.J.Bard,J.Phys.Chem.100(1996)14137. [11]C.M.Sanchez-Sanchez,J.Rodriguez-Lopez,A.J.Bard,2008(Chapter9). [12]R.D.Martin,P.Unwin,J.Chem.Soc.,FaradayTrans.94(1998)753. [13]R.S.Lillard,P.J.Moran,H.S.Isaacs,J.Electrochem.Soc.139(1992)1007. [14]F.Zou,D.Thierry,H.S.Isaacs,J.Electrochem.Soc.144(1997)1957.

[15] V.M.Huang,S.L.Wu,M.E.Orazem,N.Pebere,B.Tribollet,V.Vivier,Electrochim. Acta56(2011)8048.

[16]C.Gabrielli,I.Rubinstein(Eds.),PhysicalElectrochemistry.Principles,Methods, andApplications,MarcelDekker,NewYork,1995(Chapter6).

[17]M.E.Orazem,B.Tribollet,ElectrochemicalImpedanceSpectroscopy,JohnWiley &Sons,Hoboken,NJ,2008.

[18]I.Annergren,D.Thierry,F.Zou,J.Electrochem.Soc.144(1997)1208. [19] G.Galicia,N.Pebere,B.Tribollet,V.Vivier,Corros.Sci.51(2009)1789. [20] I.Dehri,R.L.Howard,S.B.Lyon,Corros.Sci.41(1998)141.

(10)

[22]L.V.S.Philippe,G.W.Walter,S.B.Lyon,J.Electrochem.Soc.150(2003)B111. [23]J.B.Jorcin,E.Aragon,C.Merlatti,N.Pebere,Corros.Sci.48(2006)1779. [24]I.Frateur,V.M.-W.Huang,M.E.Orazem,B.Tribollet,V.Vivier,J.Electrochem.

Soc.154(2007)C719.

[25]I.Frateur,V.M.-W.Huang,M.E.Orazem,N.Pebere,B.Tribollet,V.Vivier, Elec-trochim.Acta53(2008)7386.

[26]E.Bayet,F.Huet,M.Keddam,K.Ogle,H.Takenouti,Electrochim.Acta44(1999) 4117.

[27]E.Bayet,F.Huet,M.Keddam,K.Ogle,H.Takenouti,J.Electrochem.Soc.144 (1997)L87.

[28]L.F.Jaffe,R.Nuccitelli,J.CellBiol.63(1974)614.

[29] B.Vuillemin,X.Philippe,R.Oltra,V.Vignal,L.Coudreuse,L.C.Dufour,E.Finot, Corros.Sci.45(2003)1143.

[30] A.M.Simoes,A.C.Bastos,M.G.Ferreira,Y.Gonzalez-Garcia,S.Gonzalez,R.M. Souto,Corros.Sci.49(2007)726.

[31] R.M.Souto,Y.Gonzalez-Garcia,A.C.Bastos,A.M.Simoes,Corros.Sci.49(2007) 4568.

[32] R.M.Souto,B.Normand,H.Takenouti,M.Keddam,Electrochim.Acta55(2010) 4551.

[33] M.M.Lohrengel,S.Heiroth,K.Kluger,M.Pilaski,B.Walther,Electrochim.Acta 51(2006)1431.

[34]M.Sanchez,J.Gamby,H.Perrot,D.Rose,V.Vivier,Electrochem.Commun.12 (2010)1230.

[35]V.M.-W.Huang,V.Vivier,M.E.Orazem,N.Pebere,B.Tribollet,J.Electrochem. Soc.154(2007)C99.

[36]V.M.-W.Huang,V.Vivier,I.Frateur,M.E.Orazem,B.Tribollet,J.Electrochem. Soc.154(2007)C89.

[37]V.M.-W.Huang,V.Vivier,M.E.Orazem,N.Pebere,B.Tribollet,J.Electrochem. Soc.154(2007)C81.

[38]S.L.Wu,M.E.Orazem,B.Tribollet,V.Vivier,J.Electrochem.Soc.156(2009) C214.

[39]C.Gabrielli,M.Keddam,N.Portail,P.Rousseau,H.Takenouti,V.Vivier,J.Phys. Chem.B110(2006)20478.

[40]R.Michel,C.Montella,C.Verdier,J.P.Diard,Electrochim.Acta55(2010)6263. [41] J.B.Jorcin,M.E.Orazem,N.Pebere,B.Tribollet,Electrochim.Acta51(2006)

1473.

[42] J.Newman,J.Electrochem.Soc.113(1966)1235.

[43]W.H.Smyrl,J.Newman,J.Electrochem.Soc.119(1972)208.

[44] C.Blanc,M.E.Orazem,N.Pebere,B.Tribollet,V.Vivier,S.Wu,Electrochim.Acta 55(2010)6313.

[45] L.Lacroix,C.Blanc,N.Pebere,B.Tribollet,V.Vivier,J.Electrochem.Soc.156 (2009)C259.

Figure

Fig. 1. Optical image of a silver tri-electrode used for LEIS measurement. Each wire is 100 mm in diameter.
Fig. 2. Current and potential distributions in the vicinity of an inlaid disk electrode.
Fig. 3. Local normal and local radial impedances (a), and local normal and local radial interfacial impedances (b) calculated above the electrode surface (at a  dis-tance y = 100 mm) close to the centre of the disk (r = 100 mm) with C 0 = 10 mF and
Fig. 5. Local normal, local radial, and local total impedances (a), and local normal, local radial, and local total interfacial impedances (b) calculated above the electrode surface (at a distance y = 100 mm) close to the edge of the disk (r = 0.24 cm) wit
+4

Références

Documents relatifs

Di fferences in the size of the Antarctic ozone hole calculated using the Earth Probe TOMS and GOA GOME data sets (EPT-GOA) for (a) corrected EPT and GOA data, (b) cor- rected EPT

In particular, this paper showed an algorithm for detection of unnecessary body movement and identification of an action based on analysis of the load centre position of seat

Large-scale evolution of kinetic energy: amplitude modulation coefficients The amplitude modulation of the small-scale turbulence embodies the large-scale evolution of the intensity

On the test COXINEL experiment [2–4] line, "QUAPEVA" permanent magnet quadrupoles of variable strength [5, 6] handle the emittance growth and a decompression chicane reduces

Mouette, récitatif (x 74) Mouette est un mot Mouette est un nom Mouette un concept Mouette dans Larousse Mouette dans le ciel Mouette dans la brousse Mouette à tête blanche

fabrication sont rapidement décrites, et qui serviront ultérieurement comme agent de liaison ou comme ingrédient de base de vermicelles. 42 Ce qui est souvent le cas dans les

3 If supply does not equal the socially optimal level of good design, what methods can local authorities use to decrease the opportunity costs or increase the financial returns to

The results are congruent with the above-mentioned morphological data (well-defined nano- channels) and validate the strategy of fully aromatic triblock copolymers with highly